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Abstract

The Bayesian treatment of neural networks dictates that a prior distribution is specified over
their weight and bias parameters. This poses a challenge because modern neural networks
are characterized by a large number of parameters, and the choice of these priors has an
uncontrolled effect on the induced functional prior, which is the distribution of the functions
obtained by sampling the parameters from their prior distribution. We argue that this is a
hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a
practical and effective way. Our proposal is to reason in terms of functional priors, which
are easier to elicit, and to “tune” the priors of neural network parameters in a way that
they reflect such functional priors. Gaussian processes offer a rigorous framework to define
prior distributions over functions, and we propose a novel and robust framework to match
their prior with the functional prior of neural networks based on the minimization of their
Wasserstein distance. We provide vast experimental evidence that coupling these priors
with scalable Markov chain Monte Carlo sampling offers systematically large performance
improvements over alternative choices of priors and state-of-the-art approximate Bayesian
deep learning approaches. We consider this work a considerable step in the direction of
making the long-standing challenge of carrying out a fully Bayesian treatment of neural
networks, including convolutional neural networks, a concrete possibility.

Keywords: neural networks, Bayesian inference, Gaussian processes, Wasserstein distance,
prior distribution

1. Introduction

The majority of tasks in machine learning, including classical ones such as classification and
regression, can be reduced to estimation of functional representations, and neural networks
offer a powerful framework to describe functions of high complexity. In this work, we focus on
the Bayesian treatment of neural networks, which results in a natural form of regularization
and allows one to reason about uncertainty in predictions (Tishby et al., 1989; Neal, 1996;
Mackay, 2003). Despite the lack of conjugate priors for any Bayesian neural networks (bnns)
of interest, it is possible to generate samples from the posterior distributions over their
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parameters by means of Markov chain Monte Carlo algorithms (Neal, 1996; Chen et al.,
2014).

The concept of prior distribution in Bayesian inference allows us to describe the family
of solutions that we consider acceptable, before having seen any data. While in some
cases selecting an appropriate prior is easy or intuitive given the context (O’Hagan, 1991;
Rasmussen and Ghahramani, 2002; Srinivas et al., 2010; Cockayne et al., 2019; Briol et al.,
2019; Tran et al., 2021), for nonlinear parametric models with thousands (or millions) of
parameters, like deep neural networks (dnns) and convolutional neural networks (cnns),
this choice is not straightforward. As these models are nowadays accepted as the de facto
standard in machine learning (LeCun et al., 2015), the community has been actively proposing
ways to enable the possibility to reason about the uncertainty in their predictions, with the
Bayesian machinery being at the core of many contributions (Graves, 2011; Chen et al.,
2014; Gal and Ghahramani, 2016; Liu and Wang, 2016).

Despite many advances in the field (Kendall and Gal, 2017; Rossi et al., 2019; Osawa
et al., 2019; Rossi et al., 2020), it is reported that in some cases the predictive posteriors
are not competitive to non-Bayesian alternatives, making these models—and Bayesian deep
learning, in general—less than ideal solutions for a number of applications. For example,
Wenzel et al. (2020) have raised concerns about the quality of bnn posteriors, where it is
found that tempering the posterior distribution improves the performance of some deep
models. We argue that observations of this kind should not be really surprising. Bayesian
inference is a recipe with exactly three ingredients: the prior distribution, the likelihood
and the Bayes’ rule. Regarding the Bayes’ rule, that is simply a consequence of the axioms
of probability. The fact that the posterior might not be useful in some cases should never
be attributed to the Bayesian method itself. In fact, it is very easy to construct Bayesian
models with poor priors and/or likelihoods, which result in poor predictive posteriors. One
should therefore turn to the other two components, which encode model assumptions. In
this work, we focus our discussion and analysis on the prior distribution of bnns. For such
models, the common practice is to define a prior distribution on the network weights and
biases, which is often chosen to be Gaussian. A prior over the parameters induces a prior
on the functions generated by the model, which also depends on the network architecture.
However, due to the nonlinear nature of the model, the effect of this prior on the functional
output is not obvious to characterize and control.

Consider the example in Figure 1, where we show the functions generated by sampling
the weights of bnns with a tanh activation from their Gaussian prior N (0, 1). We see
that as depth is increased, the samples tend to form straight horizontal lines, which is a
well-known pathology stemming from increasing model’s depth (Neal, 1996; Duvenaud et al.,
2014; Matthews et al., 2018). We stress that a fixed Gaussian prior on the parameters is
not always problematic, but it can be, especially for deeper architectures. Nonetheless, this
kind of generative priors on the functions is very different from shallow Bayesian models,
such as Gaussian Processes (gps), where the selection of an appropriate prior typically
reflects certain attributes that we expect from the generated functions. A gp defines a
distribution over functions which is characterized by a mean and a kernel function κ. The
gp prior specification can be more interpretable than the one induced by the prior over the
weights of a bnn, in the sense that the kernel effectively governs the properties of prior
functions, such as shape, variability and smoothness. For example, shift-invariant kernels
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Figure 1: (Top) Sample functions of a fully-connected bnn with 2, 4 and 8 layers obtained by
placing a Gaussian prior on the weights. (Bottom) Samples from a gp prior with two different
kernels.

may impose a certain characteristic length-scale on the functions that can be drawn from
the prior distribution.

Contributions

The main research question that we investigate in this work is how to impose functional
priors on bnns. We seek to tune the prior distributions over bnns parameters so that the
induced functional priors exhibit interpretable properties, similar to shallow gps. While
bnn priors induce a regularization effect that penalizes large values for the network weights,
a gp-adjusted prior induces regularization directly on the space of functions.

We consider the Wasserstein distance between the distribution of bnn functions induced
by a prior over their parameters, and a target gp prior. We propose an algorithm that
optimizes such a distance with respect to the bnn prior parameters and hyper-parameters.
An attractive property of our proposal is that estimating the Wasserstein distance relies
exclusively on samples from both distributions, which are easy to generate. We demonstrate
empirically that for a wide range of bnn architectures with smooth activations, it is possible
to sufficiently capture the function distribution induced by popular gp kernels.

We then explore the effect of gp-induced priors on the predictive posterior distribution
of bnns by means of an extensive experimental campaign. We do this by carrying out fully
Bayesian inference of neural network models with these priors through the use of scalable
Markov chain Monte Carlo (mcmc) sampling (Chen et al., 2014). We demonstrate systematic
performance improvements over alternative choices of priors and state-of-the-art approximate
Bayesian deep learning approaches on a wide range of regression and classification problems,
as well as a wide range of network architectures including convolutional neural networks; we
consider this a significant advancement in Bayesian deep learning.

3



Tran, Rossi, Milios, and Filippone

2. Related Work

In the field of bnns, it is common practice to consider a diagonal Gaussian prior distribution
for the network weights (Neal, 1996; Bishop, 2006). Certain issues of these kind of bnn
priors have been recently exposed by Wenzel et al. (2020), who show that standard Gaussian
priors exhibit poor performance, especially in the case of deep architectures. The authors
address this issue by considering a temperate version of the posterior, which effectively
reduces the strength of the regularization induced by the prior. Many recent works (Chen
et al., 2014; Springenberg et al., 2016) consider a hierarchical structure for the prior, where
the variance of the normally-distributed bnn weights is governed by a Gamma distribution.
This setting introduces additional flexibility on the space of functions, but it still does
not provide much intuition regarding the properties of the prior. A different approach is
proposed by Karaletsos and Bui (2019, 2020), who consider a gp model for the network
parameters that can capture weight correlations.

Bayesian model selection constitutes a principled approach to select an appropriate prior
distribution. Model selection is based on the marginal likelihood – the normalizing constant
of the posterior distribution – which may be estimated from the training data. This practice
is usually used to select hyperparameters of a gp as its marginal likelihood is available in
closed form (Rasmussen and Williams, 2006). However, the marginal likelihood of bnns
is generally intractable, and lower bounds are difficult to obtain. Graves (2011) first and
Blundell et al. (2015) later used the variational lower bound of the marginal likelihood
for optimizing the parameters of a prior, yielding in some cases worse results. Recently,
Immer et al. (2021a) extended the Mackay’s original proposal (MacKay, 1995) of using the
Laplace’s method to approximate the marginal likelihood. In this way, one can obtain an
estimate of the marginal likelihood which is scalable and differentiable with respect to the
prior hyperparameters, such that they can be optimized together with the bnn posterior.

Many recent attempts in the literature have turned their attention towards defining priors
in the space of functions, rather than the space of weights. For example, Nalisnick et al.
(2021) consider a family of priors that penalize the complexity of predictive functions. Hafner
et al. (2019) propose a prior that is imposed on training inputs, as well as out-of-distribution
inputs. This is achieved by creating pseudo-data by means of perturbing the training inputs;
the posterior is then approximated by a variational scheme. Yang et al. (2019) present a
methodology to induce prior knowledge by specifying certain constraints on the network
output. Pearce et al. (2019) explore dnn architectures that recreate the effect of certain
kernel combinations for gps. This result in an expressive family of network priors that
converge to gps in the infinite-width limit.

A similar direction of research focuses not only on priors but also inference in the space
of functions for bnns. For example, Ma et al. (2019) consider a bnn as an implicit prior
in function space and then use gps for inference. Conversely, Sun et al. (2019) propose a
functional variational inference which employs a gp prior to regularize bnns directly in
the function space by estimating the Kullback-Leibler (kl) divergence between these two
stochastic processes. However, this method relies on a gradient estimator which can be
inaccurate in high dimensions. Khan et al. (2019) follow an alternative route by deriving a
gp posterior approximation for neural networks by means of the Laplace and generalized
Gauss-Newton (ggn) approximations, leading to an implicit linearization. Immer et al.
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(2021b) make this linearization explicit and apply it to improve the performance of bnn
predictions. In general, these approaches either heavily rely on non-standard inference
methods or are constrained to use a certain approximate inference algorithm, such as
variational inference or Laplace approximation.

A different line of work focuses on meta-learning by adjusting priors based on the
performance of previous tasks (Amit and Meir, 2018). In contrast to these approaches, we
aim to define a suitable prior distribution entirely a priori. We acknowledge that our choice
to impose gp (or hierarchical gp) priors on neural networks is essentially heuristic: there is
no particular theory that necessarily claims superiority for this kind of prior distributions.
In some applications, it could be preferable to use priors that are tailored to certain kinds of
data or architectures, such the deep weight prior (Atanov et al., 2019). However, we are
encouraged by the empirical success and the interpretability of gp models, and we seek to
investigate their suitability as bnn priors on a wide range of regression and classification
problems.

Our work is most closely related to a family of works that attempt to map gp priors
to bnns. Flam-Shepherd et al. (2017) propose to minimize the kl between the bnn prior
and some desired gp. As there is no analytical form for this kl, the authors rely on
approximations based on moment matching and projections on the observation space. This
limitation was later addressed (Flam-Shepherd et al., 2018) by means of a hypernetwork (Ha
et al., 2017), which generates the weight parameters of the original bnn; the hypernetwork
parameters were trained so that a bnn fits the samples of a gp. In our work, we also pursue
the minimization of a sample-based distance between the bnn prior and some desired gp, but
we avoid the difficulties in working with the kl divergence, as its evaluation is challenging
due to the empirical entropy term. To the best of our knowledge, the Wasserstein distance
scheme we propose is novel, and it demonstrates satisfactory convergence for compatible
classes of gps and bnns.

Concurrently to the release of this paper, we have come across another work advocating for
the use of gp priors to determine priors for bnns. Matsubara et al. (2021) rely on the ridgelet
transform to approximate the covariance function of a gp. Our work is methodologically
different, as our focus is to propose a practical framework to impose sensible priors. Most
importantly, we present an extensive experimental campaign that demonstrates the impact
of functional priors on deep models.

3. Preliminaries

In this section, we establish some basic notation on bnns that we follow throughout the
paper, and we review stochastic gradient Hamiltonian Monte Carlo (sghmc), which is the
main sampling algorithm that we use in our experiments. Finally, we give a brief introduction
to the concept of Wasserstein distance, which is the central element of our methodology to
impose functional gp priors on bnns.
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3.1 Bayesian Neural Networks

We consider a dnn consisting of L layers, where the output of the l-th layer fl(x) is a
function of the previous layer outputs fl−1(x), as follows:

fl(x) =
1√
Dl−1

(
Wlϕ(fl−1(x))

)
+ bl, l ∈ {1, ..., L}, (1)

where ϕ is a nonlinearity, bl ∈ RDl is a vector containing the bias parameters for layer l, and
Wl ∈ RDl×Dl−1 is the corresponding matrix of weights. We shall refer to the union of weight
and bias parameters of a layer l as wl = {Wl, bl}, while the entirety of trainable network
parameters will be denoted as w = {wl}Ll=1. In order to simplify the presentation, we focus
on fully-connected dnns; the weight and bias parameters of cnns are treated in a similar
way, unless stated otherwise.

The scheme that involves dividing by
√
Dl−1 is known as the NTK parameterization

(Jacot et al., 2018; Lee et al., 2020), and it ensures that the asymptotic variance neither
explodes nor vanishes. For fully-connected layers, Dl−1 is the dimension of the input, while
for convolutional layers Dl−1 is replaced with the filter size multiplied by the number of
input channels.

Inference The Bayesian treatment of neural networks (MacKay, 1992; Neal, 1996) dictates
that a prior distribution p(w) is placed over the parameters. The learning problem is
formulated as a transformation of a prior belief into a posterior distribution by means of
Bayes’ theorem. Given a dataset with N input-target pairs D = {X,y} def

= {(xi, yi)}Ni=1, the
posterior over w is:

p(w | D) =
p(D |w)p(w)

p(D)
. (2)

Although the posterior for most nonlinear models, such as neural networks, is analytically
intractable, it can be approximated by mcmc methods, as they only require an unnormalized
version of the target density. Regarding Equation (2), the unnormalized posterior density is
given by the joint probability in the numerator, which can be readily evaluated if the prior
and likelihood densities are known.

Hamiltonian Monte Carlo (hmc) (Duane et al., 1987) considers the joint log-likelihood
as a potential energy function U(w) = − log p(D |w) − log p(w), and introduces a set of
auxiliary momentum variables r. Samples are generated from the joint distribution p(w, r)
based on the Hamiltonian dynamics:

dw = M−1rdt, (3)

dr = −∇U(w)dt, (4)

where, M is an arbitrary mass matrix that plays the role of a preconditioner. In practice,
this continuous system is approximated by means of a ε-discretized numerical integration
and followed by Metropolis steps to accommodate numerical errors stemming from the
integration.

However, hmc is not practical for large datasets due to the cost of computing the
gradient ∇U(w) = ∇ log p(D|w) on the entire dataset. To mitigate this issue, Chen et al.
(2014) proposed sghmc, which considers a noisy, unbiased estimate of the gradient ∇Ũ(w)
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computed from a mini-batch of the data. The discretized Hamiltonian dynamics equations
are then updated as follows

∆w = εM−1r, (5)

∆r = −ε∇Ũ(w)− εCM−1r +N (0, 2ε(C− B̃)), (6)

where ε is an step size, C is an user-defined friction matrix, B̃ is the estimate for the noise
of the gradient evaluation.

In this work, we employ the sghmc algorithm to generate posterior samples for all
the models and datasets considered. The step size ε as well as the matrices M, C and B̃
constitute additional parameters that require careful tuning to guarantee the quality of
samples produced by the algorithm. We adopt the tuning strategy of Springenberg et al.
(2016), which involves a burn-in period during which the matrices M and B̃ are adjusted by
monitoring certain statistics of the dynamics. The only parameters that we manually define
are the integration interval and the step size.

3.2 Gaussian Process Priors

gps constitute a popular modeling choice in the field of Bayesian machine learning (Ras-
mussen and Williams, 2006), as they allow one to associate a certain class of functional
representations with a probability measure. A gp is a stochastic process that is uniquely
characterized by a mean function µ(x) and a covariance function κ(x,x′). The latter is also
known as a kernel function, and it determines the covariance between the realization of the
function at pairs of inputs x and x′. For a finite set of inputs X, a gp yields a multivariate
Gaussian distribution with mean vector µ = µ(X) and covariance matrix K = κ(X,X).

There is a significant body of research whose objective is to perform inference for gp
models; see Liu et al. (2020) for an extensive review. However, in this work we only treat
gps as a means to define meaningful specifications of priors over functions. Different choices
for the kernel result in different priors in the space of functions. A popular choice in the
literature is the radial basis function (rbf) kernel:

κα,l(x,x
′) = α2 exp

(
−(x− x′)>(x− x′)

l2

)
, (7)

which induces functions that are infinitely differentiable, as in Figure 1. The subscripts α, l
denote the dependency on hyper-parameters: α is the amplitude, which controls the prior
marginal standard deviation, and l is known as the lengthscale, as it controls how rapidly
sample functions can vary.

Hierarchical GP Priors The most common practice in gp literature is to select values
for the hyper-parameters that optimize the marginal log-likelihood. We do not recommend
such an approach in our setting however, as it introduces additional complexity from a
computational perspective. Instead, we opt to consider a hierarchical form for the target
prior. Assuming a shift-invariant kernel κα,l(x,x

′) with hyper-parameters α and l, we have:

α, l ∼ LogNormal(m, s2), f ∼ N (0, κα,l(x,x
′)) (8)
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where m and s are user-defined parameters. Samples of the target prior are generated by
means of a Gibbs sampling scheme: we first sample the hyper-parameters from a log-normal
distribution, and then we sample from the corresponding gp. This form of hierarchical gp
priors is adopted in the majority of experiments of § 6, unless otherwise specified.

3.3 Wasserstein Distance

The concept of distance between probability measures is central to this work, as we frame
the problem of imposing a gp prior on a bnn as a distance minimization problem. We
present some known results on the Wasserstein distance that will be used in the sections
that follow. Given two Borel’s probability measures π(x) and ν(y) defined on the Polish
space X and Y (i.e. any complete separable metric space), the generic formulation of the
p-Wasserstein distance is defined as follows:

Wp(π, ν) =

(
inf

γ∈Γ(π,ν)

∫
X×Y

D(x,y)pγ(x,y) dx dy

)1/p

, (9)

where D(x,y) is a proper distance metric between two points x and y in the space X × Y
and Γ(π, ν) is the set of functionals of all possible joint densities γ whose marginals are π
and ν.

When the spaces of x and y coincide (i.e. x,y ∈ X ⊆ Rd), with D(x,y) being the
Euclidian norm distance, the Wasserstein-1 distance (also known in the literature as Earth-
Mover distance) takes the following shape,

W1(π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x,y) dx dy . (10)

With the exception of few cases where the solution is available analytically (e.g. π and ν
being Gaussians), solving Equation (10) directly or via optimization is intractable. On the
other hand, the Wasserstein distance defined in Equation (10) admits the following dual
form (Kantorovich, 1942, 1948),

W1(π, ν) = sup
‖φ‖L≤1

[∫
φ(x)π(x)dx−

∫
φ(y)ν(y)dy

]
= sup
‖φ‖L≤1

Eπφ(x)− Eνφ(x) , (11)

where φ is a 1-Lipschitz continuous function defined on X → R. This is effectively a
functional maximization over φ on the difference two expectations of φ under π and ν. A
revised proof of this dual form by Villani (2003) is available in the Supplement.

4. Imposing Gaussian Process Priors on Bayesian Neural Networks

The equivalence between function-space view and weight-space view of linear models, like
Bayesian linear regression and gps (Rasmussen and Williams, 2006), is a straightforward
application of Gaussian identities, but it allows us to seamlessly switch point of view
accordingly to which characteristics of the model we are willing to observe or impose. We
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would like to leverage this equivalence also for bnns but the nonlinear nature of such models
makes it analytically intractable (or impossible, for non-invertible activation functions). We
argue that for bnns—and Bayesian deep learning models, in general—starting from a prior
over the weights is not ideal, given the impossibility of interpreting its effect on the family
of functions that the model can represent. We therefore rely on an optimization-based
procedure to impose functional priors on bnns using the Wasserstein distance as a similarity
metric between such distributions, as described next.

4.1 Wasserstein Distance Optimization

Assume a prior distribution p(w;ψ) on the weights of a bnn, where ψ is a set of parameters
that determine the prior (e.g., ψ = {µ, σ} for a Gaussian prior; we discuss more options
on the parametrization of bnn priors in the section that follows). This prior over weights
induces a prior distribution over functions:

pnn (f ;ψ) =

∫
p(f |w)p(w;ψ) dw, (12)

where p(f |w) is deterministically defined by the network architecture.

In order to keep the notation simple, we consider non-hierarchical gp priors. Hierarchical
gps are treated in the same way, except that samples are generated by the Gibbs sampling
scheme of Equation (8). Our target gp prior is pgp (f |0,K), where K is the covariance
matrix obtained by computing the kernel function κ for each pair of {xi,xj} in the training
set. We aim at matching these two stochastic processes at a finite number of measurement
points XM

def
= [x1, ...,xM ]> sampled from a distribution q(x). To achieve this, we propose a

sample-based approach using the 1-Wasserstein distance in Equation (11) as objective:

min
ψ

max
θ

Eq
[
Epgp [φθ(fM)]− Epnn [φθ(fM)]︸ ︷︷ ︸

L(ψ,θ)

]
, (13)

where fM denotes the set of random variables associated with the inputs at XM, and φθ is
a 1-Lipschitz function. Following recent literature (Goodfellow et al., 2014; Arjovsky et al.,
2017), we parameterize the Lipschitz function by a neural network1with parameters θ.

Regarding the optimization of the θ and ψ parameters we alternate between nLipschitz

steps of maximizing L with respect to the Lipschitz function’s parameters θ and one step of
minimizing the Wasserstein distance with respect to the prior’s parameters ψ. We therefore
use two independent optimizers (RMSprop–see, for example, Tieleman and Hinton, 2012)
for θ and ψ. Figure 2 offers a high-level schematic representation of the proposed procedure.
Given samples from two stochastic processes, the Wasserstein distance is estimated by
considering the inner maximization of Equation (13), resulting in an optimal φ∗. This inner
optimization step is repeated for every step of the outer optimization loop. Notice that the
objective is fully sample-based. As a result, it is not necessary to know the closed-form of
the marginal density pnn (f ;ψ). One may consider any stochastic process as a target prior
over functions, as long as we can draw samples from it (e.g., a hierarchical gp). Finally, we

1. Details on the 1-Lipschitz function: we used a multilayer perceptron (mlp) with two hidden layers, each
with 200 units; the activation function is softplus, which is defined as: softplus(x) = 1/(1 + exp(−x)).
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(Bayesian) Neural Network

Gaussian Process

(Bayesian) Neural Network
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Figure 2: Schematic representation of the process of imposing gp priors on bnns via Wasserstein
distance minimization.

acknowledge that the two training steps could have been optimized jointly in a single loop,
as Equation (11) defines a minimax problem. However, this choice allows φθ to converge
enough before a single Wasserstein minimization step takes place. In fact, this is a common
trick to make convergence more stable (see e.g., the original Goodfellow et al. (2014) paper,
which suggests to allow more training of the discriminator for each step of the generator).
In Appendix B.6 we further discuss this choice and we show qualitatively the convergence
improvements.

Lipschitz constraint. In order to enforce the Lipschitz constraint on φθ, Arjovsky et al.
(2017) propose to clip the weights θ to lie within a compact space [−c, c] such that all
functions φθ are K-Lipschitz. This approach usually biases the resulting φθ towards a simple
function. Based on the fact that a differentiable function is 1-Lipschitz if and only if the
norm of its gradient is at most one everywhere, Gulrajani et al. (2017) propose to constrain
the gradient norm of the output of the Lipschitz function φθ with respect to its input. More
specifically, the loss of the Lipschitz function is augmented by a regularization term

LR(ψ,θ) = L(ψ,θ) + λEpf̂

[(∥∥∥∇f̂φ(f̂)
∥∥∥

2
− 1
)2
]

︸ ︷︷ ︸
Gradient penalty

. (14)

Here pf̂ is the distribution of f̂ = εfnn + (1− ε)fgp for ε ∼ U [0, 1] and fnn ∼ pnn , fgp ∼ pgp
being the sample functions from bnn and gp priors, respectively; λ is a penalty coefficient.

Choice of the measurement set. In our formulation, we consider finite measurement
sets to have a practical and well-defined optimization strategy. As discussed by Shi et al.
(2019), there are several approaches to define the measurement set for functional-space
inference (Hafner et al., 2019; Sun et al., 2019). For low-dimensional problems, one can simply
use a regular grid or apply uniform sampling in the input domain. For high-dimensional
problems, one can sample from the training set, possibly with augmentation, where noise
is injected into the data. In applications where we know the input region of the test data
points, we can set q(x) to include it. We follow a combination of the two approaches: we use
the training inputs (or a subset of thereof) as well as additional points that are randomly
sampled (uniformly) from the input domain.
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4.2 Prior Parameterization for Neural Networks

In the previous section, we have treated the parameters of a bnn prior pnn (f ;ψ) in a rather
abstract manner. Now we explore three different parametrizations of increasing complexity.
The only two requirements needed to design a new parametrization are (1) to be able to
generate samples and (2) to compute the log-density at any point; the latter is required
to be able to draw samples from the posterior over model parameters using most mcmc
sampling methods, such as sghmc which we employ in this work.

Gaussian prior on weights. We consider a layer-wise factorization with two independent
zero-mean Gaussian distributions for weights and biases. The parameters to adjust are
ψ = {σ2

lw
, σ2

lb
}Ll=1, where σ2

lw
is the prior variance shared across all weights in layer l, and σ2

lb
is the respective variance for the bias parameters. For any weight and bias entries wl, bl ∈ wl

of the l-th layer, the prior is:

p(wl) = N
(
wl; 0, σ2

lw

)
and p(bl) = N

(
bl; 0, σ2

lb

)
.

In the experimental section, we refer to this parametrization as the gp-induced bnn prior
with Gaussian weights (gpi-g). Although this simple approach assumes a Gaussian prior
on the parameters, in many cases it is sufficient to capture the target gp-based functional
priors.

Regarding the implementation of this scheme, there are a few technical choices to discuss.
In order to maintain positivity for the standard deviation σ and perform unconstrained
optimization, we optimize ρ such that σ = log(1 + eρ), which guarantees that σ is always
positive. Also, we have to use gradient backpropagation through stochastic variables such as
wl. Thus, in order to treat the parameter wl in a deterministic manner, instead of sampling
the prior distribution directly wl ∼ N

(
wl; 0, σ2

lw

)
, we use the reparameterization trick

(Rezende et al., 2014; Kingma and Welling, 2014), and sample from the noise distribution
instead,

wl := σlwε, ε ∼ N (0, 1). (15)

Hierarchical prior. A more flexible family of priors for bnns considers a hierarchical
structure where the network parameters follow a conditionally Gaussian distribution, and
the prior variance for each layer follows an Inverse-Gamma distribution. For the weight and
bias variances we have:

σ2
lw ∼ Γ−1(αlw , βlw) and σ2

lb
∼ Γ−1(αlb , βlb)

In this case, we have ψ = {αlw , βlw , αlb , βlb}Ll=1, where αlw , βlw , αlb , βlb denote the shape and
rate parameters of the Inverse-Gamma distribution for the weight and biases correspondingly
for layer l. The conditionally Gaussian prior over the network parameters is given as in the
previous section. In the experiments, we refer to this parametrization as the gp-induced
bnn prior with Hierarchically-distributed weights (gpi-h).

Similar to the Gaussian prior, we impose positivity constraints on the shape and rate of
the Inverse-Gamma distribution. In addition, we apply the reparameterization trick proposed
by Jankowiak and Obermeyer (2018) for the Inverse-Gamma distribution. This method
computes an implicit reparameterization using a closed-form approximation of the CDF
derivative. We used the corresponding original PyTorch (Paszke et al., 2019) implementation
of the method in our experiments.
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Beyond Gaussians with Normalizing flows. Finally, we also consider normalizing
flows (nfs) as a family of much more flexible distributions. By considering an invertible,
continuous and differentiable function t : RDl → RDl , where Dl is the number of parameters
for l-th layer, a nf is constructed as a sequence of K of such transformations TK =
{t1, . . . , tK} of a simple known distribution (e.g., Gaussian). Sampling from such distribution
is as simple as sampling from the initial distribution and then apply the set of transformation
TK . Given an initial distribution p0(wl), by denoting p(TK(wl)) the final distribution,
its log-density can be analytically computed by taking into account to Jacobian of the
transformations as follows,

log p(TK(wl)) = log p0(wl)−
K∑
k=1

log

∣∣∣∣det
∂tk(wlk−1

)

∂wlk−1

∣∣∣∣ , (16)

where wlk−1
= (tk−1 ◦ ... ◦ t2 ◦ t1)(wl) for k > 1, and wl0 = wl.

We shall refer to this class of bnn priors as the gp-induced bnn prior, parametrized by
normalizing flows (gpi-nf). We note that nfs are typically used differently in the literature;
while previous works showed how to use this distributions for better approximation of the
posterior in variational inference (Rezende and Mohamed, 2015; Kingma et al., 2016; Louizos
and Welling, 2017) or for parametric density estimation (e.g., Grover et al., 2018), or for
enlarging the flexibility of a prior for variational autoencoders (vaes) (e.g., Chen et al.,
2017), as far as we are aware this is the first time that nfs are used to characterize a prior
distribution for bnns.

In our experiments, we set the initial distribution p0(wl) to a fully-factorized Gaussian
N (wl |0,σ2

l I). We then employ a sequence of four planar flows (Rezende and Mohamed,
2015), each defined as

tk(wlk−1
) = wlk−1

+ ulkh(θ
>
lk

wlk−1
+ blk), (17)

where ulk ∈ RDl ,θlk ∈ RDl , blk ∈ R are trainable parameters, and h(·) = tanh(·). The
log-determinant of the Jacobian of tk is

log

∣∣∣∣det
∂tk(wlk−1

)

∂wlk−1

∣∣∣∣ = log
∣∣∣1 + u>lkθlkh

′(θ>lkwlk−1
+ blk)

∣∣∣ . (18)

Thus for the l-th bnn layer, the parameters to optimize are ψl = {σ2
l }
⋃
{ulk ,θlk , blk}Kk=1.

4.3 Algorithm and Complexity

Algorithm 1 summarizes our proposed method in pseudocode. The outer loop is essentially
a gradient descent scheme that updates the ψ parameters that control the bnn prior. The
inner loop is responsible for the optimization of the Lipschitz function φθ, which is necessary
to estimate the Wasserstein distance. The computational complexity is dominated by the
number of stochastic process samples Ns used for the calculation of the Wasserstein distance,
and the size NM of the measurement set XM.

Sampling from a bnn prior does not pose any challenges; Ns samples can be generated in
O(Ns) time. However, sampling from a gp is of cubic complexity, as it requires linear algebra

12
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Algorithm 1: Wasserstein Distance Optimization

Requires: Ns, number of stochastic process samples; q(x), sampling distribution for
measurement set; nLipschitz, number of iterations of Lipschitz function per prior iteration;

while ψ has not converged do
draw XM from q(x) // Sample measurement set ;
for t = 1, ..., nLipschitz do

draw GP functions {f (i)gp }
Ns
i=1 ∼ pgp (f ;κ) at XM;

draw NN functions {f (i)nn }
Ns
i=1 ∼ pnn (f ;ψ) at XM;

LR = N−1s
∑Ns

i=1 L
(i)
R // Compute Lipschitz objective LR using

Equation (14) ;
θ ← Optimizer(θ,∇θLR) // Update Lipschitz function φθ ;

end

draw GP functions {f (i)gp }
Ns
i=1 ∼ pgp (f ;κ) at XM;

draw NN functions {f (i)nn }
Ns
i=1 ∼ pnn (f ;ψ) at XM;

W̃1 = N−1s
∑Ns

i=1 φθ
(
f (i)gp
)
− φθ

(
f (i)nn
)
// Compute Wasserstein-1 distance using

Equation (13) ;

ψ ← Optimizer(ψ,∇ψW̃1) // Update prior pnn ;

end

operations such as the Cholesky decomposition. The total complexity of sampling from a
hierarchical gp target is O(N2

sN
3
M), as the Cholesky decomposition should be repeated

for every sample. For a single step of the outer loop in Algorithm 1, we have to account
the nLipschitz steps required for the calculation of the distance, resulting in complexity of
O(nLipschitzN

2
sN

3
M) per step. Although our approach introduces an extra computational

burden, we note that this is not directly connected to the size of the dataset. We argue that
it is worthwhile to invest this additional cost before the actual posterior sampling phase (via
sghmc), and this is supported by our extensive experimental campaign.

The complexity also depends on the number of parameters in ψ, whose size is a function
of the network architecture and the prior parameterization. For the Gaussian and hierarchical
parameterizations discussed in § 4.2 (i.e. gpi-g and gpi-h), the set ψ grows sub-lineraly
with the number of network parameters, as we consider a single weight/bias distribution
per layer. The obvious advantage of this arrangement is that our approach can be easily
scaled to deep architectures, such as preresnet20 and vgg16, as we demonstrate in the
experiments.

In the case where bnn weight and bias distributions are represented by normalizing
flows, the size of ψ grows linearly with the total number of bnn parameters Nbnn. More
formally, for a sequence of K transformations, the number of prior parameters that we need
to optimize is of order O(KNbnn). This might be an issue for more complex architectures;
in our experiments we apply the gpi-nf configuration for fully connected bnns only. A
more efficient prior parameterization that relies on normalizing flows requires some kind of
sparification, which is subject of future work.
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5. Examples and Practical Considerations

We shall now elaborate on some of the design choices that we have made in this work.
First, we visually show the prior one can obtain by using our proposed procedure on a 1D
regression (§ 5.1) and how the choice of gp priors (in terms of kernel parameters) affects the
bnn posterior for 2D classification examples (§ 5.2). We then empirically demonstrate that
the proposed optimization scheme based on the Wasserstein distance produces a consistent
convergence behavior when compared with a kl-based approach (§ 5.3).

For these experiments and the rest of the empirical evaluation, we use sghmc (Sprin-
genberg et al., 2016) for posterior inference. The likelihood for regression and classification
are set to Gaussian and Bernoulli/multinomial, respectively. Unless otherwise specified, we
run four parallel sghmc chains with a step size of 0.01 and a momentum coefficient of 0.01.
We assess the convergence of the predictive posterior based on the R̂-statistic (Gelman and
Rubin, 1992) over the four chains. In all our experiments, we obtain R̂-statistics below 1.1,
which indicate convergence to the underlying distribution. To further validate the obtained
samples from sghmc, for a selection of medium-sized datasets we also run a carefully tuned
hmc obtaining similar results (see Table 11 in the Appendix).

5.1 Visualization on a 1D regression synthetic dataset

The dataset used is built as follows: (1) we uniformly sample 64 input locations x in the
interval [−10, 10]; (2) we rearrange the locations on a defined interval to generate a gap in
the dataset; (3) we sample a function f from the gp prior (l = 0.6, α = 1) computed at
locations x; (4) we corrupt the targets with i.i.d. Gaussian noise (σ2

ε = 0.1). In this example,
we consider a three-layer mlp. Figure 3 shows all the results. The first two rows illustrate
the different choice of priors. For the Wasserstein-based functional priors (gpi-g, gpi-h,
gpi-nf), the third row shows the convergence of the optimization procedure. Finally, the
last two rows represent the posterior collected by running sghmc with the corresponding
priors.

From the analysis of these plots, we clearly see the benefit of placing a prior on the func-
tions rather than on the parameters. First, the Wasserstein distance plots show satisfactory
convergence, with the normalizing flow prior closely matching the gp prior. Second, as
expected, the posteriors exhibit similar behavior according to the possible solutions realizable
from the prior: classic priors tend to yield degenerate functions resulting in overconfidence in
regions without data, while our gp-based priors (gpi-g, gpi-h, gpi-nf) retain information
regarding lengthscale and amplitude.

5.2 The effects of the GP prior on the BNN posterior

In order to gain insights into the effect of the gp prior (i.e., kernel parameters), we set up
an intuitive analysis on the banana dataset. We can define the regularization strength of
the prior in a sensible way by modifying the hyper-parameters of the RBF kernel. Figure 4
(left) illustrates the predictive posterior of a two-layer bnn, whose prior has been adapted
to different target gp priors, featuring different hyper-parameters. We observe that the
decision boundaries are more complex for smaller lengthscales l and larger amplitudes α,
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Figure 3: Visualization of one-dimensional regression example with a three-layer mlp. The first two
rows illustrate the prior sample and distributions, whereas the last two rows show the corresponding
posterior distributions. The means and the 95% credible intervals are represented by red lines and
shaded areas, respectively. The middle row shows progressions of the prior optimization.

while in the opposite case, we obtain posterior distributions that are too smooth. This
behavior reflects the properties of the induced prior.

In a regular gp context, it is possible to tune these hyper-parameters by means of
marginal likelihood maximization. This is not the way we proceed, for two reasons: (1) the
overhead to solve the gp and (2) the uselessness of the overall procedure (solving the task
with gps, so to then pick the converged gp prior to solve the bnn inference). As discussed
in § 3.2, we approach this issue by means of hierarchical gps. In the rightmost plot of
Figure 4, we include the bnn posterior that was adapted to a hierarchical-gp target. Since
samples from the target prior can be easily generated using a Gibbs sampling scheme, we
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Figure 4: (Left) The effect of using different hyper-parameters of the RBF kernel of the target
gp prior to the predictive posterior. Rows depict increasing the amplitude α, whist columns show
increasing the lengthscale l. In each panel the orange and blue dots represent the training points from
the two different classes, while the black lines represent decision boundaries at different confidence
levels. (Right) The predictive posterior with respect to using a target hierarchical-gp prior, in which
hyper-priors LogNormal(log

√
2D, 1) and LogNormal(log 8, 0.3) are employed on the lengthscales l

and variance α2 respectively, where D is the number of input dimensions.

can positively impact the expressiveness of the bnn posterior without explicitly worrying
which gp prior works best.

5.3 Wasserstein distance vs KL divergence

The kl divergence is a popular criterion to measure the similarity between two distributions.
In our context, the kl divergence could be used as follows:

kl
[
pnn ‖ pgp

]
= −

∫
pnn (f ;ψ) log pgp (f) df +

∫
pnn (f ;ψ) log pnn (f ;ψ) df︸ ︷︷ ︸

Entropy (intractable)

, (19)

This is the form considered by Flam-Shepherd et al. (2017), which propose to minimize the
KL divergence between samples of a bnn and a gp. This requires an empirical estimate of
the entropy, which is a challenging task for high-dimensional distributions (Delattre and
Fournier, 2017). These issues were also reported by Flam-Shepherd et al. (2017), where they
propose an early stopping scheme to what is essentially an optimization of the cross-entropy
term (i.e., -

∫
pnn (f ;ψ) log pgp (f) df). Instead of computing the entropy, another approach

is to estimate its gradient as required by optimization algorithms. This can be carried out by
using any methods estimating the log density derivative function of an implicit distribution.
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Figure 5: Comparison between KL-based and Wasserstein-based optimization. The green shaded
area is for calibration and denotes the difference between the squared maximum mean discrepancy
(mmd) of the target gp to itself and to another gp with a doubled lengthscale.
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For example, Sun et al. (2019) use the spectral Stein gradient estimator (ssge) (Shi et al.,
2018) to obtain an estimate of the gradient of the entropy.

In our experiments, we have found that a scheme based on the Wasserstein distance
converges more consistently without the need for additional heuristics. We demonstrate
the convergence properties of our scheme against the KL-divergence based optimization
with early stopping Flam-Shepherd et al. (2017) and ssge in Figure 5. In this experiment,
following Matthews et al. (2018), we additionally use the kernel two-sample test based on
the mmd (Gretton et al., 2012) as an alternative assesment of the similarity between bnns
and gps. A detailed description of estimating this discrepancy and experimental settings
are available in Appendix A.8. As done by Matthews et al. (2018), we use a target gp
prior with a characteristic lengthscale of l =

√
2D, where D is the input dimensionality. We

monitor the evolution of squared mmd from the target gp prior and performance metrics
for the uci datasets (test negative loglikelihood (nll) and root mean square error (rmse)).
The kl-based approaches offer improvements for the first few iterations, before degrading
the quality of the approximation despite using the ssge for estimating the entropy gradient.
Our approach, instead, consistently improves the quality of the approximation to the desired
prior. In the Appendix B.3 we include a complete account on the convergence of Wasserstein
distance for all experiments that follow in the next section.

6. Experimental Evaluation

We shall now evaluate whether our scheme offers any competitive advantage in comparison
to standard choices of priors. This section is organized as follows: we first summarize
the baselines considered in our experimental campaign in § 6.1. We then investigate the
effect of functional priors on classic uci benchmark datasets for regression in § 6.2 and
classification in § 6.3. Bayesian cnns are explored in § 6.4, where we also study the benefits
of functional priors for handling out-of-distribution data. We next compare against some
well-established alternatives to determine prior parameters, such as cross-validation and
empirical Bayes in § 6.5. We then perform experiments on active learning (§ 6.6), where
having good and calibrated estimates of uncertainty is critical to achieve fast convergence.
Finally, we conclude in § 6.7 with a non-Bayesian experiment: we explore the effect of
functional priors on maximum-a-posteriori (map) estimates, demonstrating that our scheme
can also be beneficial as a regularization term in a purely optimization-based setting.

6.1 Baselines

In the following experiments, we consider two fixed priors: (1) fixed Gaussian (fg) prior,
N (0, 1); (2) fixed hierarchical (fh) prior where the prior variance for each layer is sampled
from an Inverse-Gamma distribution, Γ−1(1, 1) (Springenberg et al., 2016); and three gp-
induced neural network (nn) priors, namely: (3) gp-induced Gaussian (gpi-g) prior, (4)
gp-induced hierarchical (gpi-h) prior, and (5) gp-induced normalizing flow (gpi-nf) prior.
Since the computational cost of the gpi-nf prior is high, we only consider this prior in some
of the regression experiments. For hierarchical priors, we resample the prior variances using
a Gibbs step every 100 iterations.

Considering the aforementioned settings, we compare bnns against Deep Ensemble (Lak-
shminarayanan et al., 2017), arguably one of the state-of-the-art approaches for uncertainty
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Table 1: Glossary of methods used in the experimental campaign. Here, p(f) =
∫
p(f |w) dp(w)

denotes the induced prior over functions; Γ−1(α, β) denotes the Inverse-Gamma distribution with
shape α, and rate β; NF(TK) indicates a normalizing flow distribution constructed from a sequence

of K invertible transformations T ; σ̂2, and (α̂, β̂) denote the optimized parameters for the gpi-g
and gpi-h priors, respectively. κ̂ corresponds to optimized kernel parameters, while σ̂2

LA shows that
the parameters are optimized on the Laplace approximation of the marginal likelihood. References
are [a] for Wenzel et al. (2020), [b] for Springenberg et al. (2016), [c] for Lakshminarayanan et al.
(2017), [d] for Sun et al. (2019) and, finally, [e] for Immer et al. (2021a).

Priors Inference

Name p(σ2) p(w |σ2) p(f) Reference

( ) bnn w/ Fixed Gaussian (fg) prior – N (0, σ2I) → ? sghmc
( ) bnn w/ Fixed Gaussian prior and TS (fg+ts) – N (0, σ2I) → ? Tempered sghmc [a]

( ) bnn w/ Fixed hierarchical (fh) prior Γ−1(α, β) → N (0, σ2I) → ? sghmc + Gibbs [b]

( ) Deep ensemble – ? ? Ensemble [c]

( ) Functional bnn w/ variational inference (fbnn) – – GP(0, κ̂) Variational inference [d]

( ) bnn w/ Laplace GGN approximation (la-ggn) – N (0, σ̂2
LAI) → ? Laplace approximation [e]

( ) bnn w/ gp-induced Gaussian (gpi-g) prior – N (0, σ̂2I) ← GP(0, κ) sghmc [This work]

( ) bnn w/ gp-induced hierarchical (gpi-h) prior Γ−1(α̂, β̂) ← N (0, σ2I) ← GP(0, κ) sghmc + Gibbs [This work]
( ) bnn w/ gp-induced norm. flow (gpi-nf) prior – NF(TK) ← GP(0, κ) sghmc [This work]

estimation in deep learning (Ashukha et al., 2020; Ovadia et al., 2019). This non-Bayesian
method combines solutions that maximize the predictive log-likelihood for multiple neural
networks trained with different initializations. We employ an ensemble of 5 neural networks
in all experiments. Following Lakshminarayanan et al. (2017), we use Adam optimizer
(Kingma and Ba, 2015) to train the individual networks. Furthermore, we compare the
results obtained by sampling from the posterior obtained with gp-induced priors against
“tempered” posteriors (Wenzel et al., 2020) that use the fg prior and temperature scaling;
we refer to this approach as fg+ts. In our experiments, the weight decay coefficient
for Deep Ensemble and the temperature value for the “tempered” posterior are tuned by
cross-validation.

Additionally, we benchmark our approach against the state-of-the-art variational inference
method in function space (Sun et al., 2019), referred to as fbnn. We also evaluate our
methodology of imposing priors against an empirical Bayes approach (Immer et al., 2021a),
namely la-ggn, which optimizes the prior based on an approximation of the marginal
likelihood by means of the Laplace and ggn approximations. See the Appendix A for
implementation details and more detailed hyper-parameter settings. Table 1 presents an
overview of the methods considered in the experiments.

6.2 UCI regression benchmark

We start our evaluation on real-world data by using regression datasets from the uci
collection (Dua and Graff, 2017). Each dataset is randomly split into training and test sets,
comprising of 90% and 10% of the data, respectively. This splitting process is repeated 10
times except for the protein dataset, which uses 5 splits. We use a two-layer mlp with
tanh activation function, containing 100 units for smaller datasets and 200 units for the
protein dataset. We use a mini-batch size of 32 for both the sghmc sampler and the
Adam optimizer for Deep Ensemble.
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Figure 6: uci regression benchmark results. The dots and error bars represent the means and
standard errors over the test splits, respectively. Average ranks are computed across datasets.

We map a target hierarchical-GP prior to gpi-g, gpi-h, and gpi-nf priors using our
proposed Wasserstein optimization scheme with a mini-batch size of Ns = 128. We use an
RBF kernel with dimension-wise lengthscales, also known as automatic relevance determina-
tion (ard) (MacKay, 1996). Hyper-priors LogNormal(log

√
2D, 1) and LogNormal(0.1, 1)

are placed on the lengthscales l and the variance α2, respectively. Here, D is the number of
input dimensions. We use measurement sets having a size of NM = 100, which include 70%
random training samples and 30% uniformly random points from the input domain.

Figure 6 illustrates the average test nll and rmse. On the majority of datasets, our
gp-induced priors provide the best results. They significantly outperform Deep Ensemble
in terms of both rmse and nll, a metric that considers both uncertainty and accuracy.
We notice that tempering the posterior delivers only small improvements for the fg prior.
Instead, by using the gpi-g prior, the true posterior’s predictive performance is improved
significantly.

Ablation study on the model capacity. We further investigate the relation of the
model capacity to the prior effect. Figure 7 illustrates the test nll on the uci regression
benchmark for different number of mlp hidden layers. For most datasets, the gp-induced
priors consistently outperform other approaches for all mlp depths. Remarkably, we observe
that when increasing the model’s capacity, the effect of temperature scaling becomes more
prominent. We argue that a tempered posterior is only beneficial for over-parameterized
models, as evidenced by pathologically poor results for one-layer mlps. We further elaborate
on this hypothesis in § 6.4 with much more complex models such as cnns.

6.3 UCI classification benchmark

Next, we consider 7 classification datasets from the uci repository. The chosen datasets have
a wide variety in size, number of dimensions, and classes. We use a two-layer mlp with tanh
activation function, containing 100 units for small datasets (eeg, htru2, letter, and
magic), 200 units for large datasets (miniboo, drive, and mocap). The experiments
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and gp-induced priors with a thin black line as an aid for easier comparison. Further to the left is
better.

have been repeated for 10 random training/test splits. We use a mini-batch size of 64
examples for the sghmc sampler and the Adam optimizer. Similarly to the previous
experiment, we use a target hierarchical-gp prior with hyper-priors for the lengthscales
and the variance are LogNormal(log

√
2D, 1) and LogNormal(log 8, 0.3), respectively. We

use the same setup of the measurement set as used in the uci regression experiments.

Figure 8 reports the average test accuracy and nll. The results for Deep Ensemble
are significantly better than those of the fg prior with and without using temperature
scaling. Similarly to the previous experiment, the gpi-g prior outranks Deep Ensemble and
is comparable with the fh prior, which is a more flexible prior. Once again, the gpi-h prior
consistently outperforms other priors across all datasets.

6.4 Bayesian convolutional neural networks for image classification

We proceed with the analysis of convolutional neural networks: we first analyze the kind of
class priors that are induced by our strategy, and then we move to the cifar10 experiment
where we also discuss the cases of reduced and corrupted training data.

Analysis on the prior class labels. As already mentioned, fg is the most popular prior
for Bayesian cnns (Wenzel et al., 2020; Zhang et al., 2020; Heek and Kalchbrenner, 2019).
This prior over parameters combined with a structured function form, such as a convolutional
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Figure 8: uci classification benchmark results. The dots and error bars represent the means and
standard errors over the test splits, respectively. Average ranks are computed across datasets.

neural network, induces a structured prior distribution over functions. However, as shown
by Wenzel et al. (2020), this is a poor functional prior because the sample function strongly
favors a single class over the entire dataset.

We reproduce this finding for the lenet5 model (LeCun et al., 1998) on the mnist
dataset. In particular, we draw three parameter samples from the fg prior, and we observe
the induced prior over classes for each parameter sample (see the three rightmost columns
of Figure 9b). We also visualize the average prior distribution obtained from 200 samples of
parameters (see the leftmost column of Figure 9b). Although the average prior distribution
is fairly uniform, the distribution for each sample of parameters is highly concentrated on a
single class. As illustrated in Figure 9d, the same problem happens for the fh prior.

This pathology does not manifest in our approach, as a more sensible functional prior is
imposed. In particular, we choose a target gp prior with an rbf kernel having amplitude
α = 1, such that the prior distribution for each gp function sample is close to the uniform
class distribution (Figure 9a), and a lengthscale l = 256 . We then map this gp prior
to gpi-g and gpi-h priors by using our Wasserstein optimization scheme. Figure 9c and
Figure 9e demonstrate that the resulting functional priors are more reasonable as evidenced
by the uniformly-distributed prior distributions over all classes.

Deep convolutional neural networks on CIFAR10 We continue the experimental
campaign on the cifar10 benchmark (Krizhevsky and Hinton, 2009) with a number of
popular cnn architectures: lenet5 (LeCun et al., 1998), vgg16 (Simonyan and Zisserman,
2015) and preresnet20 (He et al., 2016). Regarding posterior inference with sghmc,
after a burn-in phase of 10,000 iterations, we collect 200 samples with 10,000 simulation
steps in between. For a fair comparison, we do not use techniques such as data augmentation
or adversarial examples in any of the experiments. Regarding the target hierarchical-gp
prior, we place a hyper-prior LogNormal(log 8, 0.3) for variance, whereas the hyper-prior for
length-scale is LogNormal(log 512, 0.3). We use a mini-batch size of Ns = 128 and NM = 32
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(c) bnn - gpi-g prior.
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(d) bnn - fh prior.
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Figure 9: Average class probabilities over all training data of mnist for three prior samples of
parameters (three right columns), and prior distribution averaged over 200 samples of parameters
(leftmost column). The gpi-g and gpi-h priors were obtained by mapping from a target gp prior
(top row) using our proposed method.

measurement points sampled from the empirical distribution of the training data regarding
prior optimization.

Table 2 summarizes the results on the cifar10 test set with respect to accuracy and
nll. These results demonstrate the effectiveness of the gp-induced priors, as evidenced
by the improvements in predictive performance when using gpi-g and gpi-h priors com-
pared to using fg and fh priors, respectively. Noticeably, the gpi-h prior offers the best
performance with 76.51%, 87.03%, and 88.20% predictive accuracy on lenet5, vgg16,
and preresnet20 respectively. We observe that for complex models (e.g., preresnet20
and vgg16), fg prior’s results are improved by a large margin by tempering the posterior.
This is in line with the results showed by Wenzel et al. (2020). By contrast, in the case of
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Table 2: Results for different convolutional neural networks on the cifar10 dataset (errors are ±1
standard error computed over 4 running times).

Architecture Method Accuracy - % (↑) NLL (↓)

lenet5

Deep Ensemble 71.13 ± 0.10 0.8548 ± 0.0010

fg prior 74.65 ± 0.25 0.7482 ± 0.0025

fg+ts 74.08 ± 0.24 0.7558 ± 0.0024

gpi-g prior (ours) 75.15 ± 0.24 0.7360 ± 0.0024

fh prior 75.22 ± 0.40 0.7209 ± 0.0040

gpi-h prior (ours) 76.51 ± 0.21 0.6952 ± 0.0021

preresnet20

Deep Ensemble 87.77 ± 0.03 0.3927 ± 0.0003

fg prior 85.34 ± 0.13 0.4975 ± 0.0013

fg+ts 87.70 ± 0.11 0.3956 ± 0.0011

gpi-g prior (ours) 86.86 ± 0.27 0.4286 ± 0.0027

fh prior 87.26 ± 0.09 0.4086 ± 0.0009

gpi-h prior (ours) 88.20 ± 0.07 0.3808 ± 0.0007

vgg16

Deep Ensemble 81.96 ± 0.33 0.7759 ± 0.0033

fg prior 81.47 ± 0.33 0.5808 ± 0.0033

fg+ts 82.25 ± 0.15 0.5398 ± 0.0015

gpi-g prior (ours) 83.34 ± 0.53 0.5176 ± 0.0053

fh prior 86.03 ± 0.20 0.4345 ± 0.0020

gpi-h prior (ours) 87.03 ± 0.07 0.4127 ± 0.0007

lenet5, the predictive performance dramatically degraded when using temperature scaling.
In addition to the results in § 6.2, this observation supports our conjecture that a “tempered”
posterior is only useful for over-parameterized models. Instead, by using gp-induced priors,
we consistently obtain the best results in most cases.

Robustness to covariate shift. Covariate shift describes a situation where the test input
data has a different distribution than the training data. In this experiment, we evaluate
the behavior of gp-induced priors under such circumstances. We also compare to Deep
Ensemble, which is well-known for its robustness properties under covariate shift (Ovadia
et al., 2019).

Using the protocol from Ovadia et al. (2019), we train models on cifar10 and then
evaluate on the cifar10c dataset, which is generated by applying 16 different corruptions
with 5 levels of intensity for each corruption (Hendrycks and Dietterich, 2019). Our
results are summarized in Figure 10 (additional results are available in the appendix). For
preresnet20, there is a clear improvement in robustness to distribution shift by using
the gp-induced priors. Remarkably, the gpi-h prior performs best and outperforms Deep
Ensemble at all corruption levels in terms of accuracy and nll. Meanwhile, the nll results
of sghmc are significantly better than those of Deep Ensemble. We also notice that the
gpi-g prior offers considerable improvements in predictive performance compared to the fg
prior.

Performance on small training data For small and high-dimensional datasets, the
importance of choosing a sensible prior is more prominent because the prior’s influence on
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standard error.

the posterior is not overwhelmed by the likelihood. To compare priors in this scenario, we
use subsets of the cifar10 dataset with different training set sizes, keeping the classes
balanced. Figure 11 shows the accuracy and nll on the test set. The fg prior yields poor
predictive performance in small training data cases. Indeed, we observe that the gpi-g prior
performs much better than the fg prior in all cases. Besides, the gpi-h prior offers superior
predictive performance across all proportions of training/test data. These results again
demonstrate the usefulness of the gp-induced priors for the predictive performance of bnns.

Entropy analysis on out-of-distribition data. Next, we demonstrate with another ex-
periment that the proposed gp-based priors offer superior predictive uncertainties compared
to competing approaches by considering the task of uncertainty estimation on out-of-
distribution samples (Lakshminarayanan et al., 2017). Our choice of the target functional
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Figure 12: Cumulative distribution function plot of predictive entropies when the models trained
on mnist are tested on mnist (left, the higher the better) and not-mnist (right, the lower the
better).

prior is reasonable for this type of task because, ideally, the predictive distribution should be
uniform over the out-of-distribution classes–which results in maximum entropy–rather than
being concentrated on a particular class. Following the experimental protocol from Louizos
and Welling (2017), we train lenet5 on the standard mnist training set, and estimate
the entropy of the predictive distribution on both mnist and not-mnist datasets2. The
images in the not-mnist dataset have the same size as the mnist, but represent other
characters. For posterior inference with sghmc, after a burn-in phase of 10,000 iterations,
we draw 100 samples with 10,000 iterations in between. We also consider the “tempered”
posterior with the fg prior and Deep Ensemble as competitors.

Figure 12 shows the empirical CDF for the entropy of the predictive distributions on
mnist and not-mnist. For the not-mnist dataset, the curves that are closer to the
bottom right are preferable, as they indicate that the probability of predicting classes with
a high confidence prediction is low. In contrast, the curves closer to the top left are better
for the mnist dataset. As expected, we observe that the uncertainty estimates on out-of-
distribution data for the gp-induced priors are better than those obtained by the fixed priors.
In line with the results from Louizos and Welling (2017), Deep Ensemble tends to produce
overconfident predictions on both in-distribution and out-of-distribution predictions. For
tempered posteriors, we can interpret decreasing the temperature as artificially sharpening
the posterior by overcounting the training data. This is the reason why a tempered posterior
tends to be overconfident.

6.5 Optimizing priors with data: cross-validation and empirical Bayes

Although we advocate for functional priors over bnns, we acknowledge that a prior of
this kind is essentially heuristic. A potentially more useful prior might be discovered
by traditional means such as cross-validation (cv) or by running an empirical Bayes
procedure (a.k.a. type-II maximum likelihood), which maximizes the marginal likelihood
p(D;ψ) =

∫
p(D |w)p(w;ψ) dw w.r.t. the prior parameters. However, these methods

2. not-mnist dataset is available at http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html.
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Figure 13: A timing comparison between imposing functional prior and cross-validation with either
grid-search ( ) or Bayesian optimization ( ). In the plots, each corresponds to a run of a
single configuration, while highlights the Pareto front of the cross validation procedure. The
figure also reports the N (0, 1) prior as , while is our proposal of using functional prior (gpi-g).

present significant challenges: (i) for cv, the number of hyper-parameter combinations
that needs to be explored becomes exponentially large as the complexity of the neural
network grows, or as the exploration grid becomes more fine-grained. (ii) for empirical
Bayes, we need to compute the exact marginal likelihood, which is always intractable for
bnns, thus requiring additional approximations like variational inference (vi) or the Laplace
approximation. We next demonstrate these issues empirically.

Cross-Validation. We consider a simple case of a bnn with one hidden layer only; by
adopting the simple parameterization of § 4.2, we shall have four parameters to optimize in
total (i.e. the weight and bias variances of the hidden and the output layer). In Figure 13,
we demonstrate how our scheme behaves in comparison with a cv strategy featuring a
grid size of 9 (for a total of 6561 configurations). To get results for the cross-validation
procedure and to massively exploit all possible parallelization opportunities, we allocated a
cloud platform with 16 server-grade machines, for a total of 512 computing cores and 64
maximum parallel jobs. This required a bit more than one day, although the total CPU time
approached 3 months. While grid-based routines are widely adopted by practitioners for
cross-validation, we acknowledge that there are more efficient alternatives. To this extent,
we also include Bayesian optimization (Močkus, 1975; Snoek et al., 2012; Nogueira, 2014), a
classical method for black-box optimization which uses a Gaussian process as the surrogate
function to be maximized (or minimized). As expected, cv indeed found marginally better
configurations, but the amount of resources and time needed, even for such a small model,
is orders of magnitude larger than what required by our scheme, making this procedure
computationally infeasible for larger models, like cnns. To put things into perspective, our
Wasserstein-based functional prior could be run on a 4-core laptop in a reasonable time.

Empirical Bayes. We now discuss state-of-the-art methods for empirical Bayes when
using variational inference and Laplace approximation. We demonstrate that our proposal
outperforms these approaches through an extensive series of experiments on uci regression
and cifar10 benchmarks. More specifically, we evaluate our approach using sghmc with
the gpi-g prior and compare it against fbnn, a method of functional variational inference
(Sun et al., 2019) which imposes a gp prior directly over the space of functions of bnns.
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Figure 14: Comparison with empirical Bayes and functional inference approaches on the uci
regression datasets. The dots and error bars represent the means and standard errors over the test
splits, respectively.

The hyper-parameters of the gp prior for fbnn are obtained by maximizing the marginal
likelihood. As in the original proposal of fbnn, we only consider this baseline in experiments
on regression datasets. We consider a comparison with the Gaussian prior obtained by the
empirical Bayes approach of Immer et al. (2021a). This method uses the Laplace and ggn
methods to approximate the marginal likelihood, and referred to la-ggn. Here, we use the
same parameterization as for the gpi-g prior where we optimize the variance of the Gaussian
prior on the weights and biases of each layer individually. The resulting prior obtained by
this approach is denoted as la-marglik. The details of experimental settings are described
in Appendix A.9. In Figure 14, we show the results of one-layer mlp with tanh activation
function on the uci regression datasets. Our approach using the sghmc sampler with the
gpi-g prior outperforms the baselines of functional inference on most datasets and across
metrics. Moreover, we find that our gpi-g prior is consistently better than the la-marglik
prior when used together with sghmc for inference, denoted as “la-marglik + sghmc”.
These observations are further highlighted in the experiments with Bayesian cnns on the
cifar10 benchmark. As can be seen from Figure 15, thanks to using a good prior and a
powerful sampling scheme for inference, our proposal consistently achieves the best results in
all cases. More comprehensive analyses with Bayesian cnns are available in Appendix B.4.

From a more philosophical point of view, it is worth noting that cross-validating prior
parameters, though perfectly legitimate, is not compatible with the classical Bayesian
principles. On the other hand, empirical Bayes is widely accepted as a framework to
determine prior parameters in terms of a Bayesian context; nevertheless it still has to rely
on part of the data. In contrast to both of these alternatives, our procedure returns an
appropriate prior without having taken any data into consideration.
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Data set fg prior gpi-g prior (ours) fh prior gpi-h prior (ours)

boston 3.199 ± 0.390 2.999 ± 0.382 3.030 ± 0.365 2.990 ± 0.384
concrete 5.488 ± 0.218 5.036 ± 0.239 5.154 ± 0.251 4.919 ± 0.299
energy 0.442 ± 0.041 0.461 ± 0.032 0.458 ± 0.050 0.446 ± 0.025
kin8nm 0.069 ± 0.001 0.067 ± 0.001 0.068 ± 0.001 0.066 ± 0.001
naval 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
power 4.015 ± 0.059 3.834 ± 0.068 4.172 ± 0.051 3.851 ± 0.066
protein 4.429 ± 0.016 4.036 ± 0.014 4.080 ± 0.018 3.993 ± 0.014
wine 0.634 ± 0.013 0.617 ± 0.008 0.625 ± 0.010 0.612 ± 0.011

Table 3: Results for the active learning scenario. Average test RMSE evaluated at the last step of
the iterative data gathering procedure.

6.6 Active learning

We next perform a series of experiments within an active learning scenario (Settles, 2009).
In this type of task, it is crucial to produce accurate estimates of uncertainty to obtain
good performance. We use the same network architectures and datasets as used in the uci
regression benchmark. We adopt the experimental setting of Skafte et al. (2019), where each
dataset is split into 20% train, 60% pool, and 20% test sets. For each active learning step,
we first train models and then estimate uncertainty for all data instances in the pool set. To
actively collect data from the pool set, we follow the information-based approach described
by MacKay (1992). More specifically, we choose the n data points with the highest posterior
entropy and add them to the training set. Under the assumption of i.i.d. Gaussian noise,
this is equivalent to choosing the unlabeled examples with the largest predictive variance
(Houlsby et al., 2012). We define n = 5% of the initial size of the pool set. We use 10
active-learning steps and repeat each experiment 5 times per dataset on random training-test
splits to compute standard errors.

Figure 16 shows the progressions of average test rmse during the data collection process.
We observe that, on most datasets (concrete, kin8nm, power, protein, and wine),
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Figure 16: The progressions of average test rmse and standard errors in the active learning
experiment.

the gpi-g and gpi-h priors achieve faster learning than fg and fh priors, respectively. For
the other datasets, fh prior is on par with gpi-h, while fg consistently results in the worse
performance, except in one case (energy). We also report the average test rmse at the
last step in Table 3. These results show that the gpi-h prior performs best, while the gpi-g
prior outperforms the fg prior in most cases.

6.7 Maximum-a-posteriori (MAP) estimation with GP-induced prior

In the last experiment, we demonstrate that the gpi-g prior is useful not only for Bayesian
inference but also for map estimation. We investigate the impact of the gpi-g priors obtained
in the previous experiments and the fg prior on the performance of map estimation. We
additionally compare to early stopping, which is a popular regularization method for neural
networks. Compared to early stopping, map is a more principled regularization method
even though early stopping should exhibit similar behavior to map regularization in some
cases, such as those involving a quadratic error function (Yao et al., 2007). Regarding
the experimental setup, we train all networks for 150 epochs using the Adam optimizer
with a fixed learning rate 0.01. For early stopping, we stop training as soon as there is no
improvement for 10 consecutive epochs on validation nll for classification tasks. For the
uci classification datasets, map estimation for the gpi-g prior is comparable with early
stopping and significantly outperforms the one for the fg prior (Figure 17). For the cnns,
as shown in Figure 18, we observe that the map estimations outperform early stopping in
most cases. Besides, it is not clear which prior is better. We think this can be attributed to
the fact that optimization for very deep nets is non-trivial. As suggested in the literature
(Wenzel et al., 2020; Ashukha et al., 2020), one has to use complicated training strategies
such as a learning rate scheduler to obtain good performance for deterministic cnns on
high-dimensional data like cifar10.
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Figure 17: Comparison between early stopping and map optimization with the fg and gpi-g
priors on the uci classification datasets.
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Figure 18: Comparison between early stopping and map optimization with the fg and gpi-g
priors for three different cnn architectures on the cifar10 dataset.

7. Conclusions

In most machine learning tasks, function estimation is a fundamental and ubiquitous problem.
Being able to perform Bayesian inference of neural networks represents a much sought-after
objective to equip extremely flexible models with the capability of expressing uncertainty
in a sound way (Mackay, 2003; Neal, 1996). Recent advances in mcmc sampling enabling
for efficient parameter space exploration, combined with mini-batching (Chen et al., 2014),
have turned this long-standing challenge into a concrete possibility. However despite these
advances, there have been only few success stories involving the use of Bayesian inference
techniques for neural networks (Osawa et al., 2019; Zhang et al., 2020). We attribute this to
the difficulties in specifying sensible priors for thousands/millions of parameters, while being
able to understand and control the effect of these choices in the behavior of their output
functions (Duvenaud et al., 2014).

The difficulty in reasoning about functional priors for neural networks, made us consider
the possibility to enforce these by minimizing their distance to tractable functional priors,
effectively optimizing the priors over model parameters so as to reflect these functional
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specifications. We chose to consider Gaussian processes, as they are a natural and popular
choice to construct functional priors, whereby the characteristics of prior functions are
determined by the form and parameters of Gaussian process kernel/covariance functions.
While previous works attempted this by using the kl divergence between the functional
priors (Flam-Shepherd et al., 2017, 2018), the objective proves difficult to work with due
to the need to estimate an entropy term based on samples, which is notoriously difficult.
In this work, we proposed a novel objective based on the Wasserstein distance, and we
showed that this objective offers a tractable and stable way to optimize the priors over
model parameters. The attractive property of this objective is that it does not require a
closed form for the target functional prior, as long as it is possible to obtain samples from
it. We studied different parameterizations of the priors with increasing flexibility, and we
showed that more flexibility makes it indeed possible to improve the match to Gaussian
process priors, especially when the activation functions are not suitable to model the target
Gaussian processes. It is worth noting that, as far as we know, normalizing flows have
never been proposed to model priors for neural networks, and this represents an interesting
line of investigation that deserves some attention for future work. We are also planning to
investigate our proposal on unsupervised/latent variable models, and study ways to reduce
the complexity of the optimization of the Wasserstein distance.

After describing our strategy to optimize the Wasserstein distance, we moved on to
show the empirical benefits of choosing sensible priors on a large variety of neural network
models, including convolutional neural networks, and modeling tasks such as regression
and classification under standard conditions, covariate shift, and active learning. We
demonstrated consistent performance improvements over alternatives ways of choosing
priors, and we also showed better performance compared to state-of-the-art approximate
methods in Bayesian deep learning. In all, this work confirms the hypothesis that choosing
sensible priors for deep models matters, and it offers a practical way to do so.
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Appendix A. Implementation and experimental details

In this section, we present details on implementation and hyperparameters used in our
experimental campaign. Our implementation is mainly in PyTorch (Paszke et al., 2019). We
follow the standard protocol of training, validation and testing. The hyperparameters are
selected according to the nll performance on a validation set, which is created by randomly
choosing 20% of the data points from the training set. We standardize all the input features
and the outputs using the statistics of the training set. Regarding prior optimization, unless
otherwise specified, for the inner loop of Algorithm 1, we use the Adagrad optimizer (Duchi
et al., 2011) with a learning rate of 0.02, a Lipschitz regularization coefficient λ = 10, and a
number of Lipschitz iterations nLipschitz = 200. Whereas, for the outer loop of Algorithm 1
we use the RMSprop optimizer (Tieleman and Hinton, 2012) with a learning rate of 0.05 for
the experiments on the uci and banana datasets, and a learning rate of 0.01 for the rest.
See Appendix B.3 for the progressions of prior optimization.

A.1 Deep Ensemble

Deep Ensemble (Lakshminarayanan et al., 2017) averages the predictions across networks
trained independently starting from different initializations. In our experiments, we use
an ensemble of 5 neural networks. Every member of the ensemble is trained with the
L2-regularized objective

L(w) := − 1

N

N∑
i=1

log p(yi |xi,w) +
λ

2
‖w‖22, (20)

where N is the size of training data, λ is the weight decay coefficient, log p(yi |xi,w) is the
log likelihood evaluated at the data point (xi, yi). Following Lakshminarayanan et al. (2017),
for regression task, in order to capture predictive uncertainty, we use a network that outputs
the predicted mean µw(x) and variance σ2

w(x). Assume that the observed value follows a
heteroscedastic Gaussian distribution, the log likelihood is then

log p(yi |xi,w) = −1

2
log σ2

w(xi)−
(yi − µw(xi))

2

2σ2
w(xi)

+ const. (21)

For the classification task, the log likelihood is simply the softmax cross-entropy loss.
We use the Adam optimizer (Kingma and Ba, 2015) to train all the networks. For mlps,

we use a fixed learning rate 0.01 and total epochs of 50. Whereas cnns are trained for 200
epochs. The learning rate starts from 10−2 and decays to (10−3, 10−4, 10−5) at epochs (50,
100, 150). The L2 regularization strength is tuned over a grid λ ∈

{
10k | k from -8 to -1

}
.

A.2 Likelihoods for BNNs

Similarly to the prior, the likelihood for bnns is a modeling choice. It is a function of
the model predictions ŷ and the correct targets y. For multi-class C-way classification,
the nn have C output units over which a softmax function is applied, hence the network
outputs class probabilities. The likelihood is commonly chosen as a multinomial distribution,
p(D |w) =

∏N
n=1

∏C
c=1 ŷ

yn,c
n,c , for C classes, where ŷ ∈ [0, 1] denotes predicted probability,

and yn,c is the true targets.
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For regression, one usually models output noise as a zero-mean Gaussian: ε ∼ N (0, σ2
ε ),

where σ2
ε is the variance of the noise. The likelihood is then the Gaussian p(D |w) =

N (y | ŷ, σ2
ε ). Notice that the noise variance σ2

ε is treated as a hyperparameter. We do choose
this hyperparameter over the grid σ2

ε ∈
{

5k, 10k | k from -3 to -1
}

. The optimal values are
selected according to the nll result of the predictive posterior. Table 7 and Table 9 present
σ2
ε used in the uci regression experiments.

A.3 Sampling from the posterior using scale-adapted SGHMC

As mentioned in § 3.1, we make use of the sghmc (Chen et al., 2014) to generate posterior
samples for bnns. One caveat of sghmc and mcmc algorithms, in general, is the difficulty
of choosing hyperparameters. To mitigate this problem, in our experiments, we use a
scale-apdated version of sghmc (Springenberg et al., 2016), where the hyperparameters are
adjusted automatically during a burn-in phase. After this period, all hyper-parameters stay
fixed.

Estimating M. We set the mass matrix M−1 = diag
(
V̂
−1/2
w

)
, where V̂w is an estimate

of the uncentered variance of the gradient, V̂w ≈ E[(∇Ũ(w))2], which can be estimated by
using exponential moving average as follows

∆V̂w = −τ−1V̂w + τ−1∇(Ũ(w))2, (22)

where τ is a parameter vector that specifies the moving average windows. This parameter
can be automatically chosen by using an adaptive estimate (Springenberg et al., 2016) as
follows

∆τ = −g2
wV̂
−1
w τ + 1, and, ∆gw = −τ−1gw + τ−1∇Ũ(w), (23)

where gw is a smoothed estimate of the gradient ∇U(w).

Estimating B̃. For the estimate for the noise of the gradient evaluation, B̃, it should be
ideally the estimate of the empirical Fisher information matrix of U(w), which is prohibitively
expensive to compute. We therefore use a diagonal approximation, B̃ = 1

2εV̂w, which is
already available from the step of estimating M.

Choosing C. For the friction matrix, in practice, one can simply choose C = CI, i.e. the
same independent noise for each element of w.

The discretized Hamiltonian dynamics. By substituting v := εV̂
−1/2
w r, Equation (5)

and Equation (6) become

∆w = v, (24)

∆v = −ε2V̂
−1/2
w ∇Ũ(w)− εCV̂ −1/2

w v +N (0, 2ε3CV̂ −1
w − ε4I). (25)

Following (Springenberg et al., 2016), we choose C such that εCV̂
−1/2
w = αI. This is

equivalent to using a constant momentum coefficient of α. The final discretized dynamics
are then

∆w = v, (26)

∆v = −ε2V̂
−1/2
w ∇Ũ(w)− αv +N (0, 2ε2αV̂

−1/2
w − ε4I). (27)
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Experimental configurations. In all experiments, unless otherwise specified, we use a
momentum coefficient α = 0.01, and a step size ε = 0.01. For the uci regression experiments,
we sample four independent chains; for each chain, the number of collected samples after
thinning is 30 except for the large dataset (protein), where a number of 60 samples is
used. The thinning intervals are 2000 and 5000 iterations for the small and large datasets,
respectively. The burn-in period lasts 2000 iterations for the boston, concrete, energy,
wine datasets, and 5000 iterations for the rest. For the uci classification experiments, we
also use four chains, in which the number of burn-in iterations are 2000 for small datasets
(eeg, htru2, magic, and mocap) and 5000 for large datasets (miniboo, letter, and
drive). We draw 30 samples for each chain with a thinning interval of 2000 iterations
for the small datasets and 5000 iterations for the large datasets. In the experiments with
cnns on cifar10, after a burn-in phase of 10, 000 iterations, we collect 200 samples with a
thinning interval of 10, 000 iterations.

A.4 Tempered posterior

We follow the approach of Wenzel et al. (2020) for tempering the posterior as follows

p(w | D) ∝ exp(−U(w)/T ), (28)

where U(w) = − log p(D |w)− log p(w) is the potential energy, and T is the temperature
value. As suggested by Wenzel et al. (2020), we only study the “cold” posterior, where a
temperature T < 1 is used. In this case, we artificially sharpen the posterior by overcounting
the training data by a factor of 1/T and rescaling the prior as p(w)

1
T . As a result, the

posterior distribution is more concentrated around solutions with high likelihood. In our
experiments, we do grid-search over temperature values T ∈

{
0.5, 0.1, 10−2, 10−3, 10−4

}
.

A.5 Details on the sampling scheme for BNN hierarchical priors

As mentioned in § 4.2, for the bnn hierarchical priors, we firstly place a Gaussian prior on
the network parameters. For simplicity, let’s consider only the weights in l-th layer. We have

w
(1)
l , ..., w

(Nl)
l

i.i.d.∼ N (0, σ2
lw), (29)

where w
(i)
l is the i-th weight, Nl is the number of weights in layer l. We further place an

Inverse-Gamma prior on the variance:

σ2
lw ∼ Γ−1(αlw , βlw). (30)

We aim to generate samples from the posterior p
(
σ2
lw
, {w(i)

l }
Nl
i=1 | D

)
. As done by Chen et al.

(2014), the sampling procedure is carried out by alternating the following steps:

(i) Sample weights from p
(
{w(i)

l }
Nl
i=1 |σ2

lw
,D
)

using the sghmc sampler. We sample the

weights for K steps before resampling the variance.

(ii) Sample the variance from p
(
σ2
lw
| {w(i)

l }
Nl
i=1

)
using a Gibbs step.
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Assume we observed the weights {w(i)
l }i=1 after the step (i), the posterior for the variance

can be obtained in a closed form as follows

p
(
σ2
lw | {w

(i)
l }

Nl
i=1

)
∝

(
Nl∏
i=1

p
(
w

(i)
l |σ

2
lw

))
p
(
σ2
lw |αlw , βlw

)
∝

(
Nl∏
i=1

(
σ2
lw

)−1/2
exp

{
− 1

2σ2
lw

(
w

(i)
l

)2
})(

σ2
lw

)−αlw−1
exp

{
− 1

σ2
lw

βlw

}

=
(
σ2
lw

)−(αlw+Nl/2)−1
exp

{
− 1

σ2
lw

(
βlw +

1

2

Nl∑
i=1

(
w

(i)
l

)2
)}

∝ Γ−1

(
αlw +

Nl

2
, βlw +

1

2

Nl∑
i=1

(
w

(i)
l

)2
)
. (31)

As a default, in our experiments, we set the resampling interval K = 100 except for the
experiment on the 1D synthetic dataset (§ 5.1), in which we use K = 20.

A.6 MAP estimation with Gaussian prior

For completeness, we describe the map estimation for the case of Gaussian prior used in
§ 6.7. This derives interpretation of the regularization effect from the prior for deterministic
networks. We aim at finding a point estimate that maximizes the posterior:

wMAP = arg max
w

p(w | D)

= arg max
w

p(D |w)p(w)

= arg max
w

{log p(D |w) + log p(w)}. (32)

If the prior is a Gaussian distribution, p(w) = N (µ,Σ), we have

wMAP = arg max
w

{
log p(D |w)− 1

2
(w − µ)>Σ−1(w − µ)

}
. (33)

In our experiments, the prior covariance is set as isotropic, Σ = σ2
priorI, and prior mean is

zero, µ = 0. Thus, we have

wMAP = arg max
w

{
log p(D |w)− 1

2σ2
prior

‖w‖22

}
(34)

Here, we use the same likelihoods p(D|w) as in Appendix A.2.

Regression task. For the Gaussian likelihood p(D |w) = N (y | ŷ, σ2
ε ), the map estimation

is then

wMAP = arg max
w

{
− 1

2σ2
ε

‖ŷ − y‖22 −
1

2σ2
prior

‖w‖22

}
. (35)
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This is equivalent to minimizing the L2-regularized squared-error objective:

wMAP = arg min
w

{
N∑
n=1

(ŷn − yn)2 +
σ2
ε

σ2
prior

‖w‖22

}
. (36)

Here, we can interpret that the term σ2
ε

σ2
prior

controls the regularization strength.

Classification task. For the multinomial likelihood p(D |w) =
∏N
n=1

∏C
c=1 ŷ

yn,c
n,c , estimat-

ing map is equivalent to minimizing the L2-regularized cross-entropy objective:

wMAP = arg min
w

{
−

N∑
n=1

C∑
c=1

yn,c log(ŷn,c) +
1

2σ2
prior

‖w‖22

}
, (37)

where 1
σ2

prior
is the regularization coefficient.

Layer Dimensions

Conv2D 3× 6× 5× 5
Conv2D 6× 16× 5× 5

Linear-ReLU 400× 120
Linear-ReLU 120× 84

Linear-Softmax 84× 10

Table 4: lenet5

Layer Dimensions

Conv2D 3× 16× 3× 3

Residual Block

[
3× 3, 16
3× 3, 16

]
× 3

Residual Block

[
3× 3, 32
3× 3, 32

]
× 3

Residual Block

[
3× 3, 64
3× 3, 64

]
× 3

AvgPool 8× 8
Linear-Softmax 64× 10

Table 5: preresnet20

Layer Dimensions

Conv2D 3× 32× 3× 3
Conv2D 32× 32× 3× 3
MaxPool 2× 2

Conv2D 32× 64× 3× 3
Conv2D 64× 64× 3× 3
MaxPool 2× 2

Conv2D 64× 128× 3× 3
Conv2D 128× 128× 3× 3
Conv2D 128× 128× 3× 3
MaxPool 2× 2

Conv2D 128× 256× 3× 3
Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
MaxPool 2× 2

Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
MaxPool 2× 2

Linear-ReLU 256× 256
Linear-ReLU 256× 256

Linear-Softmax 256× 10

Table 6: vgg16

A.7 Network architectures

As previously mentioned in § 3.1, we employ the NTK parameterization (Jacot et al.,
2018; Lee et al., 2020) for mlps and cnns. We initialize the weights wl ∼ N (0, 1) and
bl = 0 for both fully-connected and convolutional layers. Tables 4 to 6 show details on the
cnns architectures used in our experimental campaign. These networks are adapted to
the cifar10 dataset. The parameters of batch normalization layers of preresnet20
are treated as constants. In particular, we set the scale and shift parameters to 1 and 0,
respectively.
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A.8 Measuring similarity between GPs and BNNs using maximum mean
discrepancy

In § 5.3, we adopted the approach of Matthews et al. (2018) to measure the similarity
between gps and bnns using a kernel two-sample test based on mmd Gretton et al. (2012).
The mmd between two distributions pgp and pnn is defined as follows

MMD(pgp , pnn ) = sup
‖h‖H≤1

[
Epgp [h]− Epnn [h]

]
, (38)

where H denotes a reproducing kernel Hilbert space (rkhs) induced by a characteristic
kernel K. Similarly to the Wasserstein distance, mmd is an integral probability metric
(Müller, 1997). The main difference is the choice of class functions H as we consider the class
of 1-Lipschitz functions for the Wasserstein distance. In fact, under some mild conditions,
these metrics are equivalent.

By considering two stochastic processes pgp and pnn at a finite number of measurement
points XM, we can obtain the closed form of mmd as follows

MMD2(pgp , pnn ) = EfM,f ′M∼pgp [K(fM, f ′M)] + EfM,f ′M∼pnn [K(fM, f ′M)] (39)

− 2EfM∼pgp ,f ′M∼pnn [K(fM, f ′M)],

which can be estimated by using samples from pnn and pgp evaluated at XM (Gretton et al.,
2012). For the mmd estimate, we use an rbf kernel with a characteristic lengthscale of
l =
√

2D, where D is the number of dimensions of the input features, and 5000 samples
from pnn and pgp . The measurement set is comprised of 500 test points.

A.9 Details on the experiments with functional BNNs and empirical Bayes

In the experiments with fbnn, we keep the same settings as used in Sun et al. (2019)3. In
particular, we use a gp with rbf kernels for small uci datasets with less than 2000 data
points, while a gp with Neural Kernel Network (nkn) kernels is employed for large uci
datasets.

In the experiments with the empirical Bayes approach (Immer et al., 2021a), following
the Authors’ repository4, we use the Laplace library (Daxberger et al., 2021) for the
implementation. We use the Kronecker-factored Laplace for Hessian approximation. We
follow the same experimental protocol of (Immer et al., 2021a) including the optimizer, the
early stopping scheme and the frequency of updating the prior.

Appendix B. Additional results

B.1 Additional results on MAP estimation with GP-induced priors

Figure 19 illustrates the comparison between early stopping, and map estimation with the
fg and gpi-g priors on the uci regression datasets. We use the same setup as in § 6.7. We
observe that the predictive performance obtained by map with the gpi-g prior outperforms
those of early stopping and map with the fg prior in most cases.

3. https://github.com/ssydasheng/FBNN

4. https://github.com/AlexImmer/marglik
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Figure 19: Comparison between early stopping and map estimations with respect to the fg and
gpi-g priors on the uci regression datasets.
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Figure 20: Comparison with empirical Bayes and functional inference methods on cifar10 dataset.

B.2 Tabular results on the UCI benchmarks

Detailed results on the uci regression and classification datasets are reported in Tables 7
to 10.

B.3 Convergence of Wasserstein optimization

Figures 22 to 24 depict the progressions of Wasserstein optimization in the uci regression,
uci classification, and cifar10 experiments, respectively.

B.4 Additional comparisons with the empirical Bayes approach

We complement the results presented in § 6.5 with different scenarios of optimizing the prior
and carrying out the inference. In particular, we evaluate our gpi-g prior when employed
with the scalable Laplace approximation (la) approach (Immer et al., 2021b) for inference,
refered as “gpi-g prior + la-ggn”. As shown in Figure 20, the gpi-g prior still outperforms
the fixed prior (fg prior). In addition, we consider the case where the prior optimized on
the approximated marginal likelihood (Immer et al., 2021a) is used together with sghmc.
We denote this approach “la-marglik + sghmc”. As it can be seen from the results, this
prior is not helpful and even worse than the fixed prior when employed with the sghmc.
This is reasonable because the la-marglik prior is closely tied with the la-ggn inference
method; the marginal likelihood is optimized jointly with the approximate posterior, and
the same optimized hyper-parameters might not work just as well for a different posterior
approximation.
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Data set N D σ2
ε Depth fg prior fg+ts gpi-g prior fh prior gpi-h prior Deep Ensemble

boston 506 13 0.1

1 3.124 ± 1.065 3.065 ± 0.964 2.823 ± 0.960 2.949 ± 1.041 2.850 ± 1.007 3.764 ± 1.122
2 3.093 ± 1.001 3.020 ± 0.938 2.835 ± 0.922 2.945 ± 0.996 2.826 ± 0.909 3.688 ± 1.147
4 3.120 ± 0.961 2.975 ± 0.906 2.869 ± 0.881 2.941 ± 0.944 2.931 ± 0.875 3.540 ± 1.166
8 3.228 ± 0.924 2.973 ± 0.849 2.976 ± 0.957 3.078 ± 1.004 3.110 ± 0.950 3.542 ± 1.068

concrete 1030 8 0.1

1 5.442 ± 0.263 5.419 ± 0.250 4.765 ± 0.386 4.930 ± 0.390 4.781 ± 0.443 5.632 ± 0.563
2 5.488 ± 0.253 5.388 ± 0.296 4.801 ± 0.416 5.179 ± 0.280 4.822 ± 0.396 5.226 ± 0.631
4 5.651 ± 0.262 5.326 ± 0.337 5.024 ± 0.321 5.557 ± 0.245 4.946 ± 0.384 5.011 ± 0.560
8 5.839 ± 0.311 5.289 ± 0.365 5.515 ± 0.339 5.757 ± 0.274 5.184 ± 0.315 5.124 ± 0.517

energy 768 8 0.001

1 0.395 ± 0.071 0.392 ± 0.071 0.366 ± 0.080 0.393 ± 0.074 0.370 ± 0.076 2.252 ± 0.241
2 0.389 ± 0.062 0.381 ± 0.068 0.343 ± 0.071 0.439 ± 0.063 0.358 ± 0.071 1.382 ± 0.348
4 0.422 ± 0.051 0.402 ± 0.061 0.396 ± 0.063 0.428 ± 0.061 0.394 ± 0.063 1.049 ± 0.340
8 0.457 ± 0.052 0.418 ± 0.063 0.475 ± 0.056 0.467 ± 0.055 0.437 ± 0.058 1.041 ± 0.323

kin8nm 8192 8 0.1

1 0.066 ± 0.002 0.066 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.071 ± 0.004
2 0.066 ± 0.002 0.065 ± 0.002 0.064 ± 0.002 0.065 ± 0.002 0.064 ± 0.002 0.068 ± 0.004
4 0.067 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.069 ± 0.002 0.064 ± 0.002 0.070 ± 0.003
8 0.069 ± 0.002 0.065 ± 0.002 0.070 ± 0.002 0.072 ± 0.002 0.065 ± 0.002 0.071 ± 0.003

naval 11934 16 0.001

1 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.004 ± 0.000
2 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.000
4 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.000
8 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.004 ± 0.000

power 9568 4 0.05

1 4.003 ± 0.162 4.000 ± 0.164 3.897 ± 0.177 4.022 ± 0.159 3.936 ± 0.170 4.008 ± 0.182
2 4.008 ± 0.168 3.999 ± 0.170 3.723 ± 0.183 4.054 ± 0.155 3.823 ± 0.179 3.857 ± 0.191
4 4.064 ± 0.163 4.014 ± 0.165 3.835 ± 0.173 4.163 ± 0.147 3.814 ± 0.177 3.826 ± 0.186
8 4.105 ± 0.160 4.042 ± 0.165 4.062 ± 0.188 4.205 ± 0.149 3.895 ± 0.167 3.854 ± 0.179

protein 45730 9 0.5

1 4.374 ± 0.019 4.376 ± 0.015 3.922 ± 0.011 3.973 ± 0.019 3.926 ± 0.019 4.376 ± 0.019
2 4.379 ± 0.019 4.330 ± 0.024 3.658 ± 0.021 3.713 ± 0.021 3.644 ± 0.025 4.443 ± 0.020
4 4.509 ± 0.015 4.321 ± 0.019 4.082 ± 0.055 3.976 ± 0.035 3.774 ± 0.021 3.854 ± 0.038
8 4.530 ± 0.020 4.362 ± 0.014 4.593 ± 0.108 4.148 ± 0.031 3.980 ± 0.022 3.997 ± 0.027

wine 1599 11 0.5

1 0.637 ± 0.042 0.636 ± 0.044 0.618 ± 0.045 0.633 ± 0.044 0.622 ± 0.045 0.612 ± 0.020
2 0.641 ± 0.044 0.641 ± 0.044 0.609 ± 0.046 0.637 ± 0.044 0.613 ± 0.046 0.615 ± 0.025
4 0.650 ± 0.045 0.649 ± 0.046 0.608 ± 0.046 0.637 ± 0.044 0.602 ± 0.048 0.602 ± 0.031
8 0.662 ± 0.049 0.660 ± 0.049 0.632 ± 0.046 0.646 ± 0.046 0.621 ± 0.048 0.609 ± 0.026

Table 7: Average test rmse on uci regression datasets (errors are ±1 standard error). Bold results
indicate the best performance. Here, N is the size of dataset, D is the number of input dimensions,
σ2
ε is the noise variance, and Depth is the number of hidden layers of the mlp.

Data set Classes Ntrain Ntest D fg prior fg+ts gpi-g prior fh prior gpi-h prior Deep Ensemble

eeg 2 10980 4000 14 82.26 ± 7.17 81.63 ± 8.09 94.13 ± 1.96 93.31 ± 3.67 94.69 ± 2.17 89.94 ± 4.98
htru2 2 12898 5000 8 97.94 ± 0.23 97.93 ± 0.24 98.03 ± 0.24 98.01 ± 0.20 98.02 ± 0.26 98.01 ± 0.24
magic 2 14020 5000 10 86.95 ± 0.39 87.15 ± 0.34 88.37 ± 0.29 87.65 ± 0.25 88.49 ± 0.26 87.87 ± 0.27
miniboo 2 120064 10000 50 90.81 ± 0.22 90.99 ± 0.21 92.74 ± 0.39 93.26 ± 0.28 93.37 ± 0.27 91.42 ± 0.21
letter 26 15000 5000 16 90.45 ± 0.41 90.75 ± 0.37 96.90 ± 0.29 97.41 ± 0.26 97.67 ± 0.20 96.46 ± 0.27
drive 11 48509 10000 48 98.55 ± 0.10 98.71 ± 0.09 99.69 ± 0.04 99.71 ± 0.04 99.74 ± 0.05 99.31 ± 0.06
mocap 5 68095 10000 37 98.80 ± 0.10 98.98 ± 0.09 99.24 ± 0.10 99.41 ± 0.08 99.49 ± 0.07 99.12 ± 0.09

Table 8: Average test accuracy (%) on uci classification datasets (errors are ±1 standard error).
Bold results indicate the best performance. Here, Classes is the number of classes, Ntrain, Ntest is
the sizes of training set and test set, respectively; D is the number of input dimensions.

40



All You Need is a Good Functional Prior for Bayesian Deep Learning

Data set N D σ2
ε Depth fg prior fg+ts gpi-g prior fh prior gpi-h prior Deep Ensemble

boston 506 13 0.1

1 2.558 ± 0.294 2.582 ± 0.365 2.472 ± 0.153 2.498 ± 0.212 2.469 ± 0.160 3.177 ± 1.188
2 2.541 ± 0.251 2.563 ± 0.343 2.475 ± 0.115 2.489 ± 0.196 2.458 ± 0.110 3.249 ± 1.111
4 2.548 ± 0.207 2.542 ± 0.304 2.475 ± 0.095 2.473 ± 0.140 2.486 ± 0.080 3.448 ± 1.483
8 2.581 ± 0.170 2.541 ± 0.259 2.474 ± 0.094 2.496 ± 0.128 2.529 ± 0.083 3.004 ± 0.915

concrete 1030 8 0.1

1 3.104 ± 0.039 3.106 ± 0.048 3.004 ± 0.050 3.027 ± 0.051 3.007 ± 0.057 3.113 ± 0.214
2 3.114 ± 0.037 3.099 ± 0.054 3.028 ± 0.050 3.066 ± 0.036 3.024 ± 0.044 3.065 ± 0.259
4 3.145 ± 0.040 3.091 ± 0.055 3.060 ± 0.037 3.127 ± 0.039 3.056 ± 0.046 3.034 ± 0.251
8 3.184 ± 0.047 3.092 ± 0.058 3.128 ± 0.046 3.169 ± 0.042 3.109 ± 0.037 3.054 ± 0.189

energy 768 8 0.001

1 0.496 ± 0.216 0.496 ± 0.222 0.417 ± 0.227 0.489 ± 0.210 0.425 ± 0.210 2.076 ± 0.500
2 0.471 ± 0.174 0.454 ± 0.196 0.347 ± 0.150 0.648 ± 0.116 0.392 ± 0.180 2.062 ± 1.014
4 0.558 ± 0.145 0.506 ± 0.180 0.478 ± 0.168 0.681 ± 0.080 0.476 ± 0.166 1.935 ± 0.981
8 0.636 ± 0.123 0.585 ± 0.134 0.657 ± 0.154 0.867 ± 0.056 0.562 ± 0.152 1.713 ± 0.736

kin8nm 8192 8 0.1

1 -1.233 ± 0.018 -1.238 ± 0.017 -1.238 ± 0.015 -1.243 ± 0.016 -1.241 ± 0.015 -1.317 ± 0.061
2 -1.227 ± 0.018 -1.243 ± 0.017 -1.233 ± 0.012 -1.230 ± 0.016 -1.241 ± 0.014 -1.317 ± 0.076
4 -1.201 ± 0.013 -1.235 ± 0.015 -1.219 ± 0.011 -1.180 ± 0.015 -1.223 ± 0.013 -1.256 ± 0.074
8 -1.169 ± 0.015 -1.222 ± 0.014 -1.159 ± 0.020 -1.138 ± 0.015 -1.211 ± 0.013 -1.264 ± 0.070

naval 11934 16 0.001

1 -6.943 ± 0.028 -6.935 ± 0.028 -6.944 ± 0.031 -6.946 ± 0.028 -6.923 ± 0.062 -5.172 ± 0.227
2 -6.410 ± 0.087 -6.373 ± 0.099 -6.430 ± 0.156 -6.429 ± 0.097 -6.397 ± 0.098 -5.248 ± 0.274
4 -6.289 ± 0.079 -6.291 ± 0.064 -6.359 ± 0.063 -6.323 ± 0.043 -6.347 ± 0.051 -5.122 ± 0.259
8 -5.869 ± 0.046 -5.893 ± 0.042 -5.886 ± 0.040 -5.926 ± 0.051 -5.895 ± 0.051 -4.934 ± 0.428

power 9568 4 0.05

1 2.807 ± 0.042 2.807 ± 0.043 2.780 ± 0.044 2.812 ± 0.042 2.790 ± 0.043 2.799 ± 0.045
2 2.808 ± 0.043 2.806 ± 0.044 2.738 ± 0.042 2.819 ± 0.040 2.761 ± 0.043 2.754 ± 0.053
4 2.821 ± 0.039 2.809 ± 0.042 2.766 ± 0.040 2.844 ± 0.035 2.762 ± 0.041 2.738 ± 0.059
8 2.833 ± 0.036 2.817 ± 0.040 2.821 ± 0.043 2.857 ± 0.032 2.783 ± 0.038 2.753 ± 0.037

protein 45730 9 0.5

1 2.894 ± 0.004 2.894 ± 0.003 2.798 ± 0.002 2.809 ± 0.003 2.799 ± 0.004 2.753 ± 0.009
2 2.892 ± 0.004 2.881 ± 0.005 2.752 ± 0.004 2.760 ± 0.004 2.748 ± 0.004 2.796 ± 0.016
4 2.916 ± 0.003 2.875 ± 0.004 2.825 ± 0.011 2.801 ± 0.007 2.764 ± 0.004 2.606 ± 0.039
8 2.919 ± 0.004 2.883 ± 0.003 2.933 ± 0.025 2.838 ± 0.006 2.802 ± 0.004 2.658 ± 0.013

wine 1599 11 0.5

1 0.973 ± 0.080 0.983 ± 0.090 0.929 ± 0.067 0.962 ± 0.079 0.936 ± 0.069 1.008 ± 0.162
2 0.983 ± 0.082 0.990 ± 0.087 0.915 ± 0.063 0.974 ± 0.082 0.922 ± 0.067 1.081 ± 0.193
4 0.999 ± 0.085 1.004 ± 0.090 0.915 ± 0.064 0.973 ± 0.081 0.908 ± 0.064 1.774 ± 0.468
8 1.016 ± 0.093 1.023 ± 0.095 0.953 ± 0.075 0.988 ± 0.084 0.938 ± 0.072 0.927 ± 0.100

Table 9: Average test nll in nats on uci regression datasets (errors are ±1 standard error). Bold
results indicate the best performance. Here, N is the size of dataset, D is the number of input
dimensions, σ2

ε is the noise variance, and Depth is the number of hidden layers of the mlp.

Data set Classes Ntrain Ntest D fg prior fg+ts gpi-g prior fh prior gpi-h prior Deep Ensemble

eeg 2 10980 4000 14 0.404 ± 0.120 0.406 ± 0.129 0.179 ± 0.046 0.179 ± 0.075 0.150 ± 0.053 0.240 ± 0.097
htru2 2 12898 5000 8 0.071 ± 0.007 0.072 ± 0.007 0.066 ± 0.008 0.068 ± 0.007 0.066 ± 0.008 0.067 ± 0.008
magic 2 14020 5000 10 0.316 ± 0.006 0.312 ± 0.005 0.286 ± 0.005 0.298 ± 0.004 0.284 ± 0.005 0.294 ± 0.005
miniboo 2 120064 10000 50 0.218 ± 0.004 0.215 ± 0.004 0.179 ± 0.007 0.168 ± 0.004 0.165 ± 0.004 0.207 ± 0.004
letter 26 15000 5000 16 0.445 ± 0.008 0.409 ± 0.008 0.166 ± 0.006 0.128 ± 0.005 0.115 ± 0.005 0.147 ± 0.006
drive 11 48509 10000 48 0.098 ± 0.002 0.088 ± 0.002 0.028 ± 0.001 0.023 ± 0.001 0.022 ± 0.001 0.049 ± 0.002
mocap 5 68095 10000 37 0.060 ± 0.002 0.050 ± 0.002 0.032 ± 0.002 0.027 ± 0.001 0.021 ± 0.001 0.040 ± 0.002

Table 10: Average test nll in nats on uci classification datasets (errors are ±1 standard error).
Bold results indicate the best performance. Here, Classes is the number of classes; the Ntrain, Ntest
is the sizes of training set and test set, respectively; D is the number of input dimensions.

B.5 Additional results with full-batch Hamiltonian Monte Carlo

Table 11 shows a comparison between full-batch hmc and sghmc using the fg and our
gpi-g priors on small uci regression datasets. We use the no-u-turn (nuts) extension
(Hoffman and Gelman, 2014) of hmc with the NumPyro’s implementation (Phan et al.,
2019). nuts adaptively sets the trajectory length of HMC, which along with the adaptation
of the mass matrix and the step size. We have simulated 4 chains with a burn-in phase
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fg prior gpi-g prior
Data set σ2

ε hmc sghmc hmc sghmc

boston 0.1 3.065 ± 1.006 3.093 ± 1.001 2.821 ± 0.907 2.835 ± 0.922
concrete 0.1 5.369 ± 0.294 5.488 ± 0.253 4.715 ± 0.431 4.801 ± 0.416
energy 0.001 0.386 ± 0.064 0.389 ± 0.062 0.339 ± 0.075 0.343 ± 0.071
power 0.05 3.931 ± 0.165 4.008 ± 0.168 3.438 ± 0.201 3.723 ± 0.183
wine 0.5 0.637 ± 0.043 0.641 ± 0.044 0.606 ± 0.046 0.609 ± 0.046

Table 11: Average test rmse results of full-batch hmc and sghmc on uci regression datasets
(errors are ±1 standard error). We use a mlp with two hidden layers of 100 neurons. σ2

ε is the noise
variance.

of 200 iterations and 200 collected samples for each chain. We see that sghmc performs
remarkably similar to a carefully tuned hmc algorithm, despite the discretization error.

B.6 Additional discussion on the optimization of Wasserstein distance

In the Algorithm 1, we have opted to separate the two optimization procedures for the
Lipschitz function φθ and the Wasserstein distance. We acknowledge that the two could
have been optimized jointly in a single loop, as Equation (13) defines a minimax problem.
However, our choice allows φθ to be stabilized before a single Wasserstein minimization
step takes place. In fact, this is a common trick to make convergence more stable (see e.g.,
the original Goodfellow et al. (2014) paper, which suggests to allow more training of the
discriminator for each step of the generator). Figure 21 illustrates the convergence behavior
of these two algorithmic choices measured by the squared mmd between the target gp
prior and the optimized bnn prior on the uci regression datasets (see Appendix A.8 for
the experimental protocol). Our optimization strategy demonstrates a much more stable
convergence compared to the joint optimization approach.
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Figure 21: Comparison between strategies to optimize the Lipschitz function and the Wasserstein
distance: ( ) our strategy of separating these two operations; and ( ) the strategy of joint
optimization. Here, the convergence is measured by the squared mmd between the target gp prior
and the optimized bnn prior.
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Figure 22: Convergence of Wasserstein optimization for two-layer mlps on the uci regression
datasets.
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Figure 23: Convergence of Wasserstein optimization for two-layer mlps on the uci classification
datasets.
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Figure 24: Convergence of Wasserstein optimization for cnns on the cifar10 dataset.
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Appendix C. A primer on Wasserstein Distance

Given two Borel’s probability measures π(x) and ν(y) defined on the Polish space X and
Y (i.e. any complete separable metric space such as a subset of Rd), the p-Wasserstein
distance is defined as follows

Wp(π, ν) =

(
inf

γ∈Γ(π,ν)

∫
X×Y

D(x,y)pγ(x,y) dx dy

)1/p

, (40)

where D(x,y) is a proper distance metric between two points x and y in the space X × Y
and Γ(π, ν) is the set of functionals of all possible joint densities whose marginals are indeed
π and ν.

When the space of x and y coincides (i.e. x,y ∈ X ⊆ Rd), the most used formulation is
the 1-Wasserstein distance with Euclidian norm as distance,

W (π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x,y) dx dy , (41)

This is also known in the literature as the Earth-Mover distance. Intuitively, here γ measures
how much mass must be transported from x to y in order to transform the distributions π
into the distribution ν. Solving the Wasserstein distance means computing the minimum
mass that needs to be moved. The question “How?” is answered by looking at the optimal
transport plan (not the focus of these notes).

The remaining part of these notes will be dedicated to the proof of the dual formulation
for Equation (41). It is well known in the literature of optimization that linear programming
problem with convex constrains admits a dual formulation. Kantorovich introduced the dual
formulation of the Wasserstein distance in 1942.

Theorem 1 On the same setup as before, the Wasserstein distance defined as

W (π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x,y) dx dy , (42)

admits the following dual form

W (π, ν) = sup
‖f‖L≤1

∫
X
f(x)π(x)dx−

∫
X
f(y)ν(y)dy (43)

where f is a 1-Lipschitz continuous function defined on X → R.

Step 1: Kantorovich duality

First of all we start with the Kantorovich duality, which defines a dual form for the
generic 1-Wasserstein.

Theorem 2 Given a nonnegative measurable function D : X × X → R, the 1-Wasserstein
is computed as follows,

W (π, ν) = inf
γ∈Γ(π,ν)

∫
D(x,y)γ(x,y) dx dy , (44)
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The Kantorovich duality proves that this is equal to the following constrained optimization
problem,

W (π, ν) = sup
f,g

f(x)+g(y)≤D(x,y)

∫
f(x)π(x) dx +

∫
g(y)ν(y) dy . (45)

We define ιΓ(γ) the following quantity

ιΓ(γ) = sup
f,g

[∫
f(x)π(x) dx +

∫
g(y)ν(y) dy −

∫∫
[f(x) + g(y)] γ(x,y) dx dy

]
and we observe that

ιΓ(γ) =

{
0 if γ ∈ Γ(π, ν) ,

+∞ otherwise .

This is true because given the definition of Γ, if γ ∈ Γ(π, ν) then π(x) =
∫
γ(x,y) dy

and ν(y) =
∫
γ(x,y) dx. By substituiting these quantities, it follows that∫

f(x)π(x) dx +

∫
g(y)ν(y) dy =

∫
f(x)

∫
γ(x,y) dy dx +

∫
g(y)

∫
γ(x,y) dx dy

=

∫∫
[f(x) + g(y)] γ(x,y) dx dy .

In other cases, f and g can be chosen such that the supremum becomes +∞. Given this
property and the constrain on γ, we can add ιΓ(γ) to the formulation of the Wasserstein
distance in Equation (42),

W (π, ν) = inf
γ∈Γ(π,ν)

[∫
D(x,y)γ(x,y) dx dy

]
+ ιΓ(γ) =

= inf
γ

[∫
D(x,y)γ(x,y) dx dy + sup

f,g

[∫
f(x)π(x) dx +

∫
g(y)ν(y) dy− (46)∫∫

[f(x) + g(y)] γ(x,y) dx dy

]]
,

Now, the original integral of the Wasserstein distance does not depend on f and g; therefore
the supremum can be moved in front,

W (π, ν) = inf
γ

sup
f,g

Υ(γ, (f, g)) (47)

Υ(γ, (f, g))
def
=

∫
D(x,y)γ(x,y) dx dy +

∫
f(x)π(x) dx +

∫
g(y)ν(y) dy−∫∫

[f(x) + g(y)] γ(x,y) dx dy

Under certain conditions stated by the minimax theorem, i.e. Υ(γ, (f, g)) is convex-concave
function (Υ is concave for fixed (f, g) while convex for fixed γ ), we can swap the infinum
and the supremum and rewrite the definition as follows,

W (π, ν) = sup
f,g

inf
γ

∫
[D(x,y)− f(x)− g(y)] γ(x,y) dx dy +

∫
f(x)π(x) dx +

∫
g(y)ν(y) dy
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Proofs that the hypothesis used for the minimax theorem hold for this case are presented in
Theorem 1.9 of “Topics in Optimal Transport” (Villani, 2003). Focusing on the infimum
part, we can write

inf
γ

∫
[D(x,y)− f(x)− g(y)] γ(x,y) dx dy =

{
0 if f(x) + g(y) ≤ D(x,y) ,

−∞ otherwise .

If the function ζ(x,y) = D(x,y)−(f(x)+g(y)) takes a negative value at some point (x0,y0),
then by choosing γ = λδ(x0,y0) with λ→ +∞ (i.e. a Dirac delta in (x0,y0)), we see that
the infimum is infinite. On the other hand, is ζ(x,y) is nonnegative, then the infimum is
obtained for γ = 0. Finally, this constrains can be added to the previous conditions making
thus recovering the formulation in Equation (43).

Step 2: D-Transforms

The next challenge is to find f and g such that we can easily recover the constrain optimization
above. We approach this problem by supposing to have chosen some f(x). This means that
the objective is to find a good g(y) that for all x,y satisfy the condition

f(x) + g(y) ≤ D(x,y) .

The trivial solution is g(y) ≤ D(x,y)− f(x). This must be true for all x, also in the worst
case (when we take the infimum),

g(y) ≤ inf
x

[D(x,y)− f(x)] .

At this point, we observe that for a given f , if we want the supremum in Eq. 5 we cannot
get a better g then taking the equality,

f̄(y) := inf
x

[D(x,y)− f(x)] .

We therefore have the following formulation of the Wasserstein distance,

W (π, ν) = sup
f

[∫
f(x)π(x) dx +

∫
f̄(y)ν(y) dy

]
If now we suppose to choose g, by following the same reasoning the best f that we can get
is defined

¯̄f(x) = ḡ(x) := inf
y

[D(x,y)− g(y)] .

If we replace g(y) with Eq. 17 we have yet another recursive definition of the Wasserstein
distance,

W (π, ν) = sup
f

[∫
¯̄f(x)π(x) dx +

∫
f̄(y)ν(y) dy

]
If we constrain f to be D-concave, then ¯̄f = f .
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Step 2.1: Euclidean distance

It’s worth mentioning that this formulation is valid for any nonnegative measurable function
D. For the Euclidian distance this simplify even further.

Theorem 3 When D(x,y) = ‖x− y‖ and f is 1-Lipschitz, f is D-concave if and only if
f̄ = −f

We prove the necessity condition of such result. First of all, we observe that if f is 1-Lipschitz
then f̄ is 1-Lipschitz too. This is true because for any given x

f̄x(y) = ‖x− y‖ − f(x)

is 1-Lipschitz and therefore the infimum of f̄(y) = infx ‖x− y‖ − f(x) is 1-Lipschitz. Since
f̄ is 1-Lipschitz, for all x and y we have∣∣f̄(y)− f̄(x)

∣∣ ≤ ‖y − x‖
=⇒ −f̄(x) ≤ ‖x− y‖ − f̄(y)

Since this is true for all y,

− f̄(x) ≤ inf
y
‖x− y‖ − f̄(y)

− f̄(x) ≤ inf
y
‖x− y‖ − f̄(y)︸ ︷︷ ︸

¯̄f≡f

≤ −f̄(x)

where the right inequality follows by choosing y = x in the infimum. We know that ¯̄f ≡ f .
This means that −f̄(x) must be equal to f(x) for the last equation to hold.

Step 3. Putting everything together

We started our discussion by proving the Kantovich duality, which states that

inf
γ∈Γ(π,ν)

∫
D(x,y)γ(x,y) dx dy = sup

f,g
f(x)+g(y)≤D(x,y)

∫
f(x)π(x) dx +

∫
g(y)ν(y) dy ,

We then proved that

sup
f,g

f(x)+g(y)≤D(x,y)

[∫
f(x)π(x) dx +

∫
g(y)ν(y) dy

]
=

= sup
f

f̄=infxD−f

[∫
f(x)π(x) dx +

∫
f̄(y)ν(y) dy

]
,

Finally, given D(x,y) to be the Euclidean distance, we discussed the shape of f̄ when we
restrict f to be 1-Lipschitz, showing that f̄ = −f . Putting everything together, we obtain
the dual 1-Wasserstein distance in Equation (43),

W (π, ν) = sup
‖f‖L≤1

∫
f(x)π(x)dx−

∫
f(y)ν(y)dy
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