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Abstract

We consider multiple (p) users that operate on the
same carrier frequency and use the same linear digi-
tal modulation formai. We consider m > p antennas
receiving miziures of these signals through multipath
propagation (equivalently, oversampling of the received
signals of a smaller number of antenna signals could be
used). We consider conditions on the mairiz channel
response for the existence of a Zero-Forcing Equalizer
(ZFE) (which cancels inter-symbol and inler-user in-
terference). In the noisefree case, we show how a ZFE
can be oblained from linear prediction and the chan-
nel mairiz itself can also be determined as a byprod-
ucl. The problem is one of signal and noise subspaces
and we show a convenient way of solving the deler-
ministic mazimum likelthood problem using a minimal
linear paramelerization of the noise subspace. This
paramelerization is found as a byproduct in the linear
prediction problem.

1 Matrix Channels

Consider linear digital modulation over a linear
channel with additive Gaussian noise. Assume that
we have p transmitters at a certain carrier frequency
and m antennas receiving mixtures of the signals. We
shall assume throughout that m > p. The received
signals can be written in the baseband as

r

yi(t) = D) aj(k)hi(t — kT) + vi(?)

i=1 &

(1)

where the a;(k) are the transmitted symbols from
source j, T' is the common symbol period, hi;(t) is
the (overall) channel impulse response from transmit-
ter j to receiver antenna i. Assuming the {a;j(k)}
and {v;(t)} to be jointly (wide-sense) stationary, the
processes {y;(t)} are (wide-sense) cyclostationary with
period T'. If {;(t)} is sampled with period T', the sam-
pled process is (wide-sensc) stationary. Sampling in
this way leads to an equivalent discrete-time represen-
tation. We could also obtain multiple channels in the
discrete tirne domain by oversampling the continuous-
timie received signals, see [1],{2].(3].
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We assume the channels to be FIR. In particular,
after sampling we assume the (vector) impulse re-
sponse from source j to be of length ;. Without
loss of generality, we assume the first non-zero vec-
tor impulse response sample to occur at discrete time
zero, and we can assume the sources to be ordered
so that Ny > N9 > -+ > Np. Let N = z;le,-.
The discrete-time received signal can be represented
in vector form as

p N;~1
y(k) = 32 3 hi(i)a;(k=i) +v(k)
Nl_]]:l 1=0
= Y h(a(k—i) + v(k)
i=0
P
= Y HjnAjn (k) + (k) = HyAn (k) +v(k) |
j=1
vi(k) v1(k) hi;(k)
y(ky=| = |.v(&)y=| : | hik)= :
Ym (k) vm(k) hmi(k)

Hj v, =y(N5=1) - Bi(0)] Hy = [Hyy, - -Hy ]
h(k) = [hi(k)---hy(k)], a(k) = [af (k) --- a7 (k)]
Ay (k) = [ (k=Nj+1) - ~a;’(}li)]ﬁ

An(k) = [Afly, (8) - Afly, (6)]
(2

where superscript ' denotes Hermitian transpose.

2 FIR Zero-Forcing (ZF) Equalization

We consider a structure of equalizers as in
Fig. 1 to not only cancel the intersymbol inter-
ference for every source separately, but also can-
cel the interference between different sources. We
assume the cqualizer filters to be TIR of length
Lo Fjlz) = Yile fulb)z™, j = L...p,i =
I,...,m. We introduce f;(k) = [fj1(k) - fim(k)],

(k) = [f ) )] L = (-1 )],

Fi, = [FY, - FY, 7 H(z) = Y025 h(k)z™* and



F(z) = zf;_é f(k)z~*. The condition for the equalizer
to be ZF is F(z)H(z diag{z~"*---z7"7} where

n; € {0,1,...,N;j4+L~2}. The ZF condition can be
written in the time-domain as
0---010---0 0---0
Fr T, (Hy) = : :
0..-0 0--.010--.0
(3)

where 'TM‘,, (HN) = (TM (HI.NI) - 'TM (Hp,N,,)] and
Tar (x) is a banded block Toeplitz matrix with M
block rows and [x Onx(l\l—l)] as first block row (n

is the number of rows in x). (3) is a system of
p(N+p(L—1)) equations in Lmp unknowns. To be
able to equalize, we need to choose the equalizer length
L such that the system of equations {3) is exactly or
underdetermined. Hence

/] —
ngz[ﬁ———p]

m-p

(4)

We assume that Hy has full rank if N > m. If not, it
is still possible to go through the developments we con-
sider below. But lots of singularities will appear and
the non-singular part will behave in the same way as
if we had a reduced number of channels, equal to the
row rank of Hy. Reduced rank in Hy can be detected
by inspecting the rank of Ey(k)y* (k). If a reduced
rank in Hy 1s detected, the best way to proceed (also
when quantities are estimated from data) is to pre-
process the data y(k) by transforming them into new
data of‘dimension equal to the row rank of Hy.

ay{k) ™ vr () =y a3 (k)
+ —~
2k k
az(k) Hy, yl(k) . Fy ,\? az( )
k
s  H2 va(k) | Fi; &
DG
Hz wkL_ ) Py ;——oga
L] vkl R
DG
Hoay wlkl__t Fa

Figure 1: Channel and linear ejualizer for m = 3
channels and p = 2 sources.

The matrix T p (Hy) is a block Toeplitz block ma-
trix. It can be shown that for L > L it has full column
rank if the following assumptions are satisfied

(A1) rank (H(z)) = p, Vz and rank (h(0)) = p. In this

case, H(z) is called irreducible in systems theory,

(A2) rank ([h(N(=1) - hp(N,=1)]) = p, in which
case H(z) is called colwmn reduced, see [4].
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Assuming T , (Hn) to have full column rank, the
nullspace of 7/, (Hy) has dimension L(m—p)—N+p.
If we take the entries of any vector in this nullspace

as equalizer coefficients, then the equalizer output is
zero, regardless of the transmitted symbols.

To find a ZF equalizer (corresponding to some de-
lays n;), it suffices to take an equalizer length equal to
L. We can arbitrarily fix m = L(m—p)—N+p equal-
izer coefficients (e.g. take m equalizer filters of length
L—1 only). The remaining p(p(L—1)+N) coefficients
can be found from (3). This shows that for m > p, a
FIR equalizer suffices for ZF equalization (and inter-
ference cancellation)!

3 Channel Identification from Second-
order Statistics: Frequency Domain
Approach

Consider the noise-free case and let the sources be
temporally white but possibly correlated among them-
selves with p x p covariance matrix Ra. Then the
power spectral density matrix of the stationary vector
process y(k) = H(z)a(k) is

Syy(z) = H(z) RaH*(z7*) . (5)

The following spectral factorization result has been
brought to our attention by Loubaton [5]. Let K(z)
be a m x p rational transfer function that is causal
and stable. Then K(z) is called minimum-phase if
K(z) # 0, |z| > 1. Let Syy(z) be a rational m x m
spectral density matrix of rank p. Then there ex-
ists a rational m x p transfer matrix K(z) that is
causal, stable , minimum-phase, unique up to a uni-
tary p x p constant matrix, of {minimal) McMillan

degree deg(K) = 1 deg(Syy) such that

— 9

Syy(z) = K(2)K¥(z7"). (6)

In our case, Syy is polynomial (FIR channel)
and H(z) is minimum-phase since we assume
rank (H(z)) = p, ¥z. Hence, the spectral factor K(z)
identifies the channel

K(z) = H(z)RY ® (7)

1/2 . . . .
where RZ ° is any particular (e.g. triangular) matrix
square-root of Ra and ® is a p x p unitary matrix.
So the channel identification from second-order statis-
tics is simply a multivariate MA spectral factorization

problem. The remaining factors R;{"’ and @ can be

identified by exploiting higher-order moments (see [6]
and references therein) or the discrete distribution na-
ture of the sources [7].



4 Gram-Schmidt Orthogonalization,
Triangular Factorization and Linear
Prediction

UDL Factorization of the Inverse Covariance
Matrix

Consider a vector of zero mean random variables ¥
[yt oy We shall introduce the notation
yi.m = Y. Consider Gram-Schmidt orthogonalization
of the components of Y. We can determine the linear
least-squares (lls) estimate y; of yi given yi:i-a and
the associated estimation error y,

y"l.fh:.'_x = Ry'!ll:-— R;l et JLlii=1
Gilyis =9 — B

@)

-

(8)
where Rgp Eab? for two random column vec-
tors @ and b. The Gram-Schmidt orthogonalization

process consists of generating consecutively Y
~i ~H ~pf 1 H
[ # ]
the relation

starting with 71 = y1. We can write

LY =Y (9)

where L 1s a unit-diagonal lower triangular ma-

trix. The first i—~1 elements in row ¢ of L are
—-Ry'yl:,_lR;‘f.,_lym_l. From (9), we obtain
E(LYY(LY)? =EYY? = LRyy LY = D = Ry;

(10)
D is indeed a diagonal matrix since the y; are decor-
related. Equation (10) can be rewritten as the UDL

triangular factorization of 154

Ry, = L¥D7'L. (11)
Y is ﬁlled up with consecutive samples of a random
process, (k) v (k-1)--- vy (k—M+ l‘)

then the g, z, become backward prediction errors of or-
der i—1, the corresponding rows in L are backward
predlctlon filters and the corresponding diagonal ele-
ments in D are backward prediction error variances.
If the process is stationary, then Ryy is Toeplitz and
the backward prediction crrors filters dnd variances

{and hence the UDL factorization of Ry, ) can be
determined using a fast algorithm, the I{evmson al-
gorithm. If ¥ is filled up in a different order, i.e.
y = [y (k) 7 (k+1) -y (k+M-1)]" | then the
backward prediction quantities become forward pre-
diction quantities, which for the the prediction error
filters and variances are the same as the backward
quantities if the process y(.) is scalar valued.

If the process y(.) is vector valued, we shall still
carry out the Gram-Schindt orthogonahzatlon scalar
component by scalar component. In the time-series
case, this is multichannel linear prediction with se-
quential processing of the channels. If the matrix
Ry is singular, then there exist lincar relationships
between certain components of Y. As a result, cer-
tain components y; will be perfectly predictible from
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the previous components and their resulting orthog-
onalized version y; will be zero. The corresponding
diagonal entry in D will hence be zero also. For the or-
thogonalization of the following components, we don’t
need this y;. As a result, the entries under the diag-
onal in the coresponding column of L can be taken
to be zero (minimum-norm choice for the prediction
filters in those rows). The (linearly independent) row
vectors in L that correspond to zeros in D are vec-
tors that span the null space of Ryy. The number

of non-zero elements in D equals the rank of Ryvy.
LDU Factorization of a Covariance Matrix

Assume at first that Ryry is nonsingular. Since the
yi form just an orthogonal basis in the space spanned

by the y;, Y can be perfectly estimated from Y. Ex-
pressing that the covariance matrix of the error in es-

timating Y from Y is zero leads to

0= Ryy—R R~?R a2)
- H -1

where D i1s the same diagonal matrix as in (10) and
U = L~# is a unit-diagonal upper triangular matrix.
(12) is the LDU triangular factorization of Ryy. In
the stationary multichannel time-series case, Ry vy is
block Toeplitz and the rows of U and the diagonal ele-
ments of D can be computed in a fast way using a se-
quential processing version of the multichannel Schur
algorithm.

When Ryry is singular, then D will contain a num-
ber of zeros, equal to the dimension of the nullspace of
Ryvy- Let J be a selection matrix (the rows of J are
rows of the identity matrix) that selects the nonzero
elements of D so that JDJ¥ is a diagonal matrix that
contains the consecutive non-zero diagonal elements of
D. Then we can write

Ryy = (JUY¥ (D177 JU) (13)

which is a modified LDU triangular factorization of
the singular Ry y . (JUY is a modificd lower triangu-
lar matrix, its columns being a subset of the columns
of the lower triangular matrix Uf. A modified ver-
sion of the Schur algorithm to compute the generalized
LDU factorization of a singular block Toeplitz matrix
Ryy has been recently proposed in [8].

5 Signal and Noise Subspaces

Consider now the measured data with additive in-
dependent white noise v(k) with zero mean and as-
sume Ev(k)vP (k) = 021, with unknown variance
o? (in the complex case, real and imaginary parts
are assumed to be uncorrelated, colored noise with
known correlation structure but unknown variance
could equally well be handled). A vector of L mea-
sured data can be expressed as

Yr(k) = Tpp (Ha) Angpir-n(k+L=1) + V (k)
{14)



where Y (k) = [y# (k) - -y”(k+L—-l)]H and V (k)
is defined similarly. Therefore, the structure of the
covariance matrix of the received signal y(k) is

RY = 70 (HN) Ruvgpn- 0T (Hy) + 02 1nr (15)

where Ry 4oy = EAN+P(L‘1(k)Aﬁ+p[_L—1(k)' We
assume Ry, to be nonsingular for any M. For L > L,
and assuming (Al), (A2), T, (Hn) has full column
rank and o2 can be identified as the smallest eigen-
value of RY. Replacing RY by RY — 02 gives us
the covanancg,matnx for noise-free data. Given the
structure of Ry in (15), the column space of 77, , (Hx)
is called the signal subspace and its orthogonal com-
plement the noise subspace.

Consider the eigendecomposition of RZ of which
the real positive eigenvalues are ordered in descending
order:

N4p(L-1)

2 2

i=1 i:/V’+;)(L—1)+l
VsAs VSH + VNANVJ(‘;

mL
RY

Yy = Vi v+ NA%

16
where Ay = agl(n,_p)L_N+p (see (15)). The set(s o}
eigenvectors Vs and Vs are orthogonal: VSH Vv =0,
and A; > 03 ,t=1,...,N4+p(L-1). We then have
the following equivalent. descriptions of the signal and
noise subspaces

Range {Vs} = Range {Tr ,(Hn)}. (:;\’,!’T/“,, (Hy) = 0.

(17)
6 The Instantaneous Mixture Case

We shall consider the noiseless case and we can as-
sume w.l.o.g. that the first p rows of h(OP are linearly
independent (the ordering of the channels can always
be permuted to achieve this). The covariance matrix
of y(k) = h(0)a(k) is R?’ = h(0)Rah” (0). By car-
rying out the Gram-Schmidt orthogonalization of the
components of y(k), we obtain the triangular factor-
izations we discussed above. In particular

LRY L = D = blockdiag { Dy, Opmepyximepm }
= RY =0} D7,
(18)
where sz" is a m x p matrix of the generalized lower

. : . 1/2
triangular form we discussed above. Taking Ra/ to
be triangular, we arrive at

no) = U Dy roRy? (19)

2

: . . 1
where @ is a p X p unitary matrix. ® and Ry~ repre-
sent $p(p—1) and Lp(p+1) degrees of freedom respec-
tively. If we don’t know f4. we can determine h(0),

/

. N . 172
using the LDU factorization of R.?,‘ as (_’PH Dy, ""upto
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p° degrees of freedom. If Rq is known, eg Rag= aZIp,
then U‘f’D,Tl/2 determines h(0) up to only ®, i.e. up
to only %p(p—l) degrees of freedom.

In general, if h(0) is determined using subspace
techniques from Up”, then the only part of h(0) that
can be determined uniquely from RY is h(0)T =
h'(0) = [, *]” which is related to h(0) by a non-
singular p x p matrix T, representing p? degrees of
freedom. Note also that LU = [I, 0]". Hence

¥(k) = Ly(k) = Lh(0)a(k) = [{{] DY@ R, a(k)
(20)

or y1.p(k) is just a linear transformation of a(k).

Blind

Equalization and Channel Identifica-

tion from Second-order Statistics by
Multichannel Linear Prediction

7

ZF Equalizer and Noise Subspace Determina-
tion

We consider again the noiseless covariance matrix or
equivalently assume noisefree data: v(t) = 0. We shall
also assume the transmitted symbols to be uncorre-
lated, R?, = Ra ® Ip, though the noise subspace
parameterization we shall obtain also holds when the
transmitted symbols are correlated.

Consider now the Gram-Schmidt orthogonalization
of the consecutive (scalar) elements in the vector

Y, (k). Westart building the UDL factorization of RY
and obtain the consecutive prediction error filters anld
variances. No singularities are encountered until we
arrive at block row L in which we treat the elements of
y(k+L—1). From the full column rank of 7y, (Hy),
we infer that we will get m € {0,1,..., m—p—1} sin-
gularities. If m > 0, then the following scalar com-
ponents of Y become zero after orthogonalization:
yi(k+L-1) = 0, i = m+l-m,...,m. So the cor-
responding elements in the diagonal factor D are also
zero. We shall call the corresponding rows in the tri-
angular factor L singular prediction Rlters.

or I. = L+1, T 41, (Ha) has m more rows than
Tpp (Hn) but only p more columns. Hence the (col-
umn) rank increases by p. As a result vi(k+L), i =
1,....p are not zero in general while y;(k+L) =
0, i=p+l,...,m. Furthermore, since Ty , (Hy) has
full column rank, the orthogonalization of yy.,(k+L)
w.art. Yrp(k) i1s the same as the orthogonaliza-
tion of y; p(k+L) w.rt. Ayypr-1)(k+L—1). Hence,
since the a(k) are assumed to be uncorrelated, only
the components of yyn(k+L) along a(k+L) remain:
y(k+L)ly, k) = h(0)a(k+L) and for the rest of
the details of the orthogonalization of the components

of y(k+L). we can refer to section 6. In particular,
Y1 plk+L) are just a linear transformation of a(k+L).



This means that the corresponding (p outputs) pre-
diction filter is (proportional to) a ZF equalizer! Since
the prediction error is white, a further increase in the
length of the prediction span will not improve the pre-
diction. Hence y(k+L) = h(0)a(k+L), L > L and
the (block of m) prediction filters in the corresponding
block row L+1 will be appropriately shifted versions
of the (block) prediction filter in (block) row L+1.
In particular also for the prediction errors that are
zero, a further increase of the length of the prediction
span cannot possibly improve the prediction. Hence
Bi(k+L)=0, i=p+1,...,m, L > L. The singular
prediction filters further down in the triangular factor
L are appropriately shifted versions of the first m—p
singular prediction filters. Furthermore, the entries
in these first m—p singular prediction filters that ap-
pear under the 1's S“diagonal” elements) are zero for
reasons we explained before in the general orthogonal-
ization context. So we get a (rank p) white prediction
error with a finite prediction order. Hence the channel
ouput process y(k) is autoregressive. Due to the struc-
ture of the remaining rows in L being shifted versions
of the first ZF equalizer and the first m—p singular
prediction filters, after a finite “transient”, L becomes
a banded lower triangular block Toeplitz matrix.

Consider now L > L and let us collect all consecu-
tive singular prediction filters in the triangular factor
L into a {(m—p)(L — L)+m) x (mL) matrix Gr. The
row space of Gy is the (transpose of) the noise sub-
space. Indeed, every singular prediction filter belongs
to the noise subspace since G177, , (Hy) = 0, all rows
in G, are linearly independent since they are a subset
of the rows of a unit-diagonal triangular matrix, and
the number of rows in ;. equals the noise subspace
dimension. G, is a banded block Toeplitz matrix of
which the first m~p—m rows have been omitted. &
is in fact parameterized by the first m—p singular pre-
diction filters. Let us collect the nontrivial entries in
these m—1 singular prediction filters into a column
vector Gy. So we can write Gr(Gn). The length of
Gn can be calculated to be Nm — p? which equals
the number of degrees of freedom in Hy for identi-
fication with a subspace technique (in which case we

can only identify h(k)T = hl(k) where T is such that

! H 4y o e
h(0) = [/, *]"). So Gr((/n) represents a minimal
linear parameterization of the noise subspace.

Channel Identification

From the discussion above, it is now not difficult to
gee that in the LDU factorization of RY, the lower
teiangular factor (JU) is banded and becomes block
Toeplitz after a finite transient. Indeed, for L > L, the

L+15% block column of (JIU)7 is Ey(k: 20)gf (k+L) =

(07 B (0} BH (N = 1) 0] 7 Ealkt L)l (k+L)

(21)
which hence contains the chiannel impulse response,
apart from a multiplicative factor.
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Channel Estimation from Data using Deter-
ministic ML

See [3] for channel estimation from an estimated co-
variance sequence by subspace fitting for p = 1. That
approach can straightforwardly be extended to the
case of general p. The details for deterministic maxi-
mum likelihood have been worked out in [9] for p = 1.

Basically, we use PTLA.,_,,(HN) = FPgrign) - The es-

sential number of degrees of freedom in Hy and Gy is
mN —p? for both. So Hy can be uniquely determined
from Gy and vice versa. Due to the (almost) block
Toeplitz character of Gps, the product GarYas(k)
represents a convolution. Due to the commutativ-
ity of convolution, we can write Ga(GnN)Y (k) =
In(Yar(k)1 GHIH for some properly structured
Yn(Yar(k)). This leads us to formulate the DML
problem as

on [ Gn ]Hyﬁwmm) (C,’J,lGN)CM(GN))—‘ VLY ag D) [ Gy ]

~N)

(22)
which can be solved iteratively in the IQML fashion.
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