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Abstract—The number of connected devices is increasing with
the emergence of new services and trends. This phenomenon is
leading to a traffic growth over both the control and the data
planes of the mobile core network. It is expected that the traffic
will increase more and more with the installation of the new
generation of mobile networking (5G) as it offers more services
that are intended to be connected over the same network, in
addition to the legacy ones. Therefore, the 3GPP group has
rethought the architecture of the New Generation Core (NGC)
by defining its components as Virtualized Network Functions
(VNF). However, scalability techniques should be envisioned in
order to answer the needs, in term of resource provisioning,
without degrading the Quality Of Service (QoS) already offered
by hardware based core networks. Neural networks, and in
particular deep learning, having shown their effectiveness in
predicting time series, could be good candidates for predicting
traffic evolution. In this paper, we propose a novel solution
to generalize neural networks while accelerating the learning
process by using K-means clustering, and a Monte-Carlo method.
We benchmarked multiple types of deep neural networks using
real operator’s data in order to compare their efficiency in
forecasting the upcoming network load for dynamic and proactive
resources’ provisioning. The proposed solution allows obtaining
very good predictions of the traffic evolution while reducing by
50% the time needed for the learning phase.
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I. INTRODUCTION

Mobile networks are facing a traffic load increase over both
the data and the control planes due to the explosion of the
number of connected devices and the emergence of new trends
as the Internet of Things (IoT), and e-Health . . . etc. In fact,
the number of devices connected to 5G is expected to reach
28 billions by 2021, in front of 9 billions in 2016 [1].

In the new 5G mobile core architecture, the Access and
Mobility Function (AMF), the new generation component
of the Mobility Management Entity (MME), is likely to be
congested since it is the single point of access for the control
plane in the core network. Indeed, as shown in [2], the
overhead causes an increase in latency for the Network Access
Stratum (NAS) procedures, up to some requests’ rejects when
certain load thresholds are exceeded.

The 3GPP group [3] has rethought the architecture of the
New Generation Mobile Core Network (NGC) [4], to tackle
the issue listed above, by introducing more modular Network

Functions (NF) to compose the control plane service. Those
NF could also relies on network virtualization via Network
Function Virtualization (NFV). Even though, this new archi-
tecture offers more flexibility and elasticity, the 3GPP group
didn’t tackle yet the strategies or the techniques to be used in
order to dynamically provision the needed resources without
degrading the Quality of Service (QoS).

Resource scaling, when required, is effective when accom-
panied by a traffic evolution prediction function to avoid not
only wasted resources but also quality degradation. Neural
networks, and in particular deep learning, having shown
their effectiveness in predicting time series, could be good
candidates for predicting traffic evolution. Indeed, as neural
networks are able to predict the upcoming load combined with
an orchestrator, it will offer dynamic and proactive resources
provisioning. However, we still need to determine what kind of
neural networks best fit the prediction of Mobile Networking
load evolution and how historical data should be formatted in
order to achieve the most accurate results.

In this paper, we analyze the most effective techniques
for predicting the traffic evolution of a mobile network. We
are particularly interested in the possibility of generalizing
prediction techniques to allow them to effectively predict
traffic evolution even when the scale of traffic changes. To
that purpose, we introduce a novel technique allowing to
generalize the neural network while accelerating significantly
the training phase using K-means clustering and a Monte-
Carlo method. We apply our technique to three types of neural
networks: Recurrent Neural Network (RNN) with Long Short
Term Memory (LSTM) cell; Convolutional Neural Network
(CNN); and CNN combined with LSTM Neural Network.
Finally a benchmark lists the effects of parameters variation
(i.e. Number of Clusters, epochs, Number of boosting, etc.) on
the prediction efficiency for each of the neural network types
listed above. Simulation using TensorFlow library [5] are used
to provide this benchmark.

The remainder of this paper is organized as follows. Section
II lists and analyses related work on scalability solutions for
VNFs and more precisely for mobile core network compo-
nents. Section III presents the different types of considered
neural networks. Section IV describes the proposed solution
process from data management to neural network testing.



Model evaluation and results analysis are presented in Section
V. Finally Section VI concludes this paper and introduces our
future work.

II. RELATED WORK

The introduction of the NGC by the 3GPP group provides
the flexibility to scale the infrastructure much more easily to
respond to increasing traffic loads or even to free up resources
in the event of a drop in needs. However, new strategies and
techniques should be envisioned for the dynamic scaling of
the core network in order to adapt dynamically the resources
provisioning to the needs.

The most commonly used techniques in the literature are
based on fixed thresholds. The idea behind this technique is
simple: a scale-in process is launched whenever the actual load
goes below a fixed ”scale in” threshold and a scale-up process
is launched when the actual load bypass a fixed ”scale up”
threshold. In [6], we proposed such a solution to manage the
congestion that the AMF may undergo with the massive access
of IoT devices. Besides, these kind of techniques are widely
deployed in many commercial solutions and open-source cloud
solutions [7][8].

This type of techniques is rather effective and very simple
to implement but can present stability problems. The latter can
be a source of degradation of the quality of service making
it not suitable for mobile networks. Indeed, deploying, for
example, a new VNF may take up to a dozen of minutes
depending on the data-center configuration. Thus, the delay
between a reactive decision and the scaling process will lead
to an increase of the UE attach duration and some requests
rejection.

In order to solve the threshold configuration problem, the
authors, in [9], proposed a Reinforcement Learning (RL)-
based strategy to adapt to dynamic environments and to
improve the scaling policy before taking any action following
a reward and a penalty process. The authors showed that it
behaves better than threshold-based techniques. However as it
is a reactive solution, it inherits the drawbacks listed above. In
addition, RL may need a considerable time before converging
and taking adequate scaling decisions. This is not acceptable
in 5G networks due to the time constraint of certain type
of applications and the low latency requirement fixed by the
standards.

The authors, in [10], proposed a proactive strategy, which
consists in forecasting the CPU load of the system based on a
historical dataset. Even though this solution is proactive, it is
not adapted for the mobile context as it considers only system
level information, like CPU or memory usage. In addition to
system level information, service level information should also
be taken into consideration while taking scaling decisions as
it reflects better the global load of the core network.

In this paper, we propose to forecast the evolution of traffic
based on neural networks. The potential variability of telecom
network traffic has led us to propose a method to further
generalize neural networks so that they can respond correctly
to an amplitude change. The relearning, in case of a significant

deviation in the prediction, also led us to propose a solution
accelerating the learning phase.

The authors, in [11], worked on accelerating neural net-
works training using clustering. The main objective of the
paper was to use k-means clustering to reduce data size for
the training phase while keeping almost the same accuracy
with a shallow neural network. However, the analysis of
the results did not go far enough to show the amount of
samples needed to converge the classification problem under
consideration. Indeed, no clear results was presented on how
much the technique can accelerate the training process or even
its efficiency. Moreover, in high dimensionality, k-means is not
that efficient and the determination of the number of samples
remain an open issue. On the other hand, reducing the number
of samples results in a loss of information that could severely
affect the quality of learning. This is one of the key points that
we are improving in this paper by resorting to a Monte-Carlo
method.

III. ARCHITECTURE

As mentioned above, the 3GPP group introduced the New
Generation Core Network (NGC) in order to answer the
requirements of 5G. In what follows, we consider this NGC,
in which prediction techniques will have to be introduced to
better manage the scaling of resources.

Figure 1 depicts the architecture of the NGC. The 3GPP
group decided to introduce the components of the core net-
work as modular functions allowing to benefit from Network
Function Virtualization (NFV) to scale in/out depending on
the needs as it is now a matter of software deployment.

Even if the technique we are proposing can be applied
to different components of the NGC, for the moment, our
proposal targets especially the Access and Mobility function
(AMF) as it is the single point of access of the core network.
In fact, the control traffic in 5G is expected to increase
significantly as the number of connected devices is increasing
[2].

Fig. 1: Architecture proposal for 5G



Thanks to NFV, dynamic scaling issue can be addressed
by using machine learning in order to forecast the upcoming
load of the core network and thus, scale in/out resources in a
proactive manner to avoid congestion while meeting the 5G
requirements in terms of latency. In addition to NFV, dynamic
scaling is now possible as the 3GPP group has split the
Mobility and Management Entity (MME), the AMF version in
4G, into AMF and Unified Data Management (UDM) entities.
Therefore, the AMF function is now stateless as all the User
Equipments (UE) contexts and session contexts are hosted in
the UDM, adding more flexibility and elasticity to the mobile
core network [4]. Indeed, in that case, any user procedure can
be handled by any AMF worker.

When a request is received by an AMF instance, the AMF
brings the user context from the UDM, using the reference
interfaces noted Nx and represented in Figure 1. The AMF
processes the request and stores the information and status of
the new user context in the UDM.

Based on ETSI’s NFV reference architecture, the scalability
of a VNF is a decision made by the NFV Orchestrator
(NFVO), using information provided by both the Virtual In-
frastructure Manager (VIM) and the VNF Manager (VNFM).
Therefore, for the sake of simplicity, we have added in this
work only one service orchestrator (SO) to the NGC architec-
ture. As already mentioned, our approach aims to balance the
burden between AMF instances and to scale in/out the AMF
functions as required. So the intelligence needed to apply this
strategy is located in the SO.

IV. NEURAL NETWORKS TRAFFIC LOAD ESTIMATION FOR
RESOURCES’ SCALING IN 5G

The prediction of the evolution of a time series, whether
periodic or not, has been an active research topic for several
years [12]. Several studies, in this sense, have shown the
potential of neural networks, and especially LSTM, to identify
traffic patterns [13].

In this section, we analyze different types of neural networks
for predicting load evolution in a network. We use traditional
neural networks, CNN and LSTM, but we also suggest a
combined architecture of the latter, which not only reduces
learning time but also makes it more effective. In addition,
we introduce a novel technique, based on the Monte-Carlo
method, allowing to generalize the neural network to allow
them to effectively predict traffic evolution even when the
scale of traffic changes. The proposed technique also has the
advantage of making learning much faster thanks to the use
of K-means clustering technique on the data.

A. A combined CNN-LSTM Neural Networks

Before going deeper into the selected neural network archi-
tecture, let’s start with a brief look at its different components.

1) Convolutional Neural Networks (CNN): A CNN, de-
picted in Figure 2 (CNN), comprises three main layers. The
convolution layer is used to extract features from the input
data, while preserving its spatial relationship. Then the non-
linear operation Rectified Linear Unit (ReLu) is applied.
Following the ReLU function, spatial pooling (sub-sampling)
is applied in order to reduce the dimensionality of each feature
map while keeping the most important information. Finally
before the output a final fully connected layer is used. This
final step will allow to classify the output and to learn non-
linear combinations of the features (refer to [14] for more
details).

2) Long Short Term Memory (LSTM): The second neural
network used is RNN and more precisely an LSTM cell, which
is another type of neural network. Compared to a conventional
neural network, an LSTM cell can keep state memory of
the last passed activation events in the network as temporal
contextual information [15][16] (cf. Figure 2(LSTM)). Hence,
the advantage of the LSTM cell is to allow data patterns to
be stored without degradation over time.

Fig. 2: CNN-LSTM Architecture



For more details on RNN and LSTM structures and func-
tions, interested readers may refer to [17].

3) A combined CNN–LSTM architecture: In addition to
the two types of neural networks explained above, we added
another one by combining both types used before. This third
type will allow getting improved results by benefiting from
the strengths of both the LSTM and the CNN. Indeed, as an
entry we use the CNN in order to extract features (i.e. traffic
pattern) and simplify them by using the pooling, which will
allow retaining the main part of the pattern. Hence, beside
using a fully connected layer as an output layer, we use the
LSTM cell in order to forecast the upcoming traffic load.

B. Generalizing neural nets and accelerating the training

The generalization of neural networks during learning is an
important characteristic, since it makes it possible to avoid the
phenomenon of over-fitting, which leads to poor performance
with new data.

Various techniques have been introduced in the literature
to avoid the over-fitting problem. In this paper, we propose
a novel approach that has the advantage of accelerating sig-
nificantly the speed of learning. This technique is particularly
effective when predicting time series due to redundancy in the
data. The main idea consists first in grouping the data using
the K-means clustering technique.

Existing approaches proposed to reduce the size of the initial
data after the clustering phase. This speeds up learning but
reduces the accuracy of prediction, as only a sub-set of the
initial data is used for the training. In contrast with these
approaches, we propose to exploit all this data using a Monte-
Carlo method.

The proposed solution consists in getting randomly, from
each cluster, an element for the training phase, using the
function “getRandom()”. This process is repeated at each
epoch, which allows covering the whole dataset and thus
not loosing any precision and accuracy while accelerating
significantly the training.

Algorithm 1 Monte Carlo-based training procedure

1: Inputs: epochs, dataset, nClusters
2: Clusters[] = K-means( nClusters,dataset)
3: for ep in epochs do
4: trainset = []

5: for clst in Clusters do
6: trainset.add(getRandom(clst))

7: Train the neural network with trainset

Note that the obtained performance is directly related to
the number of clusters nClusters. Indeed, this number must
be related to the percentage of data to be considered in each
period. The more similarities we have in the input data, the
smallest is the number nClusters.

A boost process, in which all the dataset is injected, can
also be considered for a number of epochs at the end of the

Fig. 3: Testing data used to test the Neural Networks

training phase. This phase is efficient only when the number
of clusters is too small.

V. MODELS EVALUATION AND RESULTS ANALYSIS

A. Dataset

The dataset used in our work contains real mobile data
collected by Telecom Italia Big Data Challenge [18] and
hosted on Harvard Dataverse [19]. This dataset is rich of
information. It contains two months of data collected on
different Cells of the mobile core network of Mobile Italia in
Milano, with a period of 10 minutes. First, the data is sorted
following the timestamps and not the cell ids. In other words,
for each period of time (10 minutes), we regrouped together
the data of all the cells in Milano city. Then, we split the
obtained dataset into two datasets: training dataset; and testing
dataset. The training dataset will be constituted of 60% of the
data and the testing dataset will be filled with the 40% left.

Finally, we decided to add for the testing dataset: (i) a copy
of the 40% but doubled, and (ii) another copy of the 40%.
Therefore the testing dataset, illustrated in figure 3, is split
into 3 phases: Normal control traffic; an increased (doubled)
control traffic; and return to a normal control traffic. By this,
in the simulation section we will be testing the precision of the
prediction of the neural networks on arrivals where the neural
network is not trained for and hence testing it adaptation to
traffic load amplitude change.

B. Scenario and simulations

In this section we explain the procedure and the simulation
launched in order to validate the performance of the proposed
training strategy. We built the three types of neural networks
listed above using the Tensorflow library [5].

In our simulations we decided to test the effects of the
number of epochs, the number of clusters (i.e. percentage of
the data to consider), and the effects of the boost metric. The
boost technique consists in adding, in some number of epochs
at the end of the training phase, the whole training dataset and
not only the clustered data. This test will allow to show if the
K-means clustering based strategy is enough to get the same
precision as if we inject the whole data or still a complete
re-injection of the training data is needed.
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Fig. 4: Evolution of prediction distance (a) and training phase duration (b) vs number of epochs in training phase

For each neural network three different types of simulations
are launched. In each one we will vary one metric to see its
effect on the prediction precision of the neural network and the
time needed for the training phase. It worths mentioning that
each simulation is repeated 30 times in order to get accurate
and trustful results.

The simulations parameters are listed in the following:
• Each entry of the neural network is filled with the last

20 past data in order to predict the 21st one.
• The number of clusters is fixed to 30% of the size of

training dataset
• The number of epochs is fixed to 100 epochs by training

phase.
• The number of boost epochs is fixed to 10.
Finally, those metrics will be fixed in each simulation type

where only the concerned metric of the simulation will vary in
order to understand its effect on the training phase, and hence
the precision of the prediction and the duration of the training
phase.

C. Results and Analysis

From Figure 4 (a), we can see the effects of the number of
epochs in the training phase for the different types of neural
networks as with K-means clustering or not and with boost

session or not. For all the simulations and the neural networks,
it is evident that 25 epochs is not enough to get precise
prediction. On the other hand we can see that with clustering
technique the precision for each neural network is kind of
similar as if there was no data clustering. Thus, it shows that
applying K-means clustering with random injection at each
epochs allows to get the same precision. Also from Figure
4 (b), we can notice that the training time with K-means
clustering is divided by two comparing to the normal injection
of the whole dataset. Therefore K-means clustering allows to
reduce training duration while keeping the same precision as if
we inject the whole training dataset. It worths mentioning also
that the boost at the end of an accelerated training phase is
not so efficient as it does not add any precision to the output.
So K-means clustering alone is a very interesting solution in
order to accelerate the training phase of the neural network.

In the same spirit Figure 5 (a) shows the effect of the
variation of the number of clusters used to classify the training
dataset, on the output precision. As illustrated in the Figure,
if the number of clusters is around 10% of the training dataset
size, the results are not so good. On the other hand from 20 %
we start to get interesting results in term of output precision.
Also figure 5 (b) shows the duration needed to train the neural
network depending on the number of clusters. It shows that
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Fig. 5: Evolution of prediction distance (a) and training phase duration (b) vs number of clusters in training phase
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Fig. 6: Evolution of prediction distance (a) and training phase duration (b) vs number of boost in training phase

the duration increases with the number of clusters chosen, and
this is the expected behavior. But still worth mentioning that
the duration needed to train the neural network even when the
number of clusters is 50% of the training dataset size, is less
than the training duration of a normal neural network with no
generalization technique.

Figure 6 (a), shows the effect of adding some boost epochs
at the end of a accelerated (using the proposed solution)
training session. We can notice that the boost does not add
precision. Some time even adds some confusion to the neural
network as the distances goes beyond or beneath zero. In the
same aspect boost epochs adds some latency to the duration of
a training phase as it adds more data for the last epochs. Thus
boost epochs are not efficient in those use case and using K-
means clustering alone is better as it gives the desired accuracy
while decreasing the training phase duration.

On the other hand from the Figures 4 (a), 5 (a) and 6 (a),
we notice that the proposed model including CNN and LSTM
is behaving very well and even better than the version of CNN
standalone and the LSTM standalone. This is explained by the
fact that the CNN is very good in extracting features from the
input data and the LSTM is behaving so good in classifying
the output.

VI. CONCLUSION

In this paper, we suggested combining a CNN and an
LSTM neural networks to predict network loads’ evolution.
We proposed a novel solution to generalize neural networks
based on K-means clustering and Monte-Carlo method. We
used real Operator’s data in order to evaluate the efficiency of
the proposed technique in predicting the upcoming network
load for dynamic and proactive resource provisioning. The
simulations showed that our solution allows reducing by 50%
the duration of the training phase of a Neural Network. In ad-
dition, the proposed combined neural network showed clearly
its efficiency in predicting the evolution of the considered
time series as it performs better than a standalone CNN or
a standalone LSTM.
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