
Sparse within Sparse Gaussian Processes using Neighbor Information

Gia-Lac Tran 1 2 Dimitrios Milios 1 Pietro Michiardi 1 Maurizio Filippone 1

Abstract

Approximations to Gaussian processes (GPs)
based on inducing variables, combined with varia-
tional inference techniques, enable state-of-the-art
sparse approaches to infer GPs at scale through
mini-batch based learning. In this work, we fur-
ther push the limits of scalability of sparse GPs
by allowing large number of inducing variables
without imposing a special structure on the induc-
ing inputs. In particular, we introduce a novel
hierarchical prior, which imposes sparsity on the
set of inducing variables. We treat our model
variationally, and we experimentally show consid-
erable computational gains compared to standard
sparse GPs when sparsity on the inducing vari-
ables is realized considering the nearest inducing
inputs of a random mini-batch of the data. We
perform an extensive experimental validation that
demonstrates the effectiveness of our approach
compared to the state-of-the-art. Our approach
enables the possibility to use sparse GPs using a
large number of inducing points without incurring
a prohibitive computational cost.

1. Introduction
Gaussian Processes (GPs) (Rasmussen & Williams, 2006)
offer a powerful framework to perform inference over func-
tions; being Bayesian, GPs provide rigorous uncertainty
quantification and prevent overfitting. However, the ap-
plicability of GPs on large datasets is hindered by their
computational complexity of O

(
N3
)
, where N is the train-

ing size. This issue has fuelled a considerable amount of
research towards scalable GP methodologies that operate
on a set of inducing variables (Quiñonero Candela & Ras-
mussen, 2005). In the literature, there is a plethora of ap-
proaches that offer different treatments of the inducing vari-
ables (Lawrence et al., 2002; Seeger et al., 2003; Snelson

1Department of Data Science, Eurecom, France 2Department of
Computer Science, National University of Singapore, Singapore.
Correspondence to: Gia-Lac Tran <tranlac@nus.edu.sg>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

& Ghahramani, 2005; Naish-Guzman & Holden, 2007; Tit-
sias, 2009; Hensman et al., 2013; Wilson & Nickisch, 2015;
Hensman et al., 2015). Some of the more recent approaches,
such as Scalable Variational Gaussian Processes (SVGPs)
(Hensman et al., 2015), allow for the application of GPs to
problems with millions of data-points. In most applications
of scalable GPs, these are approximated using M inducing
points, which results in a complexity of O

(
M3
)
. It has

been shown recently by Burt et al. (2019) that it is possible
to obtain an arbitrarily good approximation for a certain
class of GP models (i.e. conjugate likelihoods, concentrated
distribution for the training data) with M growing more
slowly than N . However, the general case remains elusive
and it is still possible that the required value for M may ex-
ceed a certain computational budget. Our result contributes
to strengthen our belief that sparsity does not only enjoy
desirable theoretical properties, but it also constitutes an
extremely computationally efficient method in practice.

In this work, we push the limits of scalability and effec-
tiveness of sparse GPs enabling a further reduction in com-
plexity, which can be translated to higher accuracy by con-
sidering a larger set of inducing variables. The idea is to
operate on a subset of H inducing points during training and
prediction, with H � M , while maintaining a sparse ap-
proximation with M inducing variables. We formalize our
strategy by imposing a sparsity-inducing structure on the
prior over the inducing variables and by carrying out a vari-
ational formulation of this model. This extends the original
SVGP framework and enables mini-batch based optimization
for the variational objective. We then consider ways to select
the set of H inducing points based on neighbor information;
at training time, for a given mini-batch, we activate H out
of M inducing variables considering the nearest inducing
inputs to the samples in the mini-batch, whereas at test time
we select inducing variables corresponding to the inducing
inputs which are nearest to the test data-points. We name
our proposal Sparse within a Sparse GP (SWSGP). SWSGP
is characterized by a number of attractive features: (i) it
improves significantly the prediction quality using a small
number of neighboring inducing inputs, and (ii) it acceler-
ates the training phase, especially when the total number
of inducing points becomes large. We extensively validate
these properties on a variety of regression and classification
tasks. We also showcase SWSGP on a large scale classifica-

Sparse within Sparse Gaussian Processes using Neighbor Information

tion problem with M = 100, 000; we are not aware of other
approaches that can handle such a large set of inducing in-
puts without imposing some special structure on them (e.g.,
grid) or without considering one-dimensional inputs.

Hierarchical priors are often applied in Bayesian mod-
eling to achieve compression and to improve flexibility
(Molchanov et al., 2017; Louizos et al., 2017). To the best
of our knowledge, this work is the first to explore these ideas
as means to sparsify the inducing set in sparse GPs.

2. Related Work and Background
Sparse GPs that operate on inducing inputs have been ex-
tensively studied in the last 20 years (Csató & Opper,
2002; Lawrence et al., 2002; Snelson & Ghahramani, 2005;
Quiñonero Candela & Rasmussen, 2005; Naish-Guzman
& Holden, 2007). Many attempts on sparse GPs specified
inducing inputs by satisfying certain criteria that produce an
informative set of inducing variables (Csató & Opper, 2002;
Lawrence et al., 2002; Seeger et al., 2003). A different treat-
ment has been proposed by Titsias (2009), which involves
formulating the selection of inducing inputs as optimization
of a variational lower bound to the marginal likelihood. The
variational framework was later extended so that stochastic
optimization can be admitted, thus improving scalability for
regression (Hensman et al., 2013) and classification (Hens-
man et al., 2015), and to deal with large-dimensional inputs
(Panos et al., 2018). All the aforementioned methodologies
share a computational complexity of O

(
M3
)
. Although

there have been some attempts in the literature to infer the
appropriate number of inducing points as well as the induc-
ing inputs (Pourhabib et al., 2014; Burt et al., 2019), a large
number of inducing variables is desirable to improve poste-
rior approximation. In this work, we present a methodology
that builds on the SVGP framework (Hensman et al., 2015)
and reduces its complexity, thus increasing the potential of
sparse GP application on even larger datasets and with a
larger set of inducing variables.

A different approach to scalable GPs was introduced by Wil-
son & Nickisch (2015), namely Kernel Interpolation for
Scalable Structured GPs (KISS-GP). This line of work in-
volves arranging a large number of inducing inputs into a
grid structure; this allows one to scale to very large datasets
by means of fast linear algebra. The applicability of KISS-
GP on higher-dimensional problems has been addressed by
Wilson et al. (2015) by means of low-dimensional projec-
tions. A more recent extension allows for a constant-time
variance prediction using Lanczos methods (Pleiss et al.,
2018). Our work takes a different approach by keeping
the GP prior intact, and by imposing sparsity on the set of
inducing variables.

The local approximation of GPs inspired by the the concept

of divide-and-conquer is also a practical solution to imple-
ment scalable GPs (Kim et al., 2005; Urtasun & Darrell,
2008; Datta et al., 2016; Park & Huang, 2016; Park & Ap-
ley, 2017). More recently, Liu & Liu (2019) proposed an
amortized variational inference framework where the near-
est training points are selected for inference. In our work,
we use neighbor information in a different way, by incorpo-
rating it in a certain hierarchical structure of the auxiliary
variables through a variational scheme.

2.1. Scalable Variational Gaussian Processes

Consider a supervised learning problem with inputs X =
(x1, . . . ,xN)> associated with labels y = (y1, . . . , yN)>.
Given a set of latent variables f = (f1, . . . , fN)>, GP mod-
els assume that labels are stochastic realizations based on
f and a likelihood function p(y | f). In SVGPs, the set of
inducing points is characterized by inducing inputs Z =
(z1, . . . , zM)> and inducing variables u = (u1, . . . , uM)>.
Regarding f and u, we have the following joint prior:

p(f ,u) = N
(
0,

[
KX KX,Z

KZ,X KZ

])
, (1)

where KX, KZ and KX,Z are covariance matrices evalu-
ated at the inputs indicated by the subscripts. The posterior
over inducing variables is approximated by a variational
distribution q (u) = N (u |m,S), while keeping the exact
conditional p(f | u) intact, that is q(f ,u) = p(f | u)q(u).
The variational parameters m and S, as well as the inputs Z,
are optimized by maximizing a lower bound on the marginal
likelihood p(y | X) =

∫
p(y | f)p(f | X)df . The lower

bound on log p (y | X) can be obtained by considering the
form of q(f ,u) above and by applying Jensen’s inequality:

Eq(f) [log p (y | f)]−KL (q (u) ‖ p (u)) . (2)

The approximate posterior q (f) can be computed by inte-
grating out u: q (f) =

∫
q (u) p (f |u) du. Thanks to the

Gaussian form of q (u), q (f) can be computed analytically:

q (f) = N (f |Am, KX +A (S−KZ)A) , (3)

where A = KX,ZK
−1
Z . When the likelihood factorizes

over training points, the lower bound can be re-written as:∑N
i=1 Eq(fi) [log p (yi | fi)]−KL (q (u) ‖ p (u)) . (4)

Each term of the one-dimensional expectation of the log-
likelihood can be computed by Gauss-Hermite quadrature
for any likelihoods (and analytically for the Gaussian like-
lihood). The KL (q (u) ‖ p (u)) term can be computed
analytically given that q (u) and p (u) are both Gaussian.
To maintain positive-definiteness of S and perform uncon-
strained optimization, S is parametrized as S = LLT , with
L lower triangular.

Sparse within Sparse Gaussian Processes using Neighbor Information

0 2 4 6 8 10

−2

0

2

f|u,w f|u,w f|u,w

0 2 4 6 8 10

−2

0

2

True GP prior
True GP samples

Sample prior
f samples

Figure 1. The choice of inducing points does not affect the prior
samples drawn from p(f). Left: visualizations of f | u,w for
different samples of w. Right: comparison of the marginalized
(w.r.t. u,w) prior over f , against the true p(f).

3. Sparse Within Sparse GP
We present a novel formulation of sparse GPs, which permits
the use of a random subset of the inducing points with little
loss in performance. We introduce a set of binary random
variables w ∈ {0, 1}M to govern the inclusion of inducing
inputs Z and the corresponding variables u. We then employ
these random variables to define a hierarchical structure on
the prior as follows:

p (u | w) = N (0,DwKZDw) , (5)

where Dw = diag (w) , and w ∼ p (w). Although the
marginalized prior p(u) is not Gaussian, it is possible to
use the joint p(u,w) = p(u | w) p(w) within a variational
scheme. We thus consider a random subset of the inducing
points during the evaluation of the prior in the variational
scheme that follows; no inducing points are permanently
removed. Regarding p(w), we consider an implicit distri-
bution: its analytical form is unknown, but we can draw
samples from it. Later, we will consider p(w) based on the
nearest inducing inputs to random mini-batches of data.

Remarks on the prior over f Our strategy simply as-
sumes a certain structure on the auxiliary variables, but
it has no effect on the prior over f ; the latter remains un-
changed. Let I and J bet the sets of indices such that
wI = 1 and wJ = 0. Given an appropriate ordering, the
conditional u | w is effectively the element-wise product
[uI ,uJ]

> = u ◦w. This reduces the variances and covari-
ances of some elements of u to zero yielding a distribution
of this form:

p (f ,u | w) = N

00
0

 ,

 KX KX,ZI 0
KZI ,X KZI 0

0 0 0

 (6)

The rows and columns of uJ can simply be ignored. Regard-
less of the value of w, the conditional f ,uI | w is always a
Gaussian marginal, as it is a subset of Gaussian variables.
The marginalized p(f ,u) =

∫
p(f ,u | w) p(w)dw is mix-

ture of Gaussian densities, where the marginal over f is the
same for every component of the mixture.

The effect on f is demonstrated in Figure 1, where we sam-
ple from the (non-Gaussian) marginalized prior p(u) in

two steps: first we consider an arbitrary random subset
uI , and then we sample from p(uI) ≡ p(u | w). Fi-
nally, f samples are drawn from p(f | uI), which only
involves the selected inducing variables uI . Following
Eq. (1), the conditional f | u is normally-distributed with
mean mf |uI = KX,ZIK

−1
ZI

uI and covariance Sf |uI =

KX −KX,ZIK
−1
ZI

KZI ,X. These conditionals can be seen
for different samples of u,w in the left side of Figure 1,
while in the right side we compare the marginalized prior
over f against the true GP prior.

Of course, although the prior remains unchanged, that is not
the case for the posterior approximation. It is well known
that the choice of inducing inputs has an effect on the varia-
tional posterior (Titsias, 2009; Burt et al., 2019). Our choice
to impose a hierarchical structure to the inducing variables
through w effectively changes the model compared to SVGP,
and we adapt the variational scheme accordingly.

3.1. Lower Bound on Marginal Likelihood

By introducing u,w and using Jensen’s inequality, the lower
bound on log p (y) can be obtained as follows

Eq(u,w) log p (y |u,w)−KL (q (u,w) ‖p (u,w)) , (7)

where we choose the variational distribution q to reflect the
hierarchical structure of the prior, i.e. q (u,w) = q(u |
w) p(w). This choice enforces sparsity over the approx-
imate posterior q; the variational parameters are shared
among the conditionals q(u | w), for which we assume:

q(u | w) = N (u |Dwm,DwSDw) (8)

By maximizing the variational bound, we aim to obtain a
q that performs well under a sparsified inducing set. We
continue by applying Jensen’s inequality on p (y |u,w),
obtaining:

log p (y |u,w) ≥ Ep(f |u,w) log p (y |f) (9)

The bound we describe in Equations (7) and (9) is the same
as in SVGP, but with a different variational distribution. In
our case, the variational distribution imposes sparsity for u
by means of w. We can now substitute (9) into (7), obtaining
a bound where we expand q(u,w) as q (u |w) p (w). By
making this assumption, we get the following evidence
lower bound LELBO:

N∑
n=1

Ep(w)

[
Eq(u|w)Ep(fn|u,w) log p (yn |fn)

− 1

N
KL

(
q (u |w)

∥∥∥∥ p (u |w)

)] (10)

Recall that p (w) is implicit: although we do not make any
particular assumptions about its analytical form, we can

Sparse within Sparse Gaussian Processes using Neighbor Information

draw samples from it. Using MC sampling from p (w), we
can obtain the approximation L̃ELBO:

N∑
n=1

[
Eq(u|w̃(n))Ep(fn|u,w̃(n)) log p (yn |fn)

− 1

N
KL

(
q
(
u
∣∣∣w̃(n)

)∥∥∥∥ p(u ∣∣∣w̃(n)
))]

,

(11)

where w̃(n) is sampled from p (w).

Sampling from the set of inducing points. Recall that
any sample w̃ from p (w) is a binary vector, i.e. w ∈
{0, 1}M . In case all elements of w are set to one, our
approach recovers the original SVGP with computational
cost of O

(
M3
)

coming from computing p (fn |u, w̃ = 1)
and KL (q (u |w) ‖p (u |w)) in the ELBO. When any w̃i

is set to zero, the entries of the i-th row and i-th column
of the covariance matrix in p (u |w) and q (u |w) are zero.
This means that the i-th variable becomes unnecessary, so
we get rid of i-th row and column in these matrices, and
also eliminate the i-th element in mean vectors of q (u |w)
and p (u |w). This is equivalent to selecting a set of active
inducing points in each training iteration.

3.2. H-nearest Inducing Inputs

Despite the fact that p(w) is an implicit distribution, we
have been able to define and calculate a variational bound,
assuming we can sample from p(w). We shall now describe
our sampling strategy, which relies on neighbor information
of random mini-batches.

We introduce ZH
x as the set of H-nearest inducing inputs.

Intuitively, the prediction for an unseen data x using ZH
x is a

good approximation of the prediction using all M inducing
points, that is ZM

x . This can be verified by looking at the pre-
dictive mean, which is expressed as a linear combination of
kernel functions evaluated between training points and a test
point, as in Eq. (3). The majority of the contribution is given
by the inducing points with the largest kernel values, so we
can use this as a criterion to establish whether an inducing
input is “close” to an input vector (the effect of different
kernels on the definition of nearest neighbors is explored
in the supplement). With this intuition, p (w) becomes a
deterministic function w (x) indicating which inducing in-
puts are activated. For mini-batch based training, the value
of w remains random, as it depends on the elements x that
are selected in the random mini-batch; this materializes the
sampling from the implicit distribution p(w). The maxi-
mization of the ELBO in the setting described is summarized
in Algorithm 1 (SWSGP).

Predictive distribution Contrary to what happens at
training time, where mini-batches of data are drawn ran-
domly, at test time the inputs of interest are not random;

Algorithm 1 Sparse within sparse GP (SWSGP)

Require: D, H , M .
Ensure: The optimum of trainable parameters θ.

1: Initialize θ including kernel’s parameters, Z, m and L
which can be used to construct S, i.e. S = LLT .

2: while stopping criteria is False do
3: ELL← 0 and KL← 0.
4: Sample mini-batch B of size nB from D.
5: for (xi, yi) ∈ B do
6: Find ZH

xi
, i.e. the H-nearest Z to xi.

7: Compute w (xi) using ZH
xi

as in (12).
8: Extract mw(xi) and Sw(xi) from m and L.
9: Compute q (fi |w (xi)) as in (13).

10: ELL← ELL + Eq(fi|w(xi)) log p (yi |fi).
11: KL← KL +KL

(
q
(
uw(xi)

)
‖p
(
uw(xi)

))
12: end for
13: L̃ELBO ← N

nB
ELL− 1

nB
KL.

14: Update θ using the derivative of L̃ELBO.
15: end while

we need to describe the predictive distribution in terms
of the deterministic function w (x). In fact, if we would
like to approximate the predictive distribution at xn using
H-nearest inducing inputs to x, i.e. ZH

xn
, then w (x) =[

w
(1)
x ...w

(M)
x

]T
where,

w(m)
x =

{
1 if zm ∈ ZH

x

0 else
, with m = 1, ...,M (12)

We extract the relevant elements using w (x); for the mean,
we have mw(xi) = Dw(xi)m, and for the covariance we
select the appropriate rows and columns using Sw(xi) =
Dw(xi)SDw(xi). The approximate posterior over fi given
w (xi), i.e. q (fi |w (xi)) is:

N
(
fi |Aximw(xi),

Kxi
+Axi

(
Sw(xi) −KZH

xi

)
A>xi

)
,

(13)

where Axi
= Kxi,ZH

xi
K−1

ZH
xi

.

Limitations What we presented allows one to compute
predictive distributions for individual test points following
Eq. (13). As a result, it is not possible to obtain a full co-
variance across predictions over multiple test points. While
most performance and uncertainty quantification metrics
do not consider covariances, this might be a limitation in
applications where covariances are essential. One way to
work around this is to consider the union of nearest neigh-
bors at test time; however, this would be inconsistent with

Sparse within Sparse Gaussian Processes using Neighbor Information

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−2.5

0.0

2.5
SVGP-128M

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−2.5
0.0
2.5

SWSGP-128M-16H

Figure 2. Visualization of posterior distribution of SVGP and
SWSGP. In both cases, we consider 128 inducing points; in terms
of our scheme (SWSGP) we use 16 neighbors.

Eq. (13) and the training procedure should be modified ac-
cordingly considering the union of nearest neighbors for
training points within mini-batches. The considerations sug-
gest a further limitation of SWSGP, that is that the predictive
distribution becomes dependent on the number of test points
that are consdered within a batch at test time. Neverthe-
less, the model is built and trained to deal with sparsity at
test time, and this kind of inconsistency appears only when
testing the model in conditions which are different com-
pared to those at training time. Besides, the experiments
show that SWSGP performs extremely well against various
state-of-the-art competitors on a wide range of experiments.

One-dimensional regression example. We visualize the
posterior distribution for a synthetic dataset generated on a
one-dimensional input space. We execute SVGP and SWSGP,
and depict the posterior distributions of these two methods
by showing the predictive means (orange lines) and the 95%
credible intervals (shaded areas) in Figure 2. We consider
identical settings for the two methods (i.e. 128 inducing
points, kernel parameters, likelihood variance) and a neigh-
bor area of 16 for SWSGP; a full account of the setup can be
found in the supplement. We see that although the models
are different, the predictive distributions appear remarkably
similar. A more extensive evaluation follows in Section 4.

3.3. Complexity

The computational cost of SWSGP is dominated by lines
6, 8 and 9 in Algorithm 1. For each data-point (xi, yi)
in mini-batch B, we need to find the H nearest inducing
neighbors ZH

xi
for nB points in line 6, where nB = |B|; this

contributes to the worst-case complexity by O (nBMH).

In line 8, we extract relevant parameters from m and L.
We focus on the cost of extracting Sw(xi) from L. Similar
to SVGP (Section 2.1), we consider S = LLT , where L is
lower triangular. We extract Lw(xi) = Dw(xi)L which
contains the rows of L. Then, we compute Sw(xi) by
Sw(xi) = Lw(xi)L

T
w(xi)

. The computational complexity
of selecting the variational parameters is O

(
nBMH2

)
.

Finally, the computation of approximating the predic-
tive distribution in line 9 requires O

(
nBH

3
)
. The

overall complexity for SWSGP in the general case is
O
(
nBMH + nBMH2 + nBH

3
)
, which is a significant

improvement over the O
(
M3
)

complexity of standard
SVGP, assuming that nB, H � M . If we choose
S to be diagonal, the total complexity reduces to
O
(
nBMH + nBH

3
)
; if we additionally consider Z to be

fixed, the computational cost is O(nBH
3). In the experi-

ments of Section 4 we explore all these settings.

4. Experiments
We conduct experiments to evaluate SWSGP on a variety
of experimental conditions. Our approach is denoted by
SWSGP-M-H, where M inducing points are used and H de-
termines how many neighbors are selected. The locations
of the inducing points are optimized, unless stated other-
wise. We introduce SVGP-M and SVGP-M-H as competitors;
SVGP-M uses M inducing points. SVGP-M-H, instead, refers
to SVGP using M inducing points at training time and H-
nearest inducing inputs at test time. We also use SVGP-16M

using 16 inducing points as a reference. The comparison is
carried out on some UCI data sets for regression and classi-
fication, i.e., POWERPLANT, KIN, PROTEIN, EEG, CREDIT
and SPAM. We also consider larger scale data sets, such as,
WAVE, QUERY and the AIRLINE data or images classifica-
tion on MNIST. The task for the AIRLINE data set is the
classification of whether flights are to subject to a delay,
and we follow the same setup as in Hensman et al. (2013)
and Wilson et al. (2016). Regarding MNIST, we consider
the binary classification setup of separating odd and even
digits (pixels normalized between 0 and 1), and we use a
Bernoulli likelihood with probit inverse link function. We
use the Matérn-5/2 kernel in all cases except for the AIRLINE
dataset, where the sum of a Matérn-3/2 and a linear kernel
is used, similar to Hensman et al. (2015). All models are
trained using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001 and a mini-batch size of 64.
The likelihood for regression and binary classification are
set to Gaussian and probit function, respectively. In regres-
sion tasks, we report the test root mean squared error (RMSE)
and the test mean negative log-likelihood (MNLL), whereas
we report the test error rate (ERR) and MNLL in classification
tasks. The results are averaged over 10 folds. All models in
section 4.1 are trained over 300, 000 iterations.

4.1. Impact of M and H

We begin our evaluation by investigating the behavior of
SWSGP-M-H with respect to M and H . Figure 3 shows that
SWSGP-M-H consistently outperforms SVGP-M-H. This sug-
gests that including neighbor information at prediction time,
combined with the use of a larger set of inducing points
alone is not enough to obtain competitive performance, and
that only thanks to the sparsity-inducing prior over latent

Sparse within Sparse Gaussian Processes using Neighbor Information

variables, this yields improvements. Crucially, the perfor-
mance metrics obtained by SWSGP are comparable with
those obtained by SVGP-M, while at each iteration only a
small subset of H out of M inducing points are updated,
carrying a significant complexity reduction.

M=32 M=64 M=1283.75
4.00
4.25

RM
SE

POWERPLANT - 4

M=32 M=64 M=128
0.10

0.12

KIN8NM - 8

M=32 M=64 M=128

0.75

0.80
PROTEIN - 9

M=32 M=64 M=128
2.30

2.40

M
NL

L

M=32 M=64 M=128

-1.25

-1.00

M=32 M=64 M=128
0.65

0.70

M=32 M=64 M=128
0.15
0.20
0.25

ER
R

EEG - 14

M=32 M=64 M=128
0.00

0.20
CREDIT - 24

M=32 M=64 M=128
0.05
0.10
0.15

SPAM - 57

M=32 M=64 M=128

0.40

0.60

M
NL

L

M=32 M=64 M=128
0.00

0.25

M=32 M=64 M=128
0.10
0.20
0.30

SVGP-M
SWSGP-M-4H

SVGP-16M
SWSGP-M-8H

SVGP-M-16H
SWSGP-M-16H

Figure 3. Evaluation of SWSGP on UCI data sets with various con-
figuration for M and H . The title of each sub-figure follows
the format of [name of data set]-[data dimensions]. The black
up-triangles are for SVGP with M inducing points. The cyan down-
triangles are for SVGP with 16 inducing points. The red circles are
for SVGP training with M inducing points and the prediction at an
unseen data x are made by ZH

x . The green squares, stars and plus
are for SWSGP with H of 4, 8 and 16 respectively. In these experi-
ments, M varies from 32 to 128, as shown on horizontal axes. The
standard deviation of the error metrics over 10 folds is represented
by vertical bars; they are very small for most configurations.

4.2. Running Time

In Table 1, we report the training and testing times of SWSGP
and SVGP In SVGP, we set M = 256 for EEG, and 1024 for
MNIST, i.e. SVGP-256M and SVGP-1024M. In our approach,
we use the same M and we set H to 4, i.e. SWSGP-256M-4H
and SWSGP-1024M-4H. In Table 1, we stress that t1 and
t2 in SWSGP take into account the computation of finding
neighbors inducing inputs for each data-point. In SVGP,
we assume that K−1Z is pre-computed and saved after the
training phase. Therefore, the computational cost to evaluate
the predictive distribution on a single test point is O

(
M2
)
.

The time t2 in SVGP refers to the execution time of carrying
out predictions with the complexity of O

(
M2
)
.

The results in Tab 1 show a consistent improvement at test
time compared to SVGP across all values of H and M . At
training time, the results show a trend dependent on the
number M of inducing points. Not surprisingly, SWSGP
offers limited improvements when M is small. Considering
EEG in which M is set to 256, SVGP is faster than SWSGP
in terms of training time. This is because the inversion
of a 256 × 256 matrix requires less time than finding the

Table 1. Comparison of running time between SVGP and SWSGP.
The running time for a training iteration is denoted by t1. The
testing time for an unseen example is denoted by t2. Times are in
milliseconds. The corresponding evaluated metrics ,i.e. ERR and
MNLL are also shown in terms of training time. These figures are
averaged over 5 folds. The models for EEG and MNIST are trained
in 90 minutes and 6 hours respectively.

(a) Running times for SVGP-256M and SWSGP-256M-4H on EEG.

Configuration t1(ms) t2(ms) ERR MNLL

SVGP-256M 21.42 1.43 0.17 0.34
SWSGP-256M-4H 26.18 0.56 0.18 0.36

(b) Running times for SVGP-1024M and SWSGP-1024M-4H on
MNIST.

Configuration t1(ms) t2(ms) ERR MNLL

SVGP-1024M 516 21.6 0.02 0.066
SWSGP-1024M-4H 233 1.77 0.016 0.05

0 20 40 60 80
0.1

0.2

0.3

0.4

EEG-ERR
SVGP-256M
SWSGP-256M-4H

0 20 40 60 80

0.4

0.6

EEG-MNLL
SVGP-256M
SWSGP-256M-4H

(c) ERR and MNLL over training time (in minutes) on EEG.

0 100 200 300

0.02

0.04

0.06

MNIST-ERR
SVGP-1024M
SWSGP-1024M-4H

0 100 200 300

0.1

0.2

MNIST-MNLL
SVGP-1024M
SWSGP-1024M-4H

(d) ERR and MNLL over training time (in minutes) on MNIST.

neighbors and inverting several 4 × 4 matrices. However,
Tab 1 shows dramatic speedups compared to SVGP when the
number of inducing points M is large. When M = 1024
on MNIST, SWSGP-1024M-4H is faster than SVGP-1024M at
training time. This is due to the inversion of the 1024×1024
kernel matrix being a burden for SVGP, whereas SWSGP
deals with much cheaper computations. In addition, we
show the corresponding ERR and MNLL of each model when
we train SVGP and SWSGP on EEG and MNIST. On the
EEG data set, our method is comparable with SVGP. On
MNIST, SWSGP reaches high accuracies significantly faster
compared to SVGP.

4.3. Large-scale Sparse GP Modeling with a Huge
Number of Inducing Points

Here we show that SWSGP allows one to use sparse GPs
with a massive number of inducing points without incurring
a prohibitive computational cost. We employ several large-
scale data sets, i.e. PROTEIN, EEG, WAVE, QUERY and

Sparse within Sparse Gaussian Processes using Neighbor Information

AIRLINE with 5 millions training samples. We test SWSGP
with a large number of inducing points, ranging from 3, 000
to 100, 000. In this case, we keep the inducing locations
fixed for SWSGP. We have attempted to run SVGP with
such large values of M without success (out of memory in
a system with 32GB of RAM). Therefore, as a baseline we
execute SVGP-128M and SVGP-512M and report the results
of SVGP with the configuration in Hensman et al. (2015).

In SWSGP, we impose a diagonal matrix S in the variational
distribution q (u | w), and we fix the position of the induc-
ing inputs during training. By fixing the inducing inputs,
we can operate with pre-computed information about which
inducing inputs are neighbors of training inputs. Thanks to
these settings, SWSGP’s training phase requires O

(
nBH

3
)

operations only, where nB is the mini-batch size. Due to
the appropriate choice of H and nB, and the computational
cost being independent of M , unlike SVGP, we can success-
fully run SWSGP with an unprecedented number of inducing
point, e.g. M = 100, 000.

0 5 10 15 20

0.8

1.0
RMSE

SVGP-128M
SVGP-512M
SWSGP-3000M-50H

0 5 10 15 20

0.6

0.8

1.0

1.2
MNLL
SVGP-128M
SVGP-512M
SWSGP-3000M-50H

PROTEIN-41157-4573-9

0 50 100 1500.0

0.2

0.4

ERR
SVGP-128M
SVGP-512M
SWSGP-3000M-50H

0 50 100 150

0.2

0.4

0.6

MNLL
SVGP-128M
SVGP-512M
SWSGP-5000M-50H

EEG-70000-4900-14

5 10 15 20

0.1

0.2

RMSE
SVGP-128M
SVGP-512M
SWSGP-10000M-50H

0 5 10 15 20
−2

−1

0

1
MNLL
SVGP-128M
SVGP-512M
SWSGP-10000M-50H

QUERY-190000-9843-4

0 5 10 15 20
0.7

0.8

0.9

1.0
RMSE
SVGP-128M
SVGP-512M
SWSGP-10000M-50H

0 5 10 15 20
0.6

0.8

1.0

MNLL
SVGP-128M
SVGP-512M
SWSGP-10000M-50H

WAVE-250000-37999-32

Figure 4. SWSGP with large number of inducing points. The fig-
ure shows the progression of RMSE (ERR) and MNLL over time.
Horizontal axes indicate the running times in minute. The title of
each sub-figure follows the format of [name of data set]-[training
size]-[testing size]-[data dimensions].

In AIRLINE experiments, by setting H and the mini-batch
size n to 100 and 64 respectively, in about 24 hours of train-
ing we could run SWSGP-100,000M-100H for one million
iterations. The ERR and MNLL of SWSGP-100,000M-100H
evaluated on the test set are 21% and 0.48, respectively,
while the ERR and MNLL of SVGP-200M published in Hens-

man et al. (2015) are about 34% and 0.61, respectively. To
the best of our knowledge, SWSGP is the first to enable
sparse GPs with such a large set of inducing points without
imposing a grid structure on the inducing inputs. In addition,
in Figure 4 we also show that SWSGP using 3, 000 or 5, 000
or 10, 000 inducing points outperforms SVGP using 128 and
512 inducing points on other data sets.

We conclude by reporting comparisons with other GP-based
models. In particular, we compare against the Stochastic
Variational Deep Kernel Learning (SVDKL) (Wilson et al.,
2016) and the Deep GP approximated with random features
(DGP-RBF) (Cutajar et al., 2017). In the former, KISS-GP is
trained on top of a deep neural network which is optimized
during training, and in the latter the layers of a deep GP are
approximated as parametric models using random feature
expansions. Both competitors feature mini-batch based
learning, so this represents a challenging test for SWSGP.
The results in Table 2 show that SWSGP is comparable with
these competitors on various data sets. We believe that
this is a remarkable result obtained by our shallow SWSGP,
supporting the conclusions of previous works showing that
advances in kernel methods can result in performance which
are competitive with deep learning approaches (see, e.g.,
Rudi et al. (2017)).

Table 2. Comparison of SWSGP, KISS-GP (Wilson & Nickisch,
2015), SVDKL (Wilson et al., 2016) and DGP-RBF (Cutajar et al.,
2017). The results SWSGP and KISS-GP are averaged over 5 folds.
In order to deal with the difficulties of KISS-GP to handle large-
dimensional input spaces, we followed (Wilson et al., 2015), and
we linearly projected the inputs to a two-dimensional space using
a linear transformation that is learned at training time, and used a
grid of size 100.

(a) AIRLINE

Method ERR MNLL

SWSGP-100kM-100H 0.210± 0.012 0.48± 0.015
SVDKL 0.22 0.46

DGP-RBF 0.21 0.46

(b) POWERPLANT

Method RMSE MNLL

SWSGP-64M-4H 4.095± 0.145 2.371± 0.038
KISS-GP 4.459± 0.355 3.074± 0.037

(c) PROTEIN

Method RMSE MNLL

SWSGP-64M-4H 0.773± 0.002 0.702± 0.003
KISS-GP 0.816± 0.001 0.904± 0.017

Sparse within Sparse Gaussian Processes using Neighbor Information

4.4. Comparison to Local GPs

We finally demonstrate that SWSGP behaves differently from
other approaches that use local approximations of GPs. We
consider two well-established approaches of local GPs pro-
posed by Kim et al. (2005) and Urtasun & Darrell (2008).
Following Liu et al. (2020), we refer to these methods as
Inductive GPs and Transductive GPs, respectively. We run
all methods on two regression data sets: POWERPLANT and
KIN. We set the number of local experts to 64, and we use
the same number of inducing points for SWSGP (with H
either 4 or 8). As the size of POWERPLANT and KIN are
approximately 7, 000, we set the number of training points
governed by a local expert to 100. For the local GP ap-
proaches, we choose 64 locations in the input space using
the K-means algorithm, and for each location we choose
100 neighboring points; we then train the corresponding
local GP expert. For the testing phase, inductive GPs sim-
ply rely on the nearest local experts to an unseen point x∗.
For transductive GPs, we use 100 neighbors of x∗ and the
nearest local expert to make predictions. In Table 3, we
summarize RMSE and MNLL for all methods; SWSGP clearly
outperforms the local GP approaches in terms of MNLL.

Table 3. Comparison with Local GP approximations.

Method POWERPLANT KIN
RMSE | MNLL RMSE | MNLL

SWSGP-64-4 4.27 | 2.41 0.11 | −1.27
SWSGP-64-8 4.24 | 2.40 0.10 | -1.38

Inductive GPs 9.93 | 38.38 0.13 | −0.40
Transductive GPs 6.17 | 18.78 0.09 | −0.65

4.5. Joint Predictive Covariances

In this section, we propose an extension of SWSGP where
the training procedure is modified by considering the union
of nearest neighbors for training points within mini-batches.
We refer to this as SWSGP-U, where U stands for “union”. In
the experiments, we execute SWSGP-U-512M-128m where
the total number of inducing points is 512, and the number
of active inducing points in each training iteration is fixed to
128. To illustrate the effectiveness of the modification, we
compare SWSGP-U-512M-128m against SVGP-512M and full
GPs. Due to the computational complexity of full GPs, we
only use 2, 000 training samples and fix the computational
budget to six hours. In the evaluation phase, we randomly
group the test set based on the specified mini-batch size.
Next, the joint predictive distributions of each testing batch
are obtained, which we use to compute RMSE and MNLL.
The results in Figure 5 are averaged by repeating the process
10 times. The results indicate that SWSGP-U works well

1 2 4 8 16 32 64
3.60

3.80

4.00

RM
SE

1 2 4 8 16 32 64
2.25

2.30

M
NL

L

1 2 4 8 16 32 64
0.00

2.00

4.00

Co
v-
M
SE

POWERPLANT-4

4H 8H 16H 32H 64H SVGP GPR

Figure 5. SWSGP-U on POWERPLANT. The horizontal axis shows
the mini-batch size of the testing set. We evaluate SWSGP-U with
various numbers of nearest inducing points from 4 to 64, i.e. 4H ,
8H , 16H , 32H , and 64H . The green markers show SWSGP-U.
For example, in order to plot the green squares 4H , we firstly find
the 4-nearest inducing points of each sample within a testing batch.
Then, we use the union of these nearest inducing points to make a
joint prediction for all samples in the testing batch.

when using an adequate number of nearest inducing points.
In the figure, we also assess the quality of the covariance
approximation of SWSGP-U and SVGP by reporting the mean
square error with respect to the covariance of full GPs. These
results show that SWSGP-U provides a good approximation
of joint predictive covariances.

5. Conclusions
Sparse approaches that rely on inducing points have met
with success in reducing the complexity of GP regression
and classification. However, these methods are limited by
the number of inducing inputs that is required to obtain an
accurate approximation of the true GP model. A large num-
ber of inducing inputs is often necessary in cases of very
large datasets, which marks the limits of practical applica-
tions for most GP-based approaches.

In this work, we further improve the computational gains
of sparse GPs. We proposed SWSGP, a novel methodology
that imposes a hierarchical and sparsity-inducing effect on
the prior over the inducing variables. This has been realized
as a conditional GP given a random subset of the inducing
points, which is defined as the nearest neighbors of random
mini-batches of data. We have developed an appropriate
variational bound which can be estimated in an unbiased
way by means of mini-batches. We have performed an exten-
sive experimental campaign that demonstrated the superior
scalability properties of SWSGP compared to the state-of-
the-art.

Acknowledgments MF gratefully acknowledges support
from the AXA Research Fund and the Agence Nationale
de la Recherche (grant ANR-18-CE46-0002 and ANR-19-
P3IA-0002).

Sparse within Sparse Gaussian Processes using Neighbor Information

References
Burt, D., Rasmussen, C. E., and Van Der Wilk, M. Rates

of convergence for sparse variational Gaussian process
regression. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 862–871. PMLR,
2019.

Csató, L. and Opper, M. Sparse on-line gaussian processes.
Neural Computation, 14(3):641–668, 2002. ISSN 0899-
7667.

Cutajar, K., Bonilla, E. V., Michiardi, P., and Filippone, M.
Random feature expansions for deep Gaussian processes.
In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 884–893. PMLR, 2017.

Datta, A., Banerjee, S., Finley, A., and Gelfand, A. On
nearest-neighbor gaussian process models for massive
spatial data: Nearest-neighbor gaussian process models.
Wiley Interdisciplinary Reviews: Computational Statis-
tics, 8, 08 2016.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian pro-
cesses for big data. In Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence, pp. 282–290.
AUAI Press, 2013.

Hensman, J., Matthews, A., and Ghahramani, Z. Scalable
Variational Gaussian Process Classification. In Proceed-
ings of the 18th International Conference on Artificial
Intelligence and Statistics, volume 38 of Proceedings of
Machine Learning Research, pp. 351–360. PMLR, 2015.

Kim, H.-M., Mallick, B., and Holmes, C. Analyzing nonsta-
tionary spatial data using piecewise gaussian processes.
Journal of the American Statistical Association, 100:653–
668, 02 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, 2015.

Lawrence, N. D., Seeger, M., and Herbrich, R. Fast Sparse
Gaussian Process Methods: The Informative Vector Ma-
chine. In Advances in Neural Information Processing
Systems 15, pp. 625–632. MIT Press, 2002.

Liu, H., Ong, Y., Shen, X., and Cai, J. When gaussian
process meets big data: A review of scalable gps. IEEE
Transactions on Neural Networks and Learning Systems,
31:4405–4423, 2020.

Liu, L. and Liu, L. Amortized variational inference with
graph convolutional networks for gaussian processes. In
Proceedings of the 22nd International Conference on

Artificial Intelligence and Statistics, volume 89 of Pro-
ceedings of Machine Learning Research, pp. 2291–2300.
PMLR, 2019.

Louizos, C., Ullrich, K., and Welling, M. Bayesian com-
pression for deep learning. In Advances in Neural Infor-
mation Processing Systems 30, pp. 3288–3298. Curran
Associates, Inc., 2017.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 2498–2507. PMLR, 2017.

Naish-Guzman, A. and Holden, S. The generalized FITC
approximation. In Advances in Neural Information Pro-
cessing Systems 20, pp. 1057–1064. Curran Associates
Inc., 2007. ISBN 978-1-60560-352-0.

Panos, A., Dellaportas, P., and Titsias, M. K. Fully scal-
able gaussian processes using subspace inducing inputs.
CoRR, abs/1807.02537, 2018.

Park, C. and Apley, D. Patchwork kriging for large-scale
gaussian process regression. Journal of Machine Learn-
ing Research, 19, 01 2017.

Park, C. and Huang, J. Z. Efficient computation of gaussian
process regression for large spatial data sets by patching
local gaussian processes. J. Mach. Learn. Res., 17(1):
6071–6099, January 2016. ISSN 1532-4435.

Pleiss, G., Gardner, J., Weinberger, K., and Wilson, A. G.
Constant-time predictive distributions for Gaussian pro-
cesses. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 4114–4123. PMLR,
2018.

Pourhabib, A., Liang, F., and Ding, Y. Bayesian site se-
lection for fast Gaussian process regression. Institute of
Industrial Engineers Transactions, 46(5):543–555, 2014.

Quiñonero Candela, J. and Rasmussen, C. E. A unifying
view of sparse approximate Gaussian process regression.
Journal of Machine Learning Research, 6:1939–1959,
2005. ISSN 1532-4435.

Rasmussen, C. E. and Williams, C. Gaussian Processes for
Machine Learning. MIT Press, 2006.

Rudi, A., Carratino, L., and Rosasco, L. FALKON: An
Optimal Large Scale Kernel Method. In Advances in
Neural Information Processing Systems 30, pp. 3888–
3898. Curran Associates, Inc., 2017.

Sparse within Sparse Gaussian Processes using Neighbor Information

Seeger, M., Williams, C. K. I., and Lawrence, N. D. Fast
forward selection to speed up sparse Gaussian process re-
gression. In Artificial Intelligence and Statistics 9, 2003.

Snelson, E. and Ghahramani, Z. Sparse Gaussian Processes
using Pseudo-inputs. In Advances in Neural Information
Processing Systems 18, pp. 1257–1264. MIT Press, 2005.

Titsias, M. K. Variational Learning of Inducing Variables in
Sparse Gaussian Processes. In Proceedings of the 12th
International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning
Research, pp. 567–574. PMLR, 2009.

Urtasun, R. and Darrell, T. Sparse probabilistic regression
for activity-independent human pose inference. In 2008
IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1–8, 2008.

Wilson, A. and Nickisch, H. Kernel Interpolation for Scal-
able Structured Gaussian Processes (KISS-GP). In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 1775–1784. PMLR, 2015.

Wilson, A., Dann, C., and Nickisch, H. Thoughts
on massively scalable gaussian processes. ArXiv,
abs/1511.01870, 2015.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P.
Stochastic Variational Deep Kernel Learning. In Lee,
D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 29, pp. 2586–2594. Curran Associates,
Inc., 2016.

