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I. INTRODUCTION

In this section, we outline the problem formulation for the mmWave channel estimation challenge.

We consider a single user hybrid multi-carrier mmWave MIMO OFDM uplink with Nt transmit

antennas at the user and Nr receive antennas at the base station. The hybrid architecture involves

Lt RF chains at the transmit side and Lr RF chains at the receive side. The analog precoder

at the transmit side is denoted by FRF ∈ CNt×Lt . The analog combiner at the receive side is

Wtr ∈ CNr×Lr . The number of streams to be transmitted is set as Ns = 2. The number of

subcarriers are chosen as K = 256. The system operates with uniform linear arrays (ULAs) at

both ends.

Fig. 1. Millimeter wave MIMO system based on a hybrid architecture. In the site-specific channel estimation challenge, the BS

operates as receiver and the UE as transmitter.
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We define a training pilot as an OFDM symbol known at both the Tx and the Rx. The received

signal in the mth training pilot and for the kth subcarrier is written as

r(m)[k] = W
(m)H
tr (H [k]F

(m)
RF q(m) + n(m)[k]), (1)

where H [k] ∈ CNr×Nt represents the frequency domain MIMO channel matrix for subcarrier

k. The noise vector n(m)[k] is circularly symmetric complex Gaussian distributed with zero

mean independent and identically distributed (i.i.d.) components of variance σ2, denoted by

CN (0, σ2
nINr). Each entry of the transmit pilot q(m) is selected as 1√

2Lt
(a + jb), where a, b ∈

{−1, 1} and are uniformly distributed. Note that
∥∥q(m)

∥∥2 = 1 and hence the transmit SNR

is defined as ρ = 1
σ2
n

. For this challenge, the transmit power is kept constant throughout. The

provided training or test datasets are either from ρ = −15 dB, −10 dB or −5 dB, by changing

the noise variance σ2
n.

After vectorizing (1), using the result vec(AXB) = (BT ⊗A)vec(X), we obtain

vec(r(m)[k]) =
(
q(m)TF

(m)T
RF ⊗W (m)H

tr

)
︸ ︷︷ ︸

Φ(m)

vec(H [k]) +W
(m)H
tr n(m)[k].

(2)

Our goal is to estimate the channels H [k], k = 1, 2, . . . , K using the above received pilot signals.

Notation: The operator (·)H represents the conjugate transpose or conjugate for a matrix or

a scalar respectively. The operator tr(·) represents trace of a matrix. The probability density

function (pdf) of a complex Gaussian random variable x with mean µ and variance σ2 is denoted

by CN (x;µ, ν). An,: and An represent the nth row and nth column of A, respectively. blkdiag(·)

represents blockdiagonal part of a matrix. diag(X) or diag(x) represents a vector obtained by

the diagonal elements of the matrix X or the diagonal matrix obtained with the elements of x

in the diagonal respectively. Tx denotes the transmitter and Rx denotes the receiver.

A. Channel Model

The datasets provided for the challenge involve channels which are generated using the Raymob-

time dataset available at https://www.lasse.ufpa.br/raymobtime/. The MIMO channel is assumed

to be frequency selective, with delay tap length Nc in the time domain. The dth delay tap of the

channel is modeled as a pathwise channel model with L paths as follows:

Hd =
L∑
l=1

αlp(dTs − τl)aR(θl)aT (φl)
H , (3)
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where αl represents the complex path coefficient, θl is the angle of arrival (AoA) at the BS side,

φl is the angle of departure (AoD) from the UE side and p(τ) represents the pulse shaping filter.

τl denotes the delay of the lth path and there are L multipaths. Ts denotes the sampling time.

The channel Hd can be approximated using the virtual channel model [1]

Hd = AR∆dA
H
T . (4)

The matrix AR ∈ CNr×Gr contains the Tx side antenna array response vectors evaluated at a

grid of size Gr for the AoA and AT ∈ CNt×Gt contains the Rx side antenna array response

vectors at a grid of size Gt for the AoD. ∆d ∈ CGr×Gt represents a sparse matrix with entries

corresponding to the complex path coefficients (αlp(dTs−τl)) at the locations where a path with

corresponding AoA and AoD exists. Further, the channel at subcarrier k can be written in terms

of delay taps as follows.

H [k] =
Nc−1∑
d=0

Hde
−j2π kd

K = AR∆[k]AH
T , (5)

where

∆[k] =
Nc∑
d=1

∆de
−j2π kd

K . (6)

Vectorizing H [k]

vec(H [k]) = (A∗T ⊗AR) vec(∆[k]). (7)

Further, defining Ψ = A∗T ⊗AR and h[k] = vec(∆[k]) and substituting for vec(H [k]) in (2),

we get the received signal model as

vec(r(m)[k]) = Φ(m)Ψh[k] +W
(m)H
tr n(m)[k]. (8)

II. PROPOSED APPROACH

We adopt a model based approach using a compressed sensing (CS) framework that integrates a

greedy search procedure along with a statistical inference method to solve for hk in (8). In the first

step of our solution, we obtain an initial channel estimate using simultaneous weighted orthogonal

matching pursuit (SW-OMP) algorithm [2]. As the sparsifying dictionary Ψ is unknown a priori,

we use row-truncated discrete Fourier transform matrices of size Nt × Gt and Nr × Gr as the

transmit and receive array steering matrices, respectively. We obtain coarse estimates of angles

of departure (AoD) and angles of arrival (AoA) in this step. Subsequently, we use a multi-level

beam search technique to find more accurate estimates of the AoD and AoA of the channel. In
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every level of this beam search, we form an equally spaced rectangular grid around the coarse

AoD and AoA estimates obtained in the first step and find new AoD and AoA using a exhaustive

search method. We repeat this step multiple times by narrowing the search space in subsequent

iterations. At the end of this multi-level search procedure, we obtain the final channel estimate.

The first step provides reasonable AoDs and AoA estimates, but the coarse sparsifying dictionary

used may not be able to obtain the exact AoD and AoA that lie in the off grid regions of the

dictionary. To combat this, we adopt a statistical inference procedure to obtain accurate AoDs

and AoAs which improves the NMSE performance of our proposed algorithm. We model the

off grid effects as follows:

H [k] = ÃR∆̃[k]ÃH
T , (9)

where ÃR and ÃT are the receive and transmit array steering matrices corresponding to the

initial AoD and AoA estimates obtained using SW-OMP, respectively, and ∆̃[k] contains the

channel estimates. In practice, the exact AoA and AoD may not match with the grid locations

of the AoD and AoA steering matrices, in which case the channel estimate obtained in the first

step may have high mean squared error. To illustrate this, let us suppose the original AoD and

AoA for one path are θ0 and φ0, respectively, but the array steering vectors are positioned at θ

and φ. We write θ0 = θ+ ∆θ and φ0 = φ+ ∆φ, where ∆θ and ∆φ denote the offsets from the

correct AoD and AoA, respectively. Using the structure of the array steering matrices, we write

this as

H [k] = ÃRD̃R∆̃[k]D̃H
T ÃH

T , (10)

where D̃R and D̃T are diagonal matrices which contain the offsets from the original AoD and

AoA, respectively. Substituting this in (7), we get the channel model as

vec(H [k]) =
(
Ã∗T ⊗ ÃR

)
vec(D̃R∆[k]D̃H

T ). (11)

Further, substituting in (8), we get

vec(r(m)[k]) = Φ(m)Ψ̃hs[k] + W
(m)H
tr n(m)[k]. , (12)

where hs[k] = vec(D̃R∆[k]D̃H
T ) and Ψ̃ = Ã∗T ⊗ ÃR. Now, we estimate hs[k], ∀k using sparse

Bayesian learning (SBL) which is a type II maximum likelihood estimation procedure [3]. We

impose a complex Gaussian prior on the channel and use expectation maximization procedure to

obtain the posterior distribution of the channel. More details of SBL and type-II ML estimation
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can be found in [4]. Once we obtain the channel estimates, we estimate the support of the sparse

vector and the channel coefficients using the hyperparameters obtained using SBL.

Once we obtain the frequency domain channel estimates using SBL, we exploit the lag domain

sparsity of the channel to suppress the residual noise. We retain only the dominant lag domain

channel taps and set the remaining entries to 0. We learn the number of channel taps and the

thresholds for the hyperparameters using the training dataset.
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