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Addressing the curse of mobility in massive MIMO
with Prony-based angular-delay domain channel
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Abstract—Massive MIMO is widely touted as an enabling
technology for 5th generation (5G) mobile communications and
beyond. On paper, the large excess of base station (BS) antennas
promises unprecedented spectral efficiency gains. Unfortunately,
during the initial phase of industrial testing, a practical challenge
arose which threatens to undermine the actual deployment of
massive MIMO: user mobility-induced channel Doppler. In fact,
testing teams reported that in moderate-mobility scenarios, e.g.,
30 km/h of user equipment (UE) speed, the performance drops up
to 50% compared to the low-mobility scenario, a problem rooted
in the acute sensitivity of massive MIMO to this channel Doppler,
and not foreseen by many theoretical papers on the subject. In
order to deal with this “curse of mobility”, we propose a novel
form of channel prediction method, named Prony-based angular-
delay domain (PAD) prediction, which is built on exploiting
the specific angle-delay-Doppler structure of the multipath. In
particular, our method relies on the high angular-delay resolution
which arises in the context of 5G. Our theoretical analysis
shows that when the number of base station antennas and the
bandwidth are large, the prediction error of our PAD algorithm
converges to zero for any UE velocity level, provided that only
two accurate enough previous channel samples are available.
Moreover, when the channel samples are inaccurate, we propose
to combine the PAD algorithm with a denoising method for
channel estimation phase based on the subspace structure and
the long-term statistics of the channel observations. Simulation
results show that under a realistic channel model of 3GPP in rich
scattering environment, our proposed method is able to overcome
this challenge and even approaches the performance of stationary
scenarios where the channels do not vary at all.

Index Terms—mobility, massive MIMO, 5G, channel aging,
channel prediction, angular-delay domain, Prony’s method

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) introduced
in [2], is one of the key enablers of the 5G cellular systems.
Compared to traditional MIMO with fewer base station anten-
nas, massive MIMO can offer superior spectral efficiency and
energy efficiency [3] at least in theory. One of the basic con-
cepts is based on the fact that, as the number of BS antennas
increases, the vector channel for a desired UE grows more
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orthogonal to the vector channel of an interfering UE, thus
allowing the base station to reject interference by inexpensive
precoding methods, provided that Channel State Information
(CSI) is known at base station. CSI acquisition is known to be
a formidable problem in massive MIMO. An example of CSI
acquisition issue is the pilot contamination problem. A rich
body of literature has addressed this problem. The solutions
vary from angular/amplitude domain discrimination [4] [5] [6],
pilot coordination [4], multi-cell minimum mean square error
(M-MMSE) [7] [8], etc.

Despite the technology hype and great expectations behind
massive MIMO, some of the latest field trials have unfortu-
nately been more than disappointing when it comes to actual
system performance (see [9] [10] for example). In particular
it appeared that CSI acquisition can be severely affected in
mobility scenarios. This is related to the time-varying nature
of wireless channel which itself limits its coherence time, i.e.,
the time duration after which CSI is considered outdated. In
practical cellular networks, a processing delay at the base
station is inevitable because of the highly sophisticated 5G
protocol, scheduling, resource allocation, encoding/decoding,
and channel training under UE power constraint. This implies
that even in moderate-mobility scenarios, the processing delay
can end up being longer than the coherence time, making it
essentially unusable for multiuser beamforming [11]. More
precisely, due to UE mobility, the channel can vary signifi-
cantly within the time interval of CSI delay, which is defined
as the duration from the time CSI is learned by the base
station to the time it can be used in multiuser precoding. This
channel variation, in turn, gives rise to multi-user interference
if the precoder is computed based on outdated CSI. It was
for instance observed in industrial settings, that with a typical
CSI delay of 4 milliseconds, the moderate-mobility scenario
at 30 km/h leads to as much as 50% of the performance
reduction versus in low-mobility scenario at 3 km/h, even
with relatively small number of BS antennas (e.g., 32 or 64).
The performance degradation is even more severe when the
number of BS antennas increases. Solving this problem has
become a priority in telecom industry. The topic of mobility
enhancement has been actively discussed in 3GPP meetings
recently from 5G standardization point of view. [12] proposes
to address this problem by new modulation scheme named
Orthogonal Time Frequency Space (OTFS), which may lead
to higher diversity gains compared to Orthogonal Frequency
Division Multiplexing (OFDM). [10] and [13] suggest that
UE feeds back some information related to Doppler spectrum,
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which is measured based on downlink reference signals. In
academia, some information theoretic efforts of exploiting
severely delayed CSI have been demonstrated but never tested
in practical 5G contexts [14], [15]. The effects of channel
aging under a simple autoregressive (AR) model of channel
time variations were studied in [16] and a linear finite impulse
response (FIR) Wiener predictor was proposed. The complex-
ity of this predictor is relatively high due to the inversion
of a large matrix. The sum-rate performance with such a
FIR Wiener predictor in the presence of delayed CSIT is
also analyzed in [17] [18]. [19] studied the performance of
massive MIMO when Kalman predictor is used under a time-
correlated channel aging model with rectangular spectrum.
Some field trials of massive MIMO with mobility are carried
out in [20]. However the experiments are conducted in Line of
Sight (LOS) scenarios, which simplifies the mobility problem.
This is because the channel vector in LOS setting is close
to a deterministic vector multiplied by a Doppler-dependent
complex amplitude.

In this paper, we revisit the problem of CSI acquisition by
combining it with practical and affordable channel prediction
algorithms. We propose a novel Prony-based angular-delay
domain channel prediction algorithm by exploiting the struc-
tural information of the multipath channel. More specifically,
our predictor is based on the fact that the wireless channel
is composed of many (e.g., several hundreds of) paths, each
having a certain angle, delay, Doppler, and complex amplitude.
The large number of base station antennas and the large
bandwidth in 5G lead to higher resolution in both spatial
and frequency domain. Our idea consists in exploiting this
high resolution regime specifically. In practice the approach
involves projecting the channel into an angular-delay domain,
then capturing the channel variations in this domain. The
intuition behind our method is to isolate one or several
close-by paths from the rest, thus making the channels more
predictable. To do this, we propose to adopt here Prony’s
method, traditionally used in the context of spectral analysis,
for its ability to predict a uniformly sampled signal composed
of damped complex exponentials. In this paper we point out
that this feature turns out to be useful in the 5G context
because the training signal in 5G are normally periodic and
the channel can be regarded as a sum of complex exponentials
with each one corresponding to a path response having a
Doppler component.

More specifically, the contributions of our paper are as
follows:
• We first generalize the classical Prony’s method to vector

form and propose a vector Prony-based channel predic-
tion algorithm, which exploits the angular-delay-Doppler
structure of the wireless multipath channel to enable
direct vector-domain channel prediction. Substantial gains
over existing methods are observed in simulations.

• We propose a PAD channel prediction algorithm, which
combines the high spatial and frequency resolutions of 5G
massive MIMO and the angular-delay-Doppler structure
of the channel. The PAD method requires less previous
channel samples and achieves higher performance com-
pared with the vector Prony prediction method. The gains

over known schemes are significant.
• We analyze the asymptotic performance of our PAD

algorithm and prove that as the number of base station
antennas and the bandwidth increase, the channel pre-
diction error converges to zero, provided that only two
accurate enough channel samples are available.

• Finally, since in practice, current channel estimates are
noisy, we improve the performance of the vector Prony
method and PAD method by combining them with a de-
noising method using an adaptation of Tufts-Kumaresan’s
method [21].

Simulations under the clustered delay line (CDL) channel
models of 3GPP [22] show that our proposed method at 60
km/h of UE speed is very close to the ideal case of a stationary
setting. To the best of our knowledge, the study of channel
prediction under such a realistic model of wideband massive
MIMO has received little attention so far, and the high spatial-
frequency resolution of 5G has not yet been fully exploited to
solve the mobility challenge.

The paper is organized as follows: In Sec. II we introduce
the channel model of 3GPP [22]. In Sec. III we first give
a brief review of Prony’s method, then propose the vector-
based generalized Prony’s method, and proceed with the
proposed PAD method and its performance analysis. In Sec.
IV we propose denoising method for the vector Prony-based
algorithm and PAD algorithm. Finally, simulation results are
shown in Sec. V.

Notations: We use boldface to denote matrices and vectors.
Specifically, I denotes the identity matrix. (X)T , (X)∗, and
(X)H denote the transpose, conjugate, and conjugate trans-
pose of a matrix X respectively. (X)† is the Moore-Penrose
pseudoinverse of X. tr {·} denotes the trace of a square matrix.
‖·‖2 denotes the `2 norm of a vector when the argument
is a vector, and the spectral norm when the argument is a
matrix. ‖·‖F stands for the Frobenius norm. E {·} denotes the
expectation. X ⊗ Y is the Kronecker product of X and Y.
vec(X) is the vectorization of the matrix X. diag{a1, ...,aN}
denotes a diagonal matrix or a block diagonal matrix with
a1, ...,aN at the main diagonal. , is used for definition.
N and N+ are the set of non-negative and positive integers
respectively.

II. CHANNEL MODELS

For ease of exposition, we consider an arbitrary UE in a
certain cell. The antennas at the base station form a uniform
planar array (UPA) with Nv rows and Nh columns as in
commercial systems1. Denote the number of antennas at the
base station as Nt and the number of antennas at the UE
as Nr. It is clear that Nt = NvNh. The network operates in
time-division duplexing (TDD) mode and the uplink (UL) and
downlink (DL) occupy the same bandwidth, which consists of
Nf subcarriers with spacing 4f . The channel is composed
of P multipaths, with each path having a certain angle, delay,
Doppler, and complex amplitude.

1We ignore here the polarizations in order to simplify the notations. Sec.
V will incoperate the widely used dual polarized antenna model in 5G.
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We denote the elevation departure angle, azimuth departure
angle, elevation arrival angle, and azimuth arrival angle of the
p-th path as θp,ZOD, φp,AOD, θp,ZOA, and φp,AOA respectively.
The ranges of the angles are

θp,ZOD, θp,ZOA ∈ [0, π], (1)

and
φp,AOD, φp,AOA ∈ (−π, π], (2)

for any p = 1, · · · , P . In order to make the angular represen-
tation more rigorous, we set the azimuth angle to zero in case
the elevation angle is 0 or π, that is{

φp,AOD = 0, if θp,ZOD = 0 or π
φp,AOA = 0, if θp,ZOA = 0 or π (3)

The DL channel at a certain time t and a subcarrier with
frequency f is denoted as H(f, t) ∈ CNr×Nt . According to
[22], the channel between the s-th base station antenna and
the u-th UE antenna is modeled as

hu,s(f, t) =

P∑
p=1

βpe
j2πr̂Trx,pd̄rx,u

λ0 e
j2πr̂Ttx,pd̄tx,s

λ0 e−j2πfτpejωpt, (4)

where βp and τp are the complex amplitude and the delay
of the p-th path respectively. λ0 is the wavelength of center
frequency. r̂rx,p is the spherical unit vector with azimuth arrival
angle φp,AOA and elevation arrival angle θp,ZOA:

r̂rx,p ,

 sin θp,ZOA cosφp,AOA
sin θp,ZOA sinφp,AOA

cos θp,ZOA

 . (5)

Likewise, r̂tx,p is the spherical unit vector defined as:

r̂tx,p ,

 sin θp,ZOD cosφp,AOD
sin θp,ZOD sinφp,AOD

cos θp,ZOD

 . (6)

d̄rx,u is the u-th UE antenna’s location vector which contains
the 3D cartesian coordinate. Similarly, d̄tx,s is the location
vector of the s-th base station antenna. The last exponential
term ejωpt is the Doppler of the p-th path, where t denotes
time. ωp is defined as ωp , r̂Trx,pv̄/λ0, where v̄ is the UE
velocity vector with speed v, travel azimuth angle φv , and
travel elevation angle θv:

v̄ , v[ sin θv cosφv sin θv sinφv cos θv ]T . (7)

An illustration of the coordinate system is shown in Fig. 1.
Note that shifting or rotating the coordinate system has little

impact on the channel model. Without loss of generality, we
let the origin be at the first base station antenna which is
located at the lower left corner of the antenna panel, as shown
in Fig. 1. The antenna panel is on YZ plane. The antenna
index starts from the lower left corner of the antenna panel
and increases along the Z-axis until the top row, then continues
with the second column, third column, etc. Define the 3-D
steering vector of a certain path with elevation departure angle
θ and azimuth departure angle φ as

a(θ, φ) = ah(θ, φ)⊗ av(θ), (8)
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Fig. 1. Definition of the coordinate system.

where

ah(θ, φ) = (9)[
1 e

j2π
Dh sin(θ) sin(φ)

λ0 · · · e
j2π

(Nh−1)Dh sin(θ) sin(φ)

λ0

]T
,

and

av(θ) =
[

1 e
j2π

Dv cos(θ)
λ0 · · · e

j2π
(Nv−1)Dv cos(θ)

λ0

]T
,

(10)
with Dh and Dv being the horizontal and vertical antenna
spacing at the base station respectively.

Let hu(f, t) ∈ C1×Nt denote the channel between all
base station antenna and the u-th UE antenna at time t and
frequency f . We write the channels at all Nf subcarriers in a
matrix form:

Hu(t) , [ hTu (f1, t) hTu (f2, t) · · · hTu (fNf , t) ], (11)

where fi is the frequency of the i-th (1 ≤ i ≤ Nf ) subcarrier.
According to the model in Eq. (4), we may further write

Hu(t) = ACu(t)B, (12)

where A ∈ CNt×P is composed of P 3-D steering vectors:

A
∆
=
[
a(θ1,ZOD, φ1,AOD) · · · a(θP,ZOD, φP,AOD)

]
, (13)

and
B

∆
=
[

b(τ1) b(τ2) · · · b(τP )
]T
, (14)

with b(τp), (p = 1, · · · , P ) being the delay response vector
of the p-th path, which is defined as

b(τp) =
[
e−j2πf1τp e−j2πf2τp · · · e

−j2πfNf τp
]T
, (15)

and Cu(t) = diag{cu,1(t), ..., cu,P (t)} ∈ CP×P is a diagonal
matrix with its p-th (p = 1, · · · , P ) diagonal entry being

cu,p(t)
∆
= βpe

j2πr̂Trx,pd̄rx,u

λ0 ejωpt. (16)

The vectorized form of Eq. (12) is given by

~~~u(t) = vec(Hu(t)) =

P∑
p=1

cu,p(t)vp, (17)
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where
vp = b(τp)⊗ a(θp,ZOD, φp,AOD). (18)

vp is a generalized steering vector, which reflects the angle
and delay response of the p-th path in a wideband multiple
antenna system. From Eq. (12) or Eq. (17) we have the
observation that the channel is highly structural in both spatial
and frequency domain. Each path is associated with a certain
steering vector and delay response vector, depending on its
angle and delay. This structural information is hidden in the
generalized steering vectors.

III. DEALING WITH MOBILITY THROUGH PREDICTIONS

A. The challenge of mobility in massive MIMO

As is well known, channel time variability can create inter-
user interference induced by a precoder which is computed
based on aging CSI. This impediment can be mitigated by
anticipating the future channel variations. While predicting the
future fading state of a wireless channel is a very challenging
task, the accounting of the specific space-time structure of the
channel which arises in a broadband context (as in 5G) opens
fresh perspectives for improvement.

B. A review of Prony’s method

Prony’s method proposed by Gaspard Riche de Prony in
1795 is a useful tool to analyze a uniformly sampled signal
composed of a number of damped complex exponentials
[23] and extract valuable information (e.g., the amplitudes
and frequencies of the exponentials) which can be used for
prediction. A review of this method is briefly given below.
Suppose we have K samples of data y(k) which consist of N
exponentially damped signals:

y(k) =

N∑
n=1

βne
(−αn+j2πfn)k, 0 ≤ k ≤ K − 1, (19)

where αn (positive) and fn (1 ≤ n ≤ N ) are the pole damping
factor and pole frequency respectively. βn (1 ≤ n ≤ N ) is the
complex amplitude. Note that in the special case of channel
prediction, y(k) can be regarded as the uniformly sampled
channel estimate. Define the following polynomial:

P0(z),
N∏
n=1

(z − esn) =

N∑
n=0

pnz
n, z ∈ C, (20)

where sn = −αn + j2πfn for n = 1, · · · , N . It is clear that
pN = 1 and esn , (n = 1, · · · , N) are zeros of P0(z). For an
arbitrary m ∈ N, one has

N∑
n=0

pny(n+m) =

N∑
n=0

pn

N∑
l=1

βle
sl(n+m)

=

N∑
l=1

βle
slm

(
N∑
n=0

pne
sln

)
a
= 0, (21)

where a
= is due to the fact that esl(l = 1, · · · , N) are zeros of

P0(z). Eq.(21) implies that the following homogeneous linear

difference equation is fulfilled:

N−1∑
n=0

pny(n+m) = −y(N +m),m ∈ N. (22)

Thus, we may obtain the coefficients pn with the 2N
sampled data by solving the following linear equations:

Yp = −h, (23)

where Y is a square Hankel matrix

Y ,


y(0) y(1) · · · y(N − 1)
y(1) y(2) · · · y(N)

...
...

...
...

y(N − 1) y(N) · · · y(2N − 2)

 , (24)

p , [ p0 p1 · · · pN−1 ]T , (25)

h , [ y(N) y(N + 1) · · · y(2N − 1) ]T . (26)

The least squares solution to Eq. (23) is given by

p̂ = arg min
p

‖Yp + h‖2 = −Y†h. (27)

Note that we may need K ≥ 2N samples to obtain all the
coefficients pn, n = 0, · · · , N − 1.

C. Channel prediction based on vector Prony method

While Prony’s method is presented in scalar form in the
literature, we propose an extension to vector form in this
paper. Consider a uniformly sampled signal vector composed
of weighted sum of constant vectors where the weights are
damped complex exponentials. Suppose we have K samples
of signal vector y(k), k = 0, · · · ,K − 1:

y(k) =

N∑
n=1

ane
snk = A

[
es1k · · · esNk

]T
, (28)

where A,
[

a1 a2 · · · aN
]
; sn, − αn + j2πfn and

an ∈ CM×1 is a time-invariant vector for n = 1, · · · , N . In
the context of channel prediction, an can be a steering vector
or a generalized steering vector.

We use the same polynomial P0(z) in Eq. (20) with
esn , (n = 1, · · · , N) being zeros and p0, p1, · · · , pN being
the coefficients. For ∀m ∈ N, we have

N∑
n=0

pny(n+m) =

N∑
n=0

pnA
[
es1(n+m) · · · esN (n+m)

]T

=A



N∑
n=0

pne
s1(n+m)

N∑
n=0

pne
s2(n+m)

...
N∑
n=0

pne
sN (n+m)


= A



es1m
N∑
n=0

pne
s1n

es2m
N∑
n=0

pne
s2n

...

esNm
N∑
n=0

pne
sNn


= 0.

Thus, we can compute the coefficients of p0, p1, · · · , pN−1

by solving the following linear equations

Yp = −y(N), (29)
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where Y,
[

y(0) y(1) · · · y(N − 1)
]

and p ,
[ p0 p1 · · · pN−1 ]T . The least squares estimate of the
coefficient is p̂ = −Y†y(N).

We now apply this method to channel predictions. Denote
the vectorized channel of the whole bandwidth at time t as
~~~(t) ∈ CNtNrNf×1:

~~~(t),[ ~~~1(t)T ~~~2(t)T · · · ~~~Nr (t)T ]T , (30)

where ~~~u(t), u = 1, · · · , Nr, is defined in Eq. (17). Our target
is to overcome the CSI delay by channel prediction based
on previous samples which are equally spaced in time. In
practice, the samples are obtained using periodic Sounding
Reference Signal (SRS) transmitted by a UE. The period of
SRS 4T can be as short as one slot (14 OFDM symbols for
normal cyclic prefix case) [24]. Taking the 15 kHz subcarrier
spacing for example, the minimal period is 1 ms. In fact for
other configurations of subcarrier spacing, e.g., 30 kHz or
more, the period can be much shorter. We assume the CSI
delay Td = Nd4T,Nd ∈ N. Denote the known samples as
~~~(t0), ~~~(t1), · · · , ~~~(tL). Let H,[~~~(t0), ~~~(t1), · · · , ~~~(tL−1)].
One may have the following prediction algorithm of order
N = L to predict the channel of Td time later.

Algorithm 1 Vector Prony-based channel prediction
1: Compute the least squares estimate of the Prony coeffi-

cients p̂ = −H†~~~(tL);
2: Update H← [~~~(t1), · · · , ~~~(tL)];
3: Compute the channel prediction at tL+1, ~̂~~(tL+1) =
−Hp̂;

4: for i = 2, · · · , Nd
5: Update H by removing its first column and appending

the previously predicted channel to its last column: H←[
~~~(ti), · · · , ~̂~~(tL+i−1)

]
;

6: Compute ~̂~~(tL+i) = −Hp̂;
7: end for

Note that in case Nd = 1, step 4 - step 6 are not needed.
The minus sign in step 1, step 3, and step 6 can be all
removed without affecting the results. In fact, we choose to
predict each time the whole wideband channel so that only
one matrix inversion (of size N ×N ) is needed, which helps
to reduce the computational complexity. Other possibilities
include predicting each time for a certain subcarrier or for
a certain UE antenna u, e.g., hu(f, t), however at the expense
of more N × N matrix inversions. The complexity of this
algorithm is dominated by the computation of the Prony
coefficients p̂ and the prediction of ~̂~~(tL+i). It can be verified
that vector Prony-based algorithm has a complexity order of
O(N2NtNrNf ) +O(NdNNtNrNf ).

D. Prony-based angular-delay domain channel prediction

As shown in Eq. (4), the channel is composed of P paths,
and each path has a Doppler term ejωpt, p = 1, · · · , P . The
number of paths can be large, which makes the prediction
accuracy degrade if only a limited number of samples are
available. In order to cope with this problem, we propose a

Prony-based angular-delay domain (PAD) channel prediction
method. The main idea is to convert the channel into another
domain where the Doppler terms of different paths are less
intertwined with each other. We choose this domain in such a
way that it reflects the geometry of the antenna array and the
wideband delay response structure of the channel. As indicated
by [4] and [25], the steering vectors of a uniform linear array
(ULA) can be well approximated by the columns of discrete
Fourier transform (DFT) matrix as the number of antennas
increases. Here we apply this result in the 3-D steering vector
case for the UPA array. Denote a DFT matrix of size K ×K
as

W(K) ,
1√
K


ω0·0 ω0·1 · · · ω0(K−1)

ω1·0 ω1·1 · · · ω1(K−1)

...
...

. . .
...

ω(K−1)·0 ω(K−1)·1 · · · ω(K−1)(K−1)

 ,
where ω , e−2πj/K . Since UPA antenna array is considered,
a DFT-based spatial orthogonal basis can be obtained as
W(Nh) ⊗ W(Nv), where Nh and Nv are the number of
columns and the number of rows of antennas on the UPA
respectively. Thus each column of W(Nh)⊗W(Nv) can be
regarded as a spatial beam that reflects the array topology
shown in Fig. 1. Likewise, the frequency orthogonal basis
is W(Nf ). Notice that in practice, Nf can also denote the
number of resource blocks (RBs) or the number of groups of
consecutive RBs depending on the SRS frequency structure.
In such cases, Nf is much smaller than the total number of
subcarriers. The joint spatial-frequency orthogonal basis can
be computed as2

S,W(Nf )⊗W(Nh)⊗W(Nv). (31)

We project the vectorized channel Eq. (17) onto the spatial-
frequency orthogonal basis S.

gu(t),SH~~~u(t). (32)

gu(t) ∈ CNtNf×1 is in fact the vectorized representation of
the channel in angular-delay domain. Due to finite number
of multipath components, most of the elements in vector
gu(t) are close to zero when the number of BS antennas
and the bandwidth are large. As a result we may ignore the
insignificant elements in gu(t) and focus on the predictions
of the significant ones. Let g̃u(tl) be the re-arranged gu(tl)
with its absolute values in non-increasing order. The number
of non-negligible angular-frequency positions Ns is defined as

Ns, argmin
Ns

{
Nr∑
u=1

L∑
l=0

Ns∑
n=1

|g̃u(tl, n)|2 ≥ γ
Nr∑
u=1

L∑
l=0

|gu(tl)|2
}
,

where g̃u(tl, n) is the n-th entry of g̃u(tl), γ is a positive
threshold that is close to 1. The physical meaning of γ is the
ratio between the sum power of non-negligible elements and
the total power of the channel. Note that Ns is normally much
smaller than the size of the vector gu(t): Ns � NtNf . Thus

2Another option of the orthogonal basis is S,W(Nf ) ⊗ W(Nh)
H ⊗

W(Nv)H , which seems more consistent with the representations of the
steering vector and delay response vector. However this substitution has no
impact on the performance.
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by ignoring the insignificant elements, we may greatly reduce
the computational complexity in channel prediction. We use
gu,n(t), (n = 1, · · · , Ns) to denote the n-th non-negligible
entry, which is located at the r(n)-th row of the vector gu(t).
The vectorized channel can be approximated as

~~~u(t) ≈
Ns∑
n=1

gu,n(t)sr(n), (33)

where si is the i-th column of S. We seek to predict the
channel at each of the Ns angle-delay pairs using Prony’s
method with L + 1 samples gu,n(t0), · · · , gu,n(tL). Without
loss of generality, we assume L is odd and let the order of the
predictor N = (L + 1)/2. For a certain n, 1 ≤ n ≤ Ns, we
may obtain the Prony coefficients by solving

G(u, n)p(u, n) = −g(u, n), (34)

where G(u, n) ,
gu,n(t0) gu,n(t1) · · · gu,n(tN−1)
gu,n(t1) gu,n(t2) · · · gu,n(tN)

...
...

...
...

gu,n(tN−1) gu,n(tN ) · · · gu,n(t2N−2)

 (35)

p(u, n) , [ p0(u, n) · · · pN−1(u, n) ]T , (36)

g(u, n) , [ gu,n(tN) gu,n(tN+1) · · · gu,n(t2N−1) ]T .

The least squares estimate of p(u, n) is

p̂(u, n) = −G†(u, n)g(u, n). (37)

The prediction of g(u,n)(tL+1) is given by

ĝu,n(tL+1) = −g(u, n, L)p̂(u, n), (38)

where

g(u, n, L),
[
gu,n(tL−N+1) · · · gu,n(tL)

]
. (39)

When Nd > 1, we may repeat computing Eq. (38) Nd − 1
times and update g(u, n, L) each time by removing the first
column and appending the previous predict to the last column,
until we obtain the prediction ĝu,n(tL+Nd

).
The method is summarized in Algorithm 2. Note that we

Algorithm 2 PAD channel prediction method
1: Compute the angular-delay domain channel gu(tl) for l =

0, · · · , L and u = 1, · · · , Nr according to Eq. (32).
2: Find the non-negligible values gu,n(tl) and their positions
r(n) for u = 1, · · · , Nr, n = 1, · · · , Ns, l = 0, · · · , L.

3: for u = 1, · · · , Nr
4: for n = 1, · · · , Ns
5: Compute the least squares estimate of the Prony coef-

ficients as in Eq. (37);
6: Repeat Eq. (38) Nd times to compute the prediction
ĝu,n(tL+Nd

);
7: end for
8: Reconstruct the channel prediction at tL+Nd

as in Eq.
(33) with gu,n(t) replaced by ĝu,n(tL+Nd

);
9: end for

show in this section a DFT based angular-frequency domain
projection as it is simple to implement in practice. In fact
we may also adopt other angle and delay estimation methods,
e.g., Multiple Signal Classification (MUSIC) [26], Estimation
of Signal Parameters via Rational Invariance Techniques (E-
SPRIT) [27], etc. However these advanced methods generally
entails relatively high complexity due to a multi-dimensional
search. The complexity of our PAD algorithm is now analyzed.
The spatial-frequency orthogonal projection can be effectively
computed by Fast Fourier Transform (FFT) algorithms, which
has a complexity of 2NNtNf log(NtNf ). The Prony coef-
ficient computation has a complexity order of O(NsN

2.37)
due to the matrix inversion. The prediction of the channel at
tL+i, i = 1, · · · , Nd has a complexity of NdNsN . The com-
plexity of channel reconstruction using Eq. (33) is no greater
than the orthogonal projection. As a result, the complexity
order is O(NNtNf log(NtNf ))+O(NsN

2.37)+O(NdNsN).
Moreover, the order of the predictor N will converge to
1 as the number of antennas and the bandwith increase,
which will be shown in the subsequent section of performance
analysis. Thus the complexity order of our PAD algorithm will
converge to O(NtNf log(NtNf )) in massive MIMO and large
bandwidth regime.

E. Performance analysis of the PAD algorithm

The asymptotical performance of our PAD algorithm is now
analyzed. Define a tuple (θp,ZOD, φp,AOD, τp) which contains
the elevation/azimuth departure angle and delay of the p-th
path. Regarding the tuple, we let the equal sign = denote
the case when two tuples are completely equal. In other
words, (θp,ZOD, φp,AOD, τp) = (θq,ZOD, φq,AOD, τq) if and
only if θp,ZOD = θq,ZOD, φp,AOD = φq,AOD, and τp = τq .
(θp,ZOD, φp,AOD, τp) 6= (θq,ZOD, φq,AOD, τq) means one or
more entries in one tuple are not equal to the corresponding
entries in the other. Here we define a stationary time concept -
the time duration over which the multipath angles and delays
are stationary. We build our analysis under the assumption that
the stationary time is no shorter than the CSI delay. This is
in general a reasonable assumption, which is also validated
in real-world measurement [13]. Consider a vehicle moving
at 100 km/h of speed. Within a CSI delay of 4 millisecond,
the vehicle moves only around 10 centimeters. Such a small
displacement will not introduce substantial changes in angles
and delays of the multipath in a macro-cell environment.

Before stating our main result in Theorem 1, we intro-
duce three intermediate lemmas. For notational simplicity,
we mostly drop the subscripts of “ZOD” and “AOD” in the
lemmas and Theorem 1 and their corresponding proofs. Note
that throughout the paper we make the implicit and realistic
assumption that the delay and UE velocity level are finite. We
also introduce here a mild technical assumption.

Assumption 1 For any two paths, p 6= q, at least one of the
following three attributes are different from one another: the
elevation departure angle, the azimuth departure angle, and
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the delay:

(θp, φp, τp) 6= (θq, φq, τq), (40)
∀p, q = 1, · · · , P and p 6= q. (41)

Remarks: This assumption is in general valid. We will show
more results in Corollary 1 and Corollary 2 when this assump-
tion is not true. More clarifications of Assumption 1 is shown
in Lemma 1.

Lemma 1 The generalized steering vectors vp and vq are
asymptotically orthogonal:

lim
Nv,Nh,Nf→∞

vHp vq√
NvNhNf

= 0, (42)

under Assumption 1 except for the special case of

∃p, q s.t. φp + φq = ±π, θp = θq, τp = τq. (43)

Proof: The proof can be found in Appendix A.
Remarks: Lemma 1 indicates that any two generalized steering
vectors with non-identical angle or delay tend to be orthogonal
to each other, with the only exception being Eq. (43). In fact,
the exception occurs because the steering vectors are identical
in case of Eq. (43):

a(θp,ZOD, φp,AOD) = a(θq,ZOD, φq,AOD), (44)
when φp,ZOD + φq,ZOD = ±π, θp,ZOD = θq,ZOD. (45)

Note that such a special case is highly unlikely to happen, as
a path departing from the back side of the antenna panel, e.g.,
with angle φp is very weak and has little probability to have
exactly the same delay as a path departing from the front side
with angle φq = π − φp or φq = −π − φp. As a result, this
special case is not to be concerned. Lemma 1 will be applied
in the proof of the subsequent Lemma 2.

For ease of exposition, we ignore the spacial cases of Eq.
(43) by letting the range of φ contained within [−π/2, π/2].
For a certain path p, we define a linear spaces Bp:

Bp = span{sn : n ∈Mp}, (46)

where sn is the n-th column (n = 1, · · · , NtNf ) of the matrix
S as in Eq. (31). The set Mp is

Mp = {m1,m2, · · · ,mSp}, (47)

such that

lim
Nv,Nh,Nf→∞

| sHn vp√
NvNhNf

| > 0,∀n ∈Mp, (48)

lim
Nv,Nh,Nf→∞

| sHn vp√
NvNhNf

| = 0,∀n 6∈ Mp, (49)

with vp being the generalized steering vector as defined in
Eq. (18). The linear space Bp can be regarded as the minimal
space where the vector vp lives in. The dimensionality of Bp is
Sp. In the same way we define a linear space Bq = span{sn :
n ∈Mq} for a certain path q. Then we have

Lemma 2 For any (θp, φp, τp) 6= (θq, φq, τq), the two lin-
ear spaces Bp and Bq are asymptotically orthogonal when
Nv, Nh, Nf are large:

Bp⊥Bq as Nv, Nh, Nf →∞, (50)

or equivalently,

Mp ∩Mq = ∅ as Nv, Nh, Nf →∞. (51)

Proof: The proof can be found in Appendix B.
Remarks: In fact, when Nv, Nh, Nf go to infinity, the general-
ized steering vector of a certain path lies in a column space of
a submatrix of S. This submatrix is composed of Si columns
of S, for i = p, q. Lemma 2 shows that when path p and path q
are distinguishable in terms of either angle or delay, then they
live in two orthogonal column spaces. In other words, the two
paths will not interplay with each other after the orthogonal
transformation by S. This effect will enable us to isolate the
paths in mutually orthogonal column spaces of S, and thus
make the signal processing and prediction easier.

Lemma 3 Consider a uniformly sampled complex exponential
signal y(n) = βej2πfn, n ∈ N+, with fixed amplitude β and
frequency f . For any positive integer Nd, if two neighboring
samples y(m−1) and y(m) are known, then the Prony-based
prediction at Nd sample later, i.e., ŷ(m+Nd), is error-free:

ŷ(m+Nd) = y(m+Nd). (52)

Proof: The proof can be found in Appendix C.
Remarks: Lemma 3 indicates that even with only two noiseless
samples, Prony’s method is able to predict any complex
exponential signal with only one pole frequency at an arbitrary
number of sample period later without prediction error.

Based on the lemmas, our theoretical result on the asymp-
totic performance of the PAD algorithm is shown in Theorem
1. We denote here the vectorized channel sample at time t by
~̃~~u(t), which is the noisy observation of ~~~u(t) in Eq. (17).

Theorem 1 For an arbitrary delay Nd ∈ N+ and any UE ve-
locity level, the asymptotic performance of the PAD algorithm
yields:

lim
Nv,Nh,Nf→∞

∥∥∥~̂~~u(tL+Nd)− ~~~u(tL+Nd)
∥∥∥2

2

‖~~~u(tL+Nd)‖22
= 0, (53)

under Assumption 1 and the condition that two most recent
channel samples are accurate enough, i.e.,

lim
Nv,Nh,Nf→∞

∥∥∥~̃~~u(tk)− ~~~u(tk)
∥∥∥2

2

‖~~~u(tk)‖22
= 0,∀k = L− 1, L. (54)

Proof: The proof can be found in Appendix D.
Remarks: Note that in order to achieve condition Eq. (54),
we may need some non-linear signal processing techniques.
See [6] as an example of how this condition can be fulfilled
for a multi-cell massive MIMO scenario in the presence
of pilot contamination. The mild technical assumption, i.e.,
Assumption 1, in Theorem 1 is in general valid, since a
finite number of multipath rays exist at a certain time and
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one ray is unlikely to have exactly the same angle and delay
as another ray. Although in rich scattering environment as
defined in CDL-A model of [22], the number of paths P
can be as large as several hundreds, each path still has a
unique tuple of (θZOD, φAOD, τ). In the special case when
one tuple (θZOD, φAOD, τ) is shared by more than one paths,
i.e., ∃p 6= q, such that

(θp,ZOD, φp,AOD, τp) = (θq,ZOD, φq,AOD, τq), (55)

the asymptotic performance of Theorem 1 can be generalized.
We again ignore the special cases of Eq. (43) for notational
simplicity. The asymptotic performance under condition Eq.
(55) is shown in Corollary 1.

Corollary 1 Among all P paths, if at most Nc paths share
exactly the same tuple (θZOD, φAOD, τ), then for an arbitrary
delay Nd ∈ N+ and any UE velocity level, the performance
of the PAD algorithm satisfies:

lim
Nv,Nh,Nf→∞

∥∥∥~̂~~u(tL+Nd)− ~~~u(tL+Nd)
∥∥∥2

2

‖~~~u(tL+Nd)‖22
= 0, (56)

given that at least 2Nc accurate enough samples are available.

Proof: The proof entails a generalization of Lemma 3 to
the case that the uniformly sampled signal is a sum of Nc
complex exponentials with time-invariant frequencies. It is
straightforward to prove that in this case the prediction at
Nd ∈ N+ sample later is also error-free as long as 2Nc
accurate enough samples are available.

In addition, for a narrowband system, e.g., Nf = 1, or Nf is
small, the frequency resolution is not sufficiently high. In such
cases, the asymptotic result of our PAD algorithm is shown in
Corollary 2.

Corollary 2 Among all P paths, if at most Nc paths share
exactly the same tuple (θZOD, φAOD), then for an arbitrary
delay Nd ∈ N+ and any UE velocity level, the performance
of the PAD algorithm satisfies:

lim
Nv,Nh→∞

∥∥∥~̂~~u(tL+Nd)− ~~~u(tL+Nd)
∥∥∥2

2

‖~~~u(tL+Nd)‖22
= 0, (57)

given that at least 2Nc accurate enough samples are available.

Proof: This Corollary is a readily generalization of Corol-
lary 1. Since Nc paths share exactly the same angle, they
are non-separable in spatial domain. Due to the limited band-
width, the frequency resolution is also finite. As a result, the
projection of the channel onto the spatial-frequency orthogonal
basis results in a set of non-negligible angle-delay positions
where the Nc paths have non-zero coefficients. Each of these
angle-delay positions has Nc exponential signals. As a result,
we would need 2Nc accurate enough channel samples to
compute the complete Prony coefficients in order to predict
future channel. The full proof is omitted.

Corollary 2 indicates that our PAD still achieves very
good performance even when only small bandwidth is used.
However in this case more channel samples may be needed in
order to compensate for the low frequency resolution.

IV. DEALING WITH NOISY CHANNEL SAMPLES

The channel estimate at the base station is always corrupted
by noise, which is expected to undermine the performances of
our previous methods. Thus we propose to deal with noise
with a supplementary method, which relies on the subspace
structure of the channel sample matrix and the second-order
long-term statistics of the noisy channel samples. It consists
of the following two ingredients

1) Tufts-Kumaresan’s method: The main idea of the Tufts-
Kumaresan’s method [21] is to apply singular value decom-
position (SVD) to the sample matrix, i.e., Eq. (24) or Eq.
(35), of the linear prediction equations, and then remove the
contributions of small singular values. Taking the estimate of
p(u, n) for example, the SVD of G(u, n) can be written as:

G(u, n) = U(u, n)Σ(u, n)VH(u, n) (58)

≈ Us(u, n)Σs(u, n)VH
s (u, n), (59)

where Σs(u, n) only contains the significant singular values
of G(u, n). The Tufts-Kumaresan’s estimate of the Prony
coefficients are given by

p̂tk(u, n) = −Vs(u, n)Σ−1
s (u, n)UH

s (u, n)g(u, n). (60)

Note that Σs(u, n) can be obtained in a way that the minimum
number of singular values satisfy

tr {Σs(u, n)} ≥ γtk tr {Σ(u, n)} , (61)

where the threshold γtk is no greater than 1, i.e., γtk = 0.99.
2) Channel denoising with statistical information: The

noisy channel samples between all base station antennas and
the u-th UE antenna at time t and frequency f can be modeled
as h̃u(f, t) ∈ C1×Nt :

h̃u(f, t) = hu(f, t) + nu(f, t), (62)

where hu(f, t) is the accurate channel and nu(f, t) is the in-
dependent and identically distributed (i.i.d.) complex Gaussian
noise with zero-mean and covariance σ2

n. It is easy to obtain
the covariance matrix of the noisy channel at the base station:

R̃ = E
{

H̃H(f, t)H̃(f, t)
}
, (63)

where the expectation is taken over time, frequency, or both.
H̃(f, t) is defined as

H̃(f, t) , [ h̃T1 (f, t) h̃T2 (f, t) · · · h̃TNr (f, t) ]T . (64)

From Eq. (62) we have

R̃ = R +Nrσ
2
nI, (65)

where
R = E

{
HH(f, t)H(f, t)

}
, (66)

with H(f, t) being the accurate counterpart of H̃(f, t). Due
to the large number of base station antennas and the limited
scattering environment, the channel covariance matrix R has a
low-rankness property [4] [25], which means a fraction of the
eigenvalues of R are very close to zero. Thus we may exploit
this property to have an estimate of the power of noise. The
eigen-decomposition of R̃ is written as R̃ = ŨΣ̃ŨH where
Σ̃ = diag{σ1, ..., σNt} and Ũ contains all the eigen-vectors of
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R̃. The estimate of the noise power σ2
n is obtained by simply

averaging the smallest eigenvalues of R̃. A linear filter W
can be derived for channel denoising purpose:

W = arg min
W

E
{
‖H̃(f, t)W −H(f, t)‖2F

}
. (67)

The solution is given by Proposition 1.

Proposition 1 The linear solution to the optimization problem
of Eq. (67) yields

W = ŨDŨH , (68)

where D is a diagonal matrix with its i-th (i = 1, · · · , Nt)
diagonal entry being σi−Nrσ̂2

n

σi
.

Proof: The derivation is based on the linear minimum mean
square error (LMMSE) criterion. One may readily obtain this
result by computing the partial derivative of the trace of error
covariance matrix with respect to H(f, t) [28] and letting it
equal to zero. The detailed proof is omitted.

Note that the covariance matrix is computed based on sam-
ples of all Nr UE antennas, since the scattering environments
experienced by all co-located Nr antennas is very similar. The
denoising filter W can also be built for each UE antenna,
however with higher complexity.

V. NUMERICAL RESULTS

This section contains simulation results of our proposed
channel prediction schemes. The basic simulation parameters
are listed in Table I. We mainly adopt the CDL-A channel
model, unless otherwise notified. The number of multipath
is 460, i.e., for each UE, there are 23 clusters of multipath
with each cluster containing 20 rays. The Root Mean Square
(RMS) angular spreads of the azimuth departure angle, ele-
vation departure angle, azimuth arrival angle, and elevation
arrival angle are 87.1◦, 33.6◦, 102.1◦, and 24.7◦ respectively.
Consider a typical setting of 5G at 3.5 GHz with 30 kHz
of subcarrier spacing. Each slot, with a duration of 0.5 ms,
contains 14 OFDM symbols. We assume that UE sends one
SRS signal in each slot, which means one channel sample is
available every 4T = 0.5 ms. The tuple (M,N,P ,Mg, Ng)

TABLE I
BASIC SIMULATION PARAMETERS

Scenario 3D Urban Macro (3D UMa)
Carrier frequency 3.5 GHz
Subcarrier spacing 30 kHz
Bandwidth 20 MHz (51 RBs)
Number of UEs 8
BS antenna con-
figuration

(M,N,P ,Mg , Ng) =
(2, 8, 2, 1, 1)/(4, 8, 2, 1, 1), (dH, dV ) =
(0.5, 0.8)λ, the polarization angles are ±45◦

UE antenna con-
figuration

(M,N,P ,Mg , Ng) = (1, 1, 2, 1, 1), the po-
larization angles are 0◦ and 90◦

Channel model CDL-A
Delay spread 300 ns
DL precoder EZF
UE receiver MMSE-IRC
CSI delay 4 ms
Number of paths 460

in Table I means the antenna array is composed of MgNg

panels of UPAs with Mg being the number of panels in a
column and Ng the number of panels in a row. Furthermore,
each antenna panel has M rows and N columns of antenna
elements in the same polarization. The number of polarizations
is always P = 2. Thus the total number of antennas is
M ×N ×P ×Mg×Ng for a certain BS or UE. We consider
20 MHz of bandwidth where one channel estimate per each
resource block (RB) is available in frequency domain. The DL
precoder is the Eigen Zero-Forcing (EZF) [29] and the receiver
at UE side is Minimum Mean Square Error - Interference
Rejection Combining (MMSE-IRC). Each UE receives one
data stream from BS. The DL spectral efficiency is our main
performance metric, which is computed as log2(1 + SINR)
averaged over the whole bandwidth.

We first ignore the channel sample error and plot the spectral
efficiency as a function of SNR at UE side. We show the
performances of our proposed vector Prony algorithm (denoted
by Vec Prony) and PAD algorithm with 60 km/h of velocity
level for all UEs in Fig. 2 for the case Nt = 32 and in Fig.
3 for the case Nt = 64. The performances of 0, 3, and 60
km/h of UE speeds without channel prediction are also added
as reference curves. The curves labeled by “FIR Wiener” are
obtained by the use of a classical linear predictor based on
AR modeling of channel variations (for instance as proposed
by [16]). In all figures of this section, N denotes the order
of the predictor. We may observe from Fig. 2 and Fig. 3
that our proposed algorithms nearly approach the ideal case
where UEs are stationary and the channels are time-invariant.
It is interesting to note that the vector Prony method and
the PAD method both outperform the low-mobility scenario
of 3 km/h without channel prediction. Note that the FIR
Wiener predictor gives only moderate prediction gains. In fact
it is not performing as well because models that account for
multipath space-time structure (such as the one in [22]) do
not necessarily conform with the simple AR(1) channel aging
model.
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Fig. 2. The spectral efficiency vs. SNR, Nt = 32, noise-free channel
samples, CDL-A model, 4 ms of CSI delay.

Fig. 4 shows the performances of a realistic setting where
multiple UEs move at different speeds. For simplicity, we keep
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Fig. 3. The spectral efficiency vs. SNR, Nt = 64, noise-free channel
samples, CDL-A model, 4 ms of CSI delay.
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Fig. 4. The spectral efficiency vs. SNR, Nt = 64, noise-free channel
samples, CDL-A model, 4 ms of CSI delay. Multiple UEs have different
speeds: two UEs move at 3 km/h, two at 30 km/h, two at 60 km/h, and two
at 90 km/h.

the order of all predictors to N = 8 despite the fact that low-
mobility UEs may only need a smaller order. One can observe
that our proposed methods works well in this setting.

Fig. 5 shows the channel prediction error as a function of
BS antennas. The channel prediction error is defined as

ε = 10 log

E

∥∥∥Ĥ−H
∥∥∥2

F

‖H‖2F

 , (69)

where H ∈ CNr×Nt and Ĥ ∈ CNr×Nt are the channel matrix
and its prediction respectively. The expectation is taken over
time, frequency, and UEs. In Fig. 5 the numbers of BS anten-
nas are Nt = 4, 8, 32, 128, 512, 2048, with corresponding lay-
outs being (M,N,P ,Mg, Ng) = (1, 2, 2, 1, 1), (1, 4, 2, 1, 1),
(2, 8, 2, 1, 1), (4, 16, 2, 1, 1), (8, 32, 2, 1, 1), (16, 64, 2, 1, 1) re-
spectively. We may observe from Fig. 5 that the prediction
accuracy of our PAD algorithm keeps increasing with the

number of BS antennas, which is inline with Theorem 1.
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Fig. 5. The prediction error vs. the number of BS antennas Nt, noise-free
channel samples, CDL-A model, 4 ms of CSI delay.

In Fig. 6 we change the channel model to CDL-D [22],
where a LOS component is present among all paths. We show
the performances of the algorithms with 90 km/h of moving
speed for all UEs. The gains are still significant even in such
high mobility scenarios. Note that in this figure we have only
2 rows and 8 columns of dual-polarized BS antennas and
therefore the spatial resolution is quite limited. More gains
will be expected with larger number of antennas.

0 5 10 15 20 25 30
SNR [dB]

25

30

35

40

45

50

55

60

65

70

75

S
pe

ct
ra

l E
ffi

ci
en

cy
 [b

ps
/H

z]

No prediction, 0 km/h
No prediction, 90 km/h
FIR Wiener, order N = 8, 90 km/h
Vec Prony, order N = 8, 90 km/h
PAD, order N = 4, 90 km/h

Fig. 6. The spectral efficiency vs. SNR, Nt = 32, noise-free channel
samples, CDL-D model with 261 paths, 4 ms of CSI delay. The RMS angular
spreads of the azimuth departure angle, elevation departure angle, azimuth
arrival angle, and elevation arrival angle are 47.9◦, 7.1◦, 89.9◦, and 5.4◦

respectively.

Now the channel estimation error is taken into considera-
tion, assuming the ratio between the channel power and the
power of estimation noise is 20 dB. we plot the performances
of the vector Prony-based algorithm and the PAD algorithm,
both combined with the denoising methods given by Sec. IV
in Fig. 7. As we may observe, our proposed PAD algorithm
combined with denoising methods in moderate mobility sce-
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Fig. 7. The spectral efficiency vs. SNR, Nt = 32, noisy channel samples,
CDL-A model, 4 ms of CSI delay.

nario of 30 km/h is very close to the low-mobility scenario of
3 km/h, and thus proves its robustness when channel samples
are corrupted by noise.

VI. CONCLUSIONS

In this paper we addressed the practical challenge of massive
MIMO – the mobility problem. We proposed vector Prony
algorithm and Prony-based angular-delay domain channel pre-
diction method which are based on the angle-delay-Doppler
structure of the channel. Our theoretical analysis proves that
the proposed PAD method is able to achieve asymptotically
error-free prediction, provided that only two accurate channel
samples are available. In case the channel samples are inaccu-
rate, we proposed to combine our algorithms with denoising
methods based on the subspace structure and the long-term
statistics of the channel observations. Simulation results show
that in a practical setting with moderate to high mobility, sever-
al milliseconds of CSI delay, and rich scattering environment,
our proposed methods achieve nearly ideal performance of
stationary setting even with moderate number of base station
antennas and relatively small bandwidth.

Finally, our work also opens a new prospect to further
enhance the spectral efficiency of massive MIMO by of-
fering more multiplexing gains. In practice, the maximum
number of simultaneously served UEs is primarily determined
by coherence time and coherence bandwidth [2]. Although
demonstrated in time-domain prediction, our methods can also
be generalized to frequency domain extrapolation. As a result,
they have the potential of greatly reduce the time-frequency
resources consumed by pilots of one user and thus lead to
higher multi-user multiplexing gains given a fixed coherence
time and coherence bandwidth.

APPENDIX

A. Proof of Lemma 1:

We decompose the proof into three sub-problems below.
Sub-problem 1:

lim
Nv→∞

av(θp)
Hav(θq)√
Nv

= 0, when θp 6= θq. (70)

Sub-problem 2:

lim
Nh→∞

ah(θp, φp)
Hah(θq, φq)√
Nh

= 0, (71)

when sin(θp) sin(φp) 6= sin(θq) sin(φq).

And sub-problem 3:

lim
Nf→∞

b(τp)
Hb(τq)√
Nf

= 0, when τp 6= τq. (72)

Starting from sub-problem 1, we may write

av(θp)
Hav(θq) =

Nv−1∑
n=0

e
−j2π nDv cos(θp)

λ0 e
j2π

nDv cos(θq)

λ0 (73)

=

Nv−1∑
n=0

e
j2π

nDv(cos(θq)−cos(θp))
λ0 =

1− ej2π
NvDv(cos(θq)−cos(θp))

λ0

1− ej2π
Dv(cos(θq)−cos(θp))

λ0

Since θp, θq ∈ [0, π] and θp 6= θq , we can easily see that
|av(θp)H(θq)| is a finite value and that

lim
Nv→∞

av(θp)
Hav(θq)√
Nv

= 0. (74)

Then, for sub-problem 2, we have

ah(θp, φp)
Hah(θq, φq) (75)

=

Nh−1∑
n=0

ej2π
nDh(sin(θq) sin(φq)−sin(θp) sin(φp))

λ0 (76)

=
1− ej2π

NhDh(sin(θq) sin(φq)−sin(θp) sin(φp))
λ0

1− ej2π
Dh(sin(θq) sin(φq)−sin(θp) sin(φp))

λ0

. (77)

When the term sin(θq) sin(φq)− sin(θp) sin(φp) is not zero,
we may readily see that ah(θp, φp)

Hah(θq, φq) is a finite value
and sub-problem 2 is proved. Sub-problem 3 has a similar
structure as sub-problem 1 and the proof is omitted. We may
further write

vHp vq√
NvNhNf

=
(b(τp)⊗ a(θp, φp))

H (b(τq)⊗ a(θq, φq))√
NvNhNf

(78)

=
(b(τp)⊗ ah(θp, φp)⊗ av(θp))

H (b(τq)⊗ ah(θq, φq)⊗ av(θq))√
NvNhNf

=

(
b(τp)

Hb(τq)
)(

ah(θp, φp)
Hah(θq, φq)

)(
av(θp)

Hav(θq)
)

√
NvNhNf

It is clear that as long as one of the three terms
b(τp)

H
b(τq)/

√
Nf , ah(θp, φp)

H
ah(θq, φq)/

√
Nh, and

av(θp)
H

av(θq)/
√
Nv goes to zero, then Eq. (42) holds, since

the absolute values of the three terms are no greater than 1.
According to the proof of sub-problem 1, we conclude that
condition θp 6= θq is a sufficient condition of the equality
Eq. (42), so is the condition τp 6= τq . We examine the case
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when θp = θq and τp = τq . If θp = θq = 0 or π, then
φp = φq = 0 due to our definition in Eq. (3). In this case
(θp, φp, τp) = (θq, φq, τq), which contradicts the condition
Eq. (40). While if θp = θq 6= 0 or π, then according to
sub-problem 2 the term ah(θp, φp)

H
ah(θq, φq)/Nh does not

go to zero only when sin(θp) = sin(θq), or equivalently,
θp + θq = 0 or π. Thus, Lemma 1 is proved.

B. Proof of Lemma 2:

Without loss of generality, we assume 0 < θp < θq <
π,−π/2 < φp < φq < π/2, 0 < τp < τq and ignore the
edge cases of θ = 0 or π, φ = ±π/2. Since θp 6= θq , we may
define a positive value ∆θ such that

0 ≤ θp −∆θ < θp + ∆θ < θq −∆θ < θq + ∆θ ≤ π. (79)

Similarly, define a positive value ∆φ and ∆τ such that

−π
2
≤ φp −∆φ < φp + ∆φ < φq −∆φ < φq + ∆φ ≤

π

2
0 ≤ τp −∆τ < τp + ∆τ < τq −∆τ < τq + ∆τ .

Define two joint probability density functions (PDF) as
pp(θ, φ, τ) and pq(θ, φ, τ) such that∫ θp+∆θ

θp−∆θ

∫ φp+∆φ

φp−∆φ

∫ τp+∆τ

τp−∆τ

pp(θ, φ, τ)dθdφdτ = 1 (80)∫ θq+∆θ

θq−∆θ

∫ φq+∆φ

φq−∆φ

∫ τq+∆τ

τq−∆τ

pq(θ, φ, τ)dθdφdτ = 1. (81)

Define two sets of tuples Ωp and Ωq such that for i = p, q,

Ωi, {(θ, φ, τ)|θ ∈ (θi −∆θ, θi + ∆θ)∩ (82)
φ ∈ (φi −∆φ, φi + ∆φ) ∩ τ ∈ (τi −∆τ , τi + ∆τ )} .

The joint PDF satisfies

0 < pi <∞, when (θ, φ, τ) ∈ Ωi, i = p, q. (83)

For ease of exposition, we let the PDF be a constant within
its angular and delay support, i.e.,

pi =
1

8∆θ∆φ∆τ
, when (θ, φ, τ) ∈ Ωi, i = p, q. (84)

Assuming each path realization is generated according to the
joint PDF pi and has a i.i.d. random phase, we can write the
covariance matrix of the random paths as

Ri =

∫
(θ,φ,τ)∈Ωi

v(θ, φ, τ)v(θ, φ, τ)
H
pidθdφdτ, (85)

where v(θ, φ, τ) = b(τ)⊗ ah(θ, φ)⊗ av(θ). We now prove
that any normalized v(θ, φ, τ) with (θ, φ, τ) 6∈ Ωi falls into the
null space of Ri. Consider an arbitary tuple (θo, φo, τo) 6∈ Ωi.
The corresponding generalized vector with tuple (θo, φo, τo)
is denoted as vo. Then we can write

lim
Nv,Nh,Nf→∞

vo
H√

NvNhNf
Ri

vo√
NvNhNf

(86)

= lim
Nv,Nh,Nf→∞

∫
(θ,φ,τ)∈Ωi

∣∣voHv(θ, φ, τ)
∣∣2

NvNhNf
pidθdφdτ

a
= 0, (87)

where a
= is due to Lemma 1 and the fact that the term

|voHv(θ, φ, τ)| is a finite value. Eq. (87) shows that any vo
with (θo, φo, τo) 6∈ Ωi is in the null space of Ri when Nv, Nh,
and Nf are large. Since Ωp∩Ωq = ∅, we may readily see that
the signal space of Rp and Rq are asymptotically orthogonal
to each other. More precisely, define the signal space of Ri
as:

span{Ri}, span{u(i)
n : n = 1, · · · , ri}, i = p, q, (88)

where u
(i)
n is the n-th eigenvector corresponding to the n-th

non-zero eigenvalue of Ri. ri is the rank of Ri. Then we have

span{Rp} ⊥ span{Rq}, as Nv, Nh, Nf →∞. (89)

Next we will prove that span{Rp} and span{Rq} converge
to certain mutually orthogonal DFT column spaces. We define

Ũi =
[

u
(i)
1 u

(i)
2 · · · u

(i)
ri

]
, i = p, q. (90)

Then, span{Ri} is also the column space of Ũi. We show that
the signal spaces of the following three covariance matrices
converge to certain column spaces of DFT submatrices.

Rv,i =

∫ θi+∆θ

θi−∆θ

1

2∆θ
av(θ)av(θ)

Hdθ (91)

Rh,i =

∫ φi+∆φ

φi−∆φ

1

2∆φ
ah(θ, φ)ah(θ, φ)Hdφ (92)

Rf,i =

∫ τi+∆τ

τi−∆τ

1

2∆τ
b(τ)b(τ)Hdτ (93)

We look at Rv,i. Without loss of generality, we assume
cos(θi + ∆θ) < cos(θi − ∆θ) < 0. Denote the set of
indices for which the corresponding “angular frequency” in
the DFT matrix W(Nv) belong to the range [−Dv cos(θi −
∆θ)/λ0,−Dv cos(θi + ∆θ)/λ0]

Jv,i,{n :
n

Nv
∈ [−Dv cos(θi −∆θ)

λ0
,−Dv cos(θi + ∆θ)

λ0
]}

(94)
Denote the DFT submatrix F̃v,i as the matrix containing the
columns of W(Nv) with indices in Jv,i.

According to Corollary 1 of [25],

lim
Nv→∞

1

Nv

∥∥∥Ũv,iŨ
H
v,i − F̃v,iF̃

H
v,i

∥∥∥2

F
= 0, (95)

where Ũv,i is composed of the eigenvectors corresponding to
the non-zero eigenvalues of Rv,i. The rank of Rv,i is rv,i,
which satisfy [4] [25]:

lim
Nv→∞

rv,i
Nv

=
|Jv,i|
Nv

, (96)

where |Jv,i| is the cardinality of Jv,i. In other words

|Jv,i| = rv,i + o(Nv). (97)

From Eq. (95) and Eq. (96) we readily obtain:

lim
Nv→∞

1

Nv

{
rv,i − tr{Ũv,iŨ

H
v,iF̃v,iF̃

H
v,i}
}

= 0, (98)

or equivalently,

tr{Ũv,iŨ
H
v,iF̃v,iF̃

H
v,i} = rv,i + o(Nv). (99)
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In a similar manner, we define the ranks, non-negligible
eigenvectors, and the corresponding DFT submatrices of Rh,i
and Rf,i as rh,i, rf,i, Ũh,i, Ũf,i, F̃h,i, and F̃f,i respectively.
The sets of DFT columns corresponding to F̃h,i and F̃f,i are
denoted by Jh,i and Jf,i We can prove

tr{Ũh,iŨ
H
h,iF̃h,iF̃

H
h,i} = rh,i + o(Nh) (100)

tr{Ũf,iŨ
H
f,iF̃f,iF̃

H
f,i} = rf,i + o(Nf ) (101)

|Jh,i| = rh,i + o(Nh) (102)
|Jf,i| = rf,i + o(Nf ). (103)

Now we examine the closeness of the column space of F̃f ⊗
F̃h⊗ F̃v to the column space Ũf ⊗ Ũh⊗ Ũv . The difference
between the two spaces is defined as

ξi,
∥∥∥(Ũf,iŨ

H
f,i

)
⊗
(
Ũh,iŨ

H
h,i

)
⊗
(
Ũv,iŨ

H
v,i

)
−
(
F̃f,iF̃

H
f,i

)
⊗
(
F̃h,iF̃

H
h,i

)
⊗
(
F̃v,iF̃

H
v,i

)∥∥∥2

F
. (104)

For notational simplicity, we temporarily drop the subscript i.
Then we may derive

ξi = tr
{
ŨfŨ

H
f ŨfŨ

H
f

}
tr
{
ŨhŨ

H
h ŨhŨ

H
h

}
tr
{
ŨvŨ

H
v ŨvŨ

H
v

}
+ tr

{
F̃f F̃

H
f F̃f F̃

H
f

}
tr
{
F̃hF̃

H
h F̃hF̃

H
h

}
tr
{
F̃vF̃

H
v F̃vF̃

H
v

}
− tr

{
ŨfŨ

H
f F̃f F̃

H
f

}
tr
{
ŨhŨ

H
h F̃hF̃

H
h

}
tr
{
ŨvŨ

H
v F̃vF̃

H
v

}
− tr

{
F̃f F̃

H
f ŨfŨ

H
f

}
tr
{
F̃hF̃

H
h ŨhŨ

H
h

}
tr
{
F̃vF̃

H
v ŨvŨ

H
v

}
= rfrhrv + (rf + o(Nf )) (rh + o(Nh)) (rv + o(Nv))

− 2 (rf + o(Nf )) (rh + o(Nh)) (rv + o(Nv)) .

Then, it is clear that

lim
Nv,Nh,Nf→∞

1

NvNhNf
ξi = 0. (105)

Eq. (105) indicates that when Nv, Nh, Nf are large, the col-
umn space of F̄i converges to Ūi, where F̄i,F̃f,i⊗F̃h,i⊗F̃v,i
and Ūi,Ũf,i ⊗ Ũh,i ⊗ Ũv,i. Since span{Ri} is equivalent
to the column space of Ūi, according to the orthogonality
between span{Rp} and span{Rq}, the column spaces of F̄p
and F̄q are also asymptotically orthogonal. In other words,
define the column space of F̄i:

B̄i,span{fi,n : n = 1, · · · ,Mi}, i = p, q, (106)

where fi,n is the n-th column of F̄i and Mi is the number of
columns of F̄i. Then

B̄p⊥B̄q when Nv, Nh, Nf →∞. (107)

As F̄i is a submatrix of the unitary matrix S as in Eq. (31), F̄p
and F̄q have no shared columns of S when Nv, Nh, Nf →∞.
Furthermore, since (θp, φp, τp) ∈ Ωp and (θq, φq, τq) ∈ Ωq , it
follows that Bp ⊆ B̄p and Bq ⊆ B̄q . Therefore we have

Bp⊥Bq as Nv, Nh, Nf →∞, (108)

which proves Lemma 2.

C. Proof of Lemma 3:

Since only two neighboring samples y(m − 1) and y(m)
are available, the order of the linear prediction is 1. We may
obtain an estimate of the prediction coefficient p0 according
to Prony’s method in Sec. III-B by solving the linear equation

y(m− 1)p0 = −y(m), (109)

where the solution is given by p̂0 = −ej2πf . Now applying
the linear prediction ŷ(n + 1) = −p̂0y(n),∀n ≥ m, we may
obtain

ŷ(m+Nd) = (−p̂0)Ndy(m) = ej2πfNdy(m) (110)

= βej2πfmej2πfNd = y(m+Nd). (111)

Thus, Lemma 3 is proved.

D. Proof of Theorem 1:

For a certain path p, define a submatrix S̃p ∈ CNtNf×Sp of
S:

S̃p =
[

sp,1 sp,2 · · · sp,Sp
]
, (112)

where all columns of S̃p are chosen from S with indices
belonging to the set Mp, which is defined in Eq. (47).
According to the definition of Mp, the generalized steering
vector vp is in the column space of S̃p. Thus

lim
Nv,Nh,Nf→∞

∥∥∥S̃Hp vp

∥∥∥2

NvNhNf
= 1. (113)

We now consider gu(t) in Eq. (32). Due to Lemma 2 and
the condition Eq. (40), we may group the non-vanishing rows
of gu(t) into P set, with each set corresponding to a certain
path. Notice that the sample error does not affect the selection
of the non-vanishing rows here since according to Eq. (54) it
converges to zero. For a certain n ∈Mp, we may derive

lim
Nv,Nh,Nf→∞

sHn ~̃~~u(t)√
NvNhNf

= lim
Nv,Nh,Nf→∞

sHn ~~~u(t)√
NvNhNf

(114)

= lim
Nv,Nh,Nf→∞

gu,n(t)√
NvNhNf

= lim
Nv,Nh,Nf→∞

P∑
i=1

cu,i(t)s
H
n vp√

NvNhNf

= lim
Nv,Nh,Nf→∞

cu,p(t)s
H
n vp√

NvNhNf
= lim
Nv,Nh,Nf→∞

ηp,u,ne
jωpt,(115)

where gu,n(t) is the n-th row of gu(t) and

ηp,u,n =
sHn vpβpe

j2πr̂Trx,pd̄rx,u

λ0√
NvNhNf

. (116)

We can see that ηp,u,n is time invariant and is not affected
by the vanishing sample error. Moreover, since |ηp,u,n| ≤ βp,
Eq. (115) converges to an exponential signal with only one
pole frequency, which can be predicted without error using
Prony’s method even with only two neighboring samples. The
same conclusion holds for the rows in all P sets, while the
other rows converge to zero when normalized by

√
NvNhNf .

Therefore,

lim
Nv,Nh,Nf→∞

ĝu(tL+Nd)− gu(tL+Nd)√
NvNhNf

= 0, (117)
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where gu(tL+Nd) = SH~~~u(tL+Nd) and ĝu(tL+Nd) is the
prediction using the PAD algorithm. Notice that

lim
Nv,Nh,Nf→∞

‖~~~u(tL+Nd)‖22
NvNhNf

=

P∑
p=1

β2
p , (118)

when condition Eq. (40) is fulfilled. We may further derive

lim
Nv,Nh,Nf→∞

∥∥∥~̂~~u(tL+Nd)− ~~~u(tL+Nd)
∥∥∥2

2

‖~~~u(tL+Nd)‖22
(119)

= lim
Nv,Nh,Nf→∞

‖ĝu(tL+Nd)− gu(tL+Nd)‖22

NvNhNf
P∑
p=1

β2
p

(120)

= 0, (121)

which proves Theorem 1.
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