
Formally Verified Latency-aware VNF Placement in
Industrial Internet of Things

Guido Marchetto∗, Riccardo Sisto∗, Jalolliddin Yusupov∗, Adlen Ksentini†
∗ Politecnico di Torino

Email: {name.surname}@polito.it
† Eurecom

Email: adlen.ksentini@eurecom.fr

Abstract—The innovative applications of 5G core technologies,
namely Software Defined Networking (SDN) and Network Func-
tion Virtualization (NFV), are the key enabling technologies of
industrial Internet of things (IIoT) to improve data network
robustness. In the industrial scenario, with strict demands on
end-to-end latency and reliability during critical events, these
technologies can be leveraged to construct chains of network
functions (service graphs) characterized by guarantees about
latency, jitter, packet loss or redundancy. Moreover, real-time
monitoring techniques provided by network virtualization help in
mitigating critical events (e.g. failures or network attacks), which
can be faced by updating the service graph and imposing new
policies in the network. In practice, the distributed and safety-
critical nature of IIoT applications requires both an intelligent
placement of services across physically separated locations, which
has a direct impact on latency, and a proper policy enforcement
system, which guarantees service reliability, safety, and security.
This paper considers both aspects by proposing a novel Virtual
Network Function (VNF) placement solution for IIoT that min-
imizes the overall latency and, at the same time, also verifies
that network-wide policies such as connectivity or isolation
hold between the endpoints. In particular, this work relies on
recent advances in SMT (Satisfiability Modulo Theories) solvers,
which are being enhanced to solve the Maximum Satisfiability
(MaxSAT) problem.

I. INTRODUCTION

A. NFV and SDN in Industry

Industrial Internet of Things (IIoT) is gaining broader in-
terest because it can improve the effectiveness and efficiency
of modern industrial production and applications. IIoT brings
together the worlds of industry and network connectivity, by
making everything in the industry connected, monitored and
controllable.

The key to manage millions of distributed, intelligent,
and autonomous machines in a flexible way is the use of
NFV (Network Function Virtualization) and SDN (Software
Defined Networking). Both of them use network abstractions:
SDN separates network control functions from network for-
warding functions, while NFV virtualizes network services
and abstracts them from dedicated hardware. Together they
enable programmable connectivity, rapid service provisioning,
chaining, and cyber-security.

B. Problem description, Motivation, and Contribution

The combination of new services, devices, protocols, and
standards makes IIoT systems very complex and vulnerable
to a wide range of attacks or cyber threats - like any other
complex distributed system is. In addition, IIoT systems are
safety-critical, which makes the need for security even more
compelling. There are two main causes of threats [1], which
are the major research points addressed in this paper: (1) the
absence or weakness of resiliency controls which can lead to
a stream of failures in cyber-attacks, (2) the misconfiguration
of Virtual Network Functions (VNFs) which can cause, for
instance, unreachability, inconsistency, and broken security
tunnels.

By leveraging the SDN/NFV-enabled networks, IIoT can
benefit greatly from effective countermeasures dynamically
placed so as to mitigate security threats caused by point
(1). Given that the virtual functions can be orchestrated and
combined as service function chains between the industrial
edge, endpoint devices (Master Terminal Units (MTUs), Re-
mote Terminal Units (RTUs), Programmable Logic Controllers
(PLCs), Intelligent Electronic Devices (IED), Human Machine
Interfaces (HMI), smart meters, etc.), the resilience delivery
problem comes down to select a proper set of security func-
tions and to place them across different substrate nodes while
meeting ultra-reliable low-latency communications’ (URLLC)
requirements. On the other hand, misconfiguration of VNFs
discussed in point (2) can be detected either by straightforward
simulation/testing or by formal verification techniques. Since
soundness and completeness are not provided by simulation,
formal methods are the most suitable solution, also considering
that IIoT systems are safety-critical.

In this paper, we focus our attention on the so-called Virtual
Network Embedding (VNE) problem, or simply VNF place-
ment problem, while we leave the selection of the security
functions to be placed in the chain as a separate component
to be studied in the future. In addition, we consider the
requirement of providing formal assurance that the selected
function chain correctly implements the required security
policies and that, at the same time, the latency requirements
are met. In particular, we formulate the involved optimization
and verification problems and we solve them through the use
of the MaxSAT[2] approach. The tool needs some inputs: (i)



Gateway

VNF

VNF

VNF

VNF
Control Devices

Controller

Central Network

Local networks
Field Networks

Switch

Router 

NFVSDN

Fig. 1. NFV/SDN enabled attack mitigation scheme

proper models of VNFs representing both their forwarding
behavior and their configuration parameters, (ii) a model of
the substrate network, and (iii) the resiliency policies that
must hold in the industrial network. Given these inputs, it
generates a formally verified placement plan. Even though
the two problems of placement and of formal verification
are widely covered separately in the existing literature, to the
best of our knowledge our approach is the only existing one
for IIoT systems that solves both problems in ”one shot” by
merging these two concepts together.

The IIoT paradigm finds application in many different
domains, such as Industry 4.0, smart grids, smart production,
and smart logistics. The Smart Grid, a concept for modernizing
power systems by integrating information, telecommunica-
tions, and automation, is one of the most appealing applica-
tions in the list. Thus, a Smart Grid system has been identified
as a representative example of industrial networks and adopted
as a use-case in this paper to evaluate our approach.

The remainder of this paper is organized as follows. We
briefly discuss the related work in Section II. We present
our methodology in Section III, which is further developed in
Section III-A for the part that pertains to VNF placement and
in Section III-B for the part that pertains to formal verification.
In Section IV we evaluate our methodology by means of a
Smart Grid use case. Section V concludes the paper.

II. RELATED WORK

The classical literature on VNE, mapping each VNF to
specific nodes and links in the substrate network, does not take
into consideration the verification of network-wide properties
during the optimization phase. These two notions do not coop-
erate with each other and constitute two completely separate
worlds. In this section, we provide a precise discussion of the
most relevant literature on these separate subjects.

A. Formal verification

Many approaches and methods for static network analysis
have been proposed ([3], [4], [5], [6], [7]). Verigraph [3]
requires to model complex network scenarios as sets of First

Order Logic (FOL) formulas and uses Z3 [8], a Satisfiability
Modulo Theories (SMT) solver, to verify satisfiability of
these formulas. Concerning the specific industrial context,
[7] verifies firewall configurations against security policies in
SCADA systems. Instead, [6] discusses the idea of formal
analysis as a technical approach that can effectively analyze
Smart Grid security and resiliency. In particular, it uses Z3
to verify the system with respect to the given resiliency
specifications. In contrast to our work in this paper, where
the Service Graph (SG) comprises a general set of industrial
devices and network middleboxes, in [6] communications
only involve the SCADA physical devices in the Smart Grid.
Whereas, SmartAnalyzer [9] proposes an automated security
analysis tool for industrial networks, which models a number
of middleboxes (e.g., Router, Firewall) and endpoint devices.
This tool uses the Yices [10] SMT solver as core analysis
engine.

B. VNF placement

The other wave of literature on the related subject covers
VNE. These approaches can be categorized into different
groups based on the featured settings. Taking into account
the NP-hardness of the VNE problem, exact ([11], [12], [13])
and heuristic-based ([14], [15], [16], [17]) solutions have been
used. VNE consists of finding the optimal solution relative to
a particular objective. With respect to the importance of end-
to-end delay in IIoT applications, as it reflects the real-time
capability of the system, we further classify research efforts
depending on whether the minimization of the overall latency
is the main objective ([13], [18], [16], [15], [17]) or not ([11],
[12], [14]).

In fact, IIoT applications have strict requirements of re-
liability and latency where the dynamic control allows 1-
100 ms ([19], [20]) of end-to-end latency and where the
communication range is up to a few kilometers. In [17] the
authors formulate the placement problem of VNFs across a set
of distributed data centers (DC) to realize a minimum end-to-
end latency along the delivery path. The considered use-case
is based on a realistic network connecting 11 DCs. SECaaS
[13] discusses cloud-based industrial management solutions
that consider geographically distributed private clouds. Sim-
ilarly, the authors formulate the service placement problem
to minimize the latency between servers and client nodes.
The Abilene topology ([21]) is used as data center backbone
network, where security functions for an advanced metering
infrastructure (AMI) concentrators are deployed. The edges
that connect different nodes in the DC backbone are weighted
with propagation delays, which are assumed to be proportional
to the Euclidean distances between these nodes.

The existing literature formulates the VNE problem using
Integer Programming (IP) formulation, which is limited to a
set of linear constraints over binary, integer, or real variables.
This restriction does not apply for the MaxSAT formulation
adopted in this paper, which allows us to model the problem
more directly and using very expressive constraints.



C. NFV and SDN

The representative use cases of industrial networks pre-
sented in this section highlight the benefits of SDN/NFV-
enabled networks to deploy enhanced, reactive security mech-
anisms. A DDoS Attack Mitigation Framework is proposed
to defend critical industrial systems against attacks [22], [23].
In presence of anomalies in a network, the NFV orchestra-
tor decides appropriate countermeasures by introducing new
security functions into the original service graph. Then the
necessary VNFs are allocated and instantiated to handle the
attack traffic. Consequently, the SDN module sets the rerouting
paths to connect those VNFs (Figure 1).

To demonstrate the SDN and NFV ecosystem, VirtuWind
[24] has chosen a wind park control network as a key industrial
application. Firewalls, IDS, DPI, Honeypots, and Honeynets
are the examples of security functions that are combined
interchangeably as an ordered list of services depending on
the needs. These services help to analyze potential attacks and
isolate attackers to protect the wind park industrial network.

The literature review reveals that the approaches addressed
by the research community lack appropriate mechanisms that
glue together the optimal placement and verification of a num-
ber of safety and security-related properties of the orchestrated
virtual networks.

III. METHODOLOGY

Our target is to develop a solution to provide formal
verification and optimal placement of VNFs, with specific
reference to the IIoT environment.

By making use of an intensive modeling approach, we
formulate the placement and verification problem with propo-
sitional logic formulas in Conjunctive Normal Form. The goal
of verification is then to find a truth assignment for all the
logical variables of the model that makes true all the logic
formulas (clauses) in the network model, if one exists. This
is the traditional form of the well-known Satisfiability (SAT)
problem, where all the formulas are “hard” clauses and must
be satisfied. This set of hard clauses represents in our case the
VNF forwarding behavior models, the reachability/isolation
properties that we want to ensure, and the hard constraints
we have on placement (e.g. we cannot exceed the resources
available in each infrastructure node).

This methodology can be further extended by introducing
optimization goals, thanks to the MaxSAT approach, which
gives us the possibility to go further and introduce a set
of “soft” clauses in addition to hard clauses, which can be
falsified if necessary. The use of soft clauses is important
in modeling the VNF placement problem. For instance, the
placement of a VNF on a particular substrate node can be
modeled as a soft clause, meaning that this clause can be
falsified in favor of placing the VNF on a different node.
Finally, the tool looks for a truth assignment that satisfies all
hard clauses and as many soft clauses as possible. Further,
we exploit the possibility to have weights assigned to soft
clauses, in order to find a truth assignment to the propositional
variables that maximizes the total weight of satisfied clauses.

TABLE I
SUMMARY OF KEY NOTATIONS

Symbols Notations
Gs = (Ns, Ls, As

V , A
s
L) Substrate network

Gs = (Nv , Lv , Av
V , A

v
L) Virtual network

Ns, Es, Ls Set of substrate nodes/endpoints/links
Nv , Ev , Lv Set of VNFs to be allocated/endpoints/links
As

N , A
s
L Attributes of substrate nodes/links

Av
N Attributes of virtual functions

lsj,k
Link between substrate nodes
indexed by j and k

nv
i ↑ ns

j VNF nv
i is hosted on substrate node ns

j

xi,j
Boolean variable, true if a virtual function
xi is mapped onto substrate node j

yi
Boolean variable, true if substrate node
is in use

Soft(c, w) Clause c is a soft clause with weight w

route(vvi , v
v
adj , l

s)
True if the adjacent neighbor of vvi is vvadj
and it is reached via link ls

This enables the introduction of an optimized placement in
conjunction with its formal verification, our target in this
paper. Clauses are given as inputs to the z3Opt [25] engine,
which allows us to solve these optimization objectives in
addition to check the satisfiability of the formulas. Giving
the considered scenario, we use weights corresponding to the
propagation delay (latency) of the substrate links and the
cost of selecting the substrate node, which are of interest
for an IIoT system. However, it is worth noticing how the
methodology is more general and might be applied in other
contexts with different interesting parameters (i.e., weights) to
optimize.

In the rest of this section we firstly describe how the VNF
placement problem is formalized, starting from an introduction
of the mathematical models associated to a substrate and a
virtual network. Then, we present the adopted formal verifica-
tion methodology together with the formalization of network
policies and VNF models used for this purpose.

A. VNF placement

Substrate network. Similar to previous works in [26],
[27], the backbone network of cloud data centers - substrate
network, is modeled as a weighted undirected graph and
denoted by Gs = (V s, Ls, As

V , A
s
L), where V s = Ns ∪ Es

is the set of vertexes, made up of the two disjoint subsets
Ns (substrate nodes) and Es (substrate endpoints), Ls is the
set of edges (representing the links that connect substrate
nodes and endpoints with one another), while As

V and As
L

are the sets of values that can be taken by the attributes
of the vertexes and edges, respectively. In this paper, vs

ranges over V s, ns ranges over Ns, es ranges over Es,
and ls ranges over Ls. The attributes of a vertex vs may
include CPU capacity, memory, storage capacity, buffer size,
geographical location, etc. And the attributes of a link may
include bandwidth, latency, bit error rate, etc. In this paper,
we consider for simplicity only one substrate node attribute
(storage capacity) and only one link attribute (latency), but the
extension to multiple attributes is straightforward. Therefore,
each substrate node ns is associated with the available storage



capacity storage(ns) ∈ As
V , while each substrate link ls is

associated with the introduced latency latency(ls) ∈ As
L. We

associate vertexes with integer indexes that uniquely identify
them, and we use the notation vsj for the substrate vertex
with index j. Depending on the type of the vertex this may
correspond to a substrate node ns

j or substrate endpoint esj .
Also, we use the notation lsj,k to denote the link between the
vertexes indexed by j and k.

Service Request. We model a virtual network service re-
quest as another directed graph similar to the one that describes
the substrate network, denoted Gv = (V v, Lv, Av

V , A
v
L). The

set of vertexes V v is partitioned into the two disjoint subsets
Nv (the VNFs nv to be allocated) and Ev (the endpoint VNFs
ev , whose allocation on the substrate network is assumed to
be fixed). The direction of the edges denote the outgoing
and the incoming packet flows respectively. Similarly to what
is done for the substrate network model, for each VNF nv

to be allocated we consider the required storage capacity,
denoted storage(nv) ∈ Av

V , the processing delay introduced,
denoted latency(nv) ∈ Av

V , and its functional type, denoted
func(nv) ∈ Av

V . Instead, edges are assumed to have no
attributes (i.e., Av

L is empty). We introduce integer indexing
for vertexes of the virtual network too, with the same notation
used for the substrate network.

Upon the arrival of a service request Gv , an orchestrator
component of NFV (Figure 1) must decide how to optimally
allocate the VNFs of Gv onto the substrate network nodes.
In our case, this problem is combined with the problem of
verifying that a number of reachability/isolation properties are
satisfied by the virtual network, with a given configuration of
the VNFs. The mapping of the endpoint VNFs is assumed to
be already specified in the service request.

Problem Formalization. To formalize the VNE problem,
we introduce boolean variables yi and xi,j that take true value
when substrate node ns

i is in use and when VNF nv
i is hosted

on substrate node ns
j , respectively. This last predicate is also

denoted nv
i ↑ ns

j . The mapping of a service request is then
represented by two mapping functions: Mn, which maps VNFs
of the service request onto substrate nodes that meet their
resource requirements, and Me, which maps endpoints. Mn

can be formally defined as follows. For all nv ∈ Nv

Mn(n
v) = ns, (1)

subject to ns ∈ Ns, and nv ↑ ns, and, for each j such that
ns
j ∈ Ns, ∑

∀i|nv
i ↑ns

j

storage(nv
i ) ∗ xi,j

 ≤ storage(ns
j) ∗ yj (2)

where we are assuming the true value of xij and yj corre-
sponds to 1, while their false value corresponds to 0.

Equation 2 specifies that the sum of all storage required
by VNFs allocated on a substrate node should be less than
or equal to the storage available on that substrate node. Here
we are assuming that VNFs from the same service request

can share the same substrate node, which is common in NFV
systems, e.g., in order to reduce latency.

Given this formalization, we build the set of clauses to
represent Mn as follows. First of all we include, as hard
clauses, the inequalities in (2).

In addition to these inequalities, we need to represent
explicitly that Mn is a function, i.e. it maps each VNF onto
exactly one node. For each i such that nv

i ∈ Nv , this constraint
is expressed by the following equation∑

∀j|ns
j∈Ns

xi,j = 1 (3)

Finally, for each j such that ns
j ∈ Ns, in order to correctly

bind variable yj to variables xi,j , we add the implication

yj =⇒
∨
i

xi,j (4)

i.e., when substrate node nj is in use, there is at least one
VNF deployed on this node.

Routing tables. The network behavior of the virtual service
is modeled by a set of formulas that represent the routing
tables of each network function involved in the service request.
These formulas express the next hops - next gateways to
which packets must be forwarded along the path to their
final destination. For each VNF vvi and its adjacent one-
hop neighbor vvadj , we define a predicate route(vvi , v

v
adj , l

s
j,k)

which is true if the adjacent neighbor of vvi is vvadj and it is
reached via link lsj,k of corresponding j and k substrate nodes.

The routing table of the endpoint VNF evn in the SG is
formulated as a set of soft clauses, with the negative form
of the link latency as the weight. In this way, the MaxSAT
solver will minimize the overall latency of the chosen path in
the infrastructure. As the location of ev0 is fixed in the substrate
endpoint es0, we generate the following soft constraint for each
possible substrate node ns

k onto which nv
adj (adjacent neighbor

VNF in the SG) can be allocated

Soft((route(ev0, n
v
adj , l

s
0,k) =⇒ xadj,k),−latency(ls0,k))

(5)
where the notation Soft(c, w) specifies that clause c is a soft
clause with weight w.

In practice, the routing table of the endpoint VNF specifies
to which substrate node k a packet is forwarded depending on
the allocation of the next VNF in the SG.

The soft clauses related to the other VNFs nv
i ∈ Nv in the

SG, with i > 0, are formulated similarly:

Soft((route(nv
i , n

v
adj , l

s
j,k) =⇒ xi,j ∧ xadj,k)),

−latency(lsj,k))

i.e., if VNF i forwards packets to the adjacent VNF adj in the
service graph through link lj,k, then the corresponding boolean
variables xi,j and xadj,k, which indicate the locations of the
VNFs, must be true. If two VNFs are allocated onto the same
substrate node, i.e., j = k, we have latency(lsj,k) = 0, and a
soft clause with weight equal to zero is added to the set.



Configuration parameters of VNFs allow us to model a fixed
processing delay for each VNF. This is represented by the
latency(nv) function, which can be used in order to include
the processing delay of the given VNF when computing the
overall end-to-end latency. If we have an upper bound on
the overall end-to-end latency that must be guaranteed in the
system, we can formulate it as an additional hard clause.

Optimization Objectives. VNE is a multi-objective opti-
mization problem. From a network infrastructure perspective,
as many service requests as possible should be mapped onto
the substrate network, making efficient use of the substrate
network resources. However, the industrial environment usu-
ally requires minimization of link propagation delay between
the endpoints too. Accordingly, the objective function of
our formulation has two goals: to minimize the number of
substrate nodes in use and to minimize network latency.

The soft clauses involving the route predicates cause the
solver to minimize latency. In order to minimize the number
of substrate nodes in use we add the following additional soft
clause for each substrate node ns

i ∈ Ns:

Soft(¬yi,K)

where K is a constant selected according to whether we
want to give priority to latency minimization or to number
of substrate nodes in use minimization, where the larger K
means priority to minimize use, while lower K means priority
toward latency minimization. The MaxSAT solver attempts
to assign false values to the boolean variables yi in order
to minimize the penalty for falsified clauses in the current
model, thus minimizing the number of nodes in use. Then, if
we feed the set of formulas defined so far along with models
in Section III-B to the MaxSAT solver, it returns, if possible, a
model that satisfies all hard clauses, including the ones about
reachability/isolation (see Section III-B), while minimizing
latency and the number of nodes in use.

B. Formal Verification

To satisfy the URLLC requirements of the IIoT, we focus
on security as the main parameter to ensure reliability. As
mentioned in Section I, misconfigurations in the network are
the cause of major network failures such as reachability prob-
lems, security violations, and network vulnerabilities. Thus,
the aim of the verification process in this paper is to analyze
inconsistencies and misconfigurations between two or more
devices in the industrial networks.

As described in Section II, many techniques and tools
exist for a formal analysis of the forwarding behavior of a
service graph. Among the others, the modeling approach of the
Verigraph tool presented in [3] is particularly interesting for
our work as it is completely compatible with the z3Opt solver.
In essence, the set of logic formulas defined in Verigraph
corresponds to a set of the hard clauses mentioned in Section
III-A and then can be easily solved by z3Opt together with
the other clauses previously defined. In particular, by means of
this approach we can statically analyze network configurations
of the SG to check the satisfiability of network policies such as

Fig. 2. A static structure of packet fields

reachability or isolation. Given a policy, Verigraph attempts to
find appropriate values to uninterpreted functions and constant
symbols that constitute the formal model of the network in
order to satisfy the policy. If the solver cannot produce a
model, a configuration error is detected, and the property is
said to be unsatisfiable.

The work presented in [3] must be extended in order to be
applied in our solution. First, we need to modify the presented
packet forwarding model to make the approach more efficient.
In particular, we can eliminate the notion of quantitative time
that is currently used in Verigraph models in order to reduce
the size of the problem and thus speedup the verification
process in complex scenarios. This is key in a flexible and
reconfigurable scenario like IIoT. Second, we need to introduce
new VNF models in addition to the existing catalog in order
to address specific industrial applications that are currently not
covered.

In the following we present the forwarding model of the
network employed in this paper, as derived by the Verigraph
approach, followed by some examples of VNF models that
are relevant in our context. We model the network as a set of
network nodes that send and receive packets. Each packet has
a static structure (Figure 2) of fields:
• src and dest are the source and destination addresses of

the current packet;
• inner src and inner dest are the ultimate source and

destination addresses of the encapsulated packet;
• origin represents the network node that has originally

created the packet;
• origin body takes a trace of the original content body of

the packet, while body is the current body (that could be
modified traversing the chain);

• seq is the sequence number of this packet;
• proto represents the protocol type;
• options are the options values for the current packet;
• encrypted is used to represent if the packet is encapsu-

lated in another packet or not.
We also use a set of functions for retrieving information.

All these functions are uninterpreted functions supported by
the solver, which allow any interpretation that is consistent
with the constraints over the function.
• Bool nodeHasAddress(node, address), which returns true

if address is an address associated to node;
• Node addrToNode(address), which returns the node as-

sociated to the passed address;



• Int sport(packet) and Int dport(packet), which return
respectively the source and destination ports of packet.

The main functions that model operational behaviors in a
network are:
• Bool send(node src, node dest, packet) which returns

true if source node node src can send packet packet
towards destination node node dest;

• Bool recv(node src, node dest, packet) which returns true
if destination node node dest can receive packet packet
from source node node src.

Ultimately, the uninterpreted functions are the means to im-
pose conditions for describing how network and VNFs operate.

The general forwarding behavior of a network can be
expressed by means of the following set of conditions imposed
on those two functions:

send(n0, n1, p0) =⇒ (n0 6= n1 ∧ p0.src 6= p0.dest∧
sport(p0) ≥ 0 ∧ sport(p0) < MAX PORT∧
dport(p0) ≥ 0 ∧ dport(p0) < MAX PORT∧),
∀n0, p0

(6a)
recv(n0, n1, p0) =⇒ send(n0, n1, p0), ∀n0, p0 (6b)

Formula 6a states that the source and destination nodes (n0

and n1) must be different, as well as the source and destination
addresses in the packet (p0.src and p0.dest). The source and
destination ports must also be defined in a valid range of
values. If a packet is received by a node (n1), this implies
that the packet was sent to this node. This is expressed by
Formula 6b.

To verify the correctness of reachability properties in pres-
ence of such functions, we must also assume that the original
sent packet could be different from the received one. Hence,
we can verify the reachability between the src and dest nodes
in presence of a set of middleboxes thanks to the following
formula:

∃(n0, p0) | recv(n0, dest, p0) ∧ p0.origin == src (7)

Here we are modeling the case of a source node (src) that
is sending a packet to a destination node (dest) of which
we want to check the reachability. The destination node may
receive a different packet from the one sent, because VNFs
could modify the sent packet in its trip towards the destination.
Thus we must impose that the destination node receives a new
packet (p0) from the last node (n0): the received packet must
have the source node as origin (p0.origin == src).

On the contrary, the isolation property states that a packet
sent from a source node (src) must not be received by a
destination node (dest), as shown in Formula 8a. This can
be expressed as for all the packets received by the destination
node, the origin of the packets must not be equal to the source
node (p0.origin 6= src). Lastly, as shown in Formula 8b, we
must assert that there is a packet sent by the source node and

the destination address of the packet is the destination node
(dest).

∀(n0, p0) | recv(n0, dest, p0) =⇒ p0.origin 6= src (8a)
∃(n1, p1) | send(src, n1, p1) ∧ nodeHasAddress(dest, p1.dest) (8b)

In addition to the above clauses, it is necessary to impose
formulas describing the specific behavior of involved VNFs.
In the following we present as an example some of the VNFs
models used to model the middleboxes of the IIoT scenario
we chose as an example.

Endpoint. An endpoint is an industrial device that sends
packets towards another endpoint and receives packets from it.
The sent packets must satisfy the conditions expressed in (9a):
(i) the endpoint address is the source address; (ii) origin is the
endpoint itself; (iii) origin body and body must be equal. The
received packet must have the endpoint address as destination,
as expressed in (9b).

(send(endpoint, n0, p0)) =⇒ nodeHasAddress(endpoint, p0.src)∧
p0.origin == endpoint∧
p0.origin body == p0.body∧
predicatesOnPktF ields, ∀(n0, p0)

(9a)
(recv(n0, endpoint, p0)) =⇒ (nodeHasAddress(endpoint, p0.dest)),

∀(n0, p0)
(9b)

This is a basic version of an endpoint in the service
graph, which can be configured to behave as an endpoint-
based model (i.e., MTU, RTU, PLC, IED, HMI and smart
meters). Then, endpoint configurations are the means to spec-
ify which traffic flow endpoints send, without changing their
basic model (e.g., a SCADA client can generate a packet
with a specific port number, destination address etc.). Initially
predicatesOnPktF ields is set to true and, depending on
the packet model configured by the user, this predicate will
be appended with the assigned fields of the packet (e.g.,
predicatesOnPktF ields = predicatesOnPktF ields ∧
p0.body = 00).

ACL firewall model. An ACL firewall is a simple firewall
that drops packets based on its internal Access Control List
(ACL), configured when the service model is initialized. In
particular, the ACL list is managed through the uninterpreted
function acl func(src, dest, sPort, dPort, Proto) that fil-
ters on five attributes. A possible interpretation is given by
(10), when the ACL list contains two entries, like for example
ACL = [< src1, dest1, ∗, ∗, ∗ >].

acl func(a, b, c, d, e) == (a == src1 ∧ b == dest1), ∀(a, b, c, d, e)
(10)



A negation of the function represents the “blacklisting”
approach of the firewall. Hence, if an ACL firewall sends a
packet, it means that it has previously received a packet of
which the source and destination addresses are not contained
in the ACL list:

send(fw, n0, p0) =⇒ (∃(n1)|recv(n1, fw, p0)∧
¬acl func(p0.src, p0.dest, sport(p0),dport(p0), p0.proto),

∀(n0, p0)

(11)

IDS. Intrusion detection system (IDS) function monitors
a network for malicious activity or policy violations. We
model the simplest IDS network function that also acts as
an intrusion prevention system function. This function is able
to analyze each received packet and to look for matches
with a set of filtering rules in the blacklist, e.g., involving
Modbus/TCP protocol-specific function codes. As majority of
SCADA systems use plain text (HEX) communications, they
are susceptible to attacks, allowing the insertion of illegitimate
system commands by an attacker. Let us suppose the IDS must
block the Modbus diagnostic messages with function code
00 and 43 that are used to cause denial of service attacks
in [28]. In this case the blacklist can be defined as Black-
List=[00 (return query data), 43 (read device identification)],
which is represented in (12) as a formula imposing that the
isInBlackList() function returns TRUE if (body == 00) or
(body == 43) is TRUE.

(isInBlackList(body) == (body == 00) ∨
(body == 43)), ∀body

(12)

Formula (13) states that the IDS forwards a packet only if
this packet was received and it does not contain the blacklisted
packet body.

send(ids, n0, p0) =⇒ ∃(n1) | recv(n1, ids, p0)∧
¬isInBlackList(p0.body), ∀(n0, p0)

(13)

Conjunction of the placement constraints (III-A) with the
forwarding behavior of the network (III-B) represents the
overall model of the system. By feeding the solver with this
input, we obtain the placement plan that ensures the network-
wide properties are satisfied.

IV. USE CASE AND EXPERIMENTAL RESULTS

This section presents some experiments we run to evaluate
our methodology. In order to do that, we reuse the same topol-
ogy considered for the substrate network of DCs and Smart
Grid devices presented in [13], where the Abeline - inspired
Internet2 network topology forms the substrate network and
IEEE BUS 57 test system topology hosts the Smart Grid
endpoints. The experimental topologies are depicted in Figure
3. We exploit the same network topology generator, GENSEN

Fig. 3. Experimental topologies presented in [13] (redrawn).4 an augmented
backbone network of 10 data centers and© IEEE bus test system of 57 nodes

[29] to generate a realistic geographical distribution of grid
edge endpoints. Similarly, the link latency is assumed to be
directly proportional to the Euclidean distances between the
endpoints and substrate nodes.

The IEEE Bus 57 Test Case of the American Electric Power
System in the Midwestern, US, includes several sections
representing information from different devices in the power
grid. Buses are nodes in the network or substation locations,
and branches are the connections between buses. Each power
system bus works as a gateway router that is connected to the
closest substrate network node either through wired or wireless
links (e.g., xDSL, LTE). The gateway routers aggregate traffics
from endpoint VNFs to be forwarded to other endpoints
or substrate nodes throughout the substrate network. In the
evaluation phase of the tool, we select random nodes from
the test system topology and map the endpoint VNFs of the
service on them. We illustrate the physical connections that
link Smart Grid nodes to substrate nodes with dashed lines,
as shown in Figure 3.

We consider an initial scenario where the service graph
(represented in Figure 4(a)) consists of SCADA commodity
devices to perform various grid control applications, SCADA
slaves that interact with the control devices, and security
functions in between. For this example, endpoints correspond
to the Automation Control Center (ACC), Metering Data
Center (MDC), Remote Terminal Unit (RTU) and Intelligent
Electronic Device (IED) in the Smart Grid network. These
endpoints are connected through an encrypted channel with
the help of two VPN termination network functions nv

1 and
nv
2 . Additionally, there is an IDS network function nv

3 between
the endpoints ACC, MDC and RTU.

In our service model, we assume the location of the end-
points to be fixed and associated to specific substrate nodes
(i.e., they are not considered in the placement procedure),
whereas the network functions need to be placed in the
substrate network. Concerning the verification aspects, we
define two reachability policies in this SG from RTU to ACC
and from MDC to IED.



Original Service Graph (a)

Automation 
Control Center(𝑨𝑪𝑪)

Metering Data 
Center(𝑴𝑫𝑪)

VPN (𝒏𝟏
𝒗) VPN (𝒏𝟐

𝒗)

RTUIDS (𝒏𝟑
𝒗)

IED

Updated Service Graph (b)

VPN (𝒏𝟏
𝒗) VPN (𝒏𝟐

𝒗)

RTUIDS (𝒏𝟑
𝒗)

IED

Firewall (𝒏𝟒
𝒗)

Reachability: 𝑨𝑪𝑪 ← 𝑹𝑻𝑼
Reachability: 𝑴𝑫𝑪→ 𝑰𝑬𝑫

Automation 
Control Center(𝑨𝑪𝑪)

Metering Data 
Center(𝑴𝑫𝑪)

Isolation: 𝑨𝑪𝑪 ← 𝑹𝑻𝑼
Reachability: 𝑴𝑫𝑪→ 𝑰𝑬𝑫

Fig. 4. Examples of Service Graph

On the assumption of compromised RTU in the field net-
work, NFV orchestrator proposes an updated service graph
depicted in Figure 4(b) to mitigate the impact of cyber-attacks.
This updated SG includes a firewall VNF nv

4 to block packets
of RTU device from proceeding to the control center, while the
reachability requirement between ACC and RTU is converted
to an isolation policy.

In this section, we present results of the updated graph (b)
that has different placement in the substrate network compared
to the original graph (a). The high-level representation of
the updated service that includes both aspects related to the
infrastructure (i.e., which network functions implement the
service, how they are interconnected among each other) is
fed as an input to our tool along with the configurations
of these network functions following the notation given in
Section III-B. The list of these configurations is given below:
• VPN access nv

1: IP address of the VPN exit nv
2 gateway

• VPN exit nv
2: IP address of the VPN access nv

1 gateway
• IDS nv

3: not allowed function code {43}
• Firewall nv

4: {src:RTU dst:ACC sport:∗ dport:∗ proto:∗}
• ACC: generates a packet with a function code different

from {43}
The required storage capacities of each VNF are integers with
a uniform distribution between 10 and 50, whereas the avail-
able storage capacity of each substrate node varies between
100 and 150. An overall processing delay of each VNF is
randomly determined by a uniform distribution between 50-
100 [30]. As the configuration parameters of the involved
VNFs satisfy the new isolation property in Figure 4 (b), a
latency-aware optimal placement of VNFs in substrate network
generated as an output:

x1,9, x2,7, x3,12, x4,3, y3, y7, y9, y12

In this list, we highlighted only the variables whose value is
true, which shows the allocation of the VNFs and occupancy
of the substrate nodes. From this output, we can conclude that
the VPN termination nv

1 is placed on the substrate node ns
9,

the VPN termination nv
2 on ns

7, the IDS nv
3 on ns

12 and the
firewall VNF nv

4 on the substrate node ns
3.

We feed our tool with this updated SG including 8 VNFs on
real data sets of Table II. For each substrate network topology,
we use the same IEEE BUS 57 test system topology for Smart
Grid endpoints. We limit our study to this data set only, for the

TABLE II
COMPUTATION TIME OF DIFFERENT TOPOLOGIES

Topology Nodes Links Time (O+V) Time (O)[12]
Internet2[21] 10 13 0.6 0.029
GEANT[21] 22 36 15.4 0.1
UNIV1[31] 23 43 22.2 0.235

AS-3679[32] 79 147 35.1 3.013

Smart Grid, but any other data set in the “IEEE Common Data”
format is applicable to our approach. The demonstrated results
reflect computation time of the latency minimization problem
under various conditions. Each of these scenarios consists of
a substrate network and service request to be allocated. All
evaluations are executed on a workstation with 32GB RAM
and an Intel i7-6700 CPU.

It is evident from the table how the average computation
time of the proposed approach for the Internet2 topology
adopted from [13] is low and certainly compliant with the
IIoT requirements (less than 1 sec for 10 nodes and 13 links).
However, GEANT, UNIV1 and AS-3679 network topologies
show significant computation overhead due to the much larger
network sizes considered. It is important to note that the
different combination of configurations of network functions
and the number of properties to verify have a small impact on
the complexity of the problem in contrast to the size of the
topology.

Compared to the time of optimization (O) only given in
[12], the time taken by our optimization and verification tool is
higher. However, it is important to mention that the placement
optimization and verification (O+V) of an SG is a problem
fundamentally different and more complex than the simple
VNE problem. APPLE solves the VNE problem in a short
time, but specific aspects of NFV such as forwarding behavior,
chaining, and models of network functions are not addressed
by the authors of the tool. These additional details that must
be considered in our work certainly introduce further time
complexity. However, as part of possible future work it would
be possible to develop heuristic-based algorithms to profitably
consider much larger network sizes.

V. CONCLUSION

This paper presents joint optimization and verification
model of the network services for NFV/SDN-enabled IIoT
networks. This allows us to check the forwarding behavior



of network service functions and provide latency-aware opti-
mal placement in the network infrastructure. The problem is
formalized as an instance of the weighted MaxSAT problem.
The encoded model is fed as an input to a solver and the
optimal placement of network functions in infrastructure net-
work is obtained as an output, if the configuration of involved
VNFs satisfies network properties. The output guarantees the
end-to-end service delivery at minimum cost including both
processing delay and network delay. To evaluate our model,
we have selected the Smart Grid, as a representative use case
of industrial Internet of things. We have used IEEE BUS 57
topology for the Smart Grid network and several real-world
network topologies for data center backbone. As the initial
results show promises in smaller instances, we plan to improve
our abstract model to cope with bigger instances and use them
to further scale our tool.

REFERENCES

[1] M. Harvey, D. Long, and K. Reinhard, “Visualizing nistir 7628,
guidelines for smart grid cyber security,” in 2014 Power and Energy
Conference at Illinois (PECI), Feb 2014, pp. 1–8.

[2] N. Bjørner, A. Phan, and L. Fleckenstein, “νz - an optimizing SMT
solver,” in ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
2015, pp. 194–199.

[3] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and
R. Sisto, “Formal Verification of Virtual Network Function Graphs in an
SP-DevOps Context,” in Service Oriented and Cloud Computing - 4th
European Conference, ESOCC 2015, Taormina, Italy, September 15-17,
2015. Proceedings, 2015, pp. 253–262.

[4] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verification
system,” in Proceedings of the 11th International Conference on Auto-
mated Deduction: Automated Deduction, ser. CADE-11. London, UK,
UK: Springer-Verlag, 1992, pp. 748–752.

[5] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in Proceedings of the
ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New York,
NY, USA: ACM, 2011, pp. 290–301.

[6] M. A. Rahman, A. H. M. Jakaria, and E. Al-Shaer, “Formal analysis for
dependable supervisory control and data acquisition in smart grids,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2016, pp. 263–274.

[7] O. Rysavy, J. Rab, and M. Sveda, “Improving security in scada systems
through firewall policy analysis,” in 2013 Federated Conference on
Computer Science and Information Systems, Sept 2013, pp. 1435–1440.

[8] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

[9] M. A. Rahman, P. Bera, and E. Al-Shaer, “Smartanalyzer: A noninvasive
security threat analyzer for ami smart grid,” in 2012 Proceedings IEEE
INFOCOM, March 2012, pp. 2255–2263.

[10] B. Dutertre and L. D. Moura, “The yices smt solver,” Tech. Rep., 2006.
[11] M. Alaluna, L. Ferrolho, J. R. Figueira, N. Neves, and F. M. V.

Ramos, “Secure virtual network embedding in a multi-cloud
environment,” CoRR, vol. abs/1703.01313, 2017. [Online]. Available:
http://arxiv.org/abs/1703.01313

[12] X. Li and C. Qian, “An nfv orchestration framework for interference-
free policy enforcement,” in 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), June 2016, pp. 649–658.

[13] M. M. Hasan and H. T. Mouftah, “Cloud-centric collaborative security
service placement for advanced metering infrastructures,” IEEE Trans-
actions on Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[14] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet), Oct 2015, pp.
171–177.

[15] J. C. Gonzalez, K. Hopkinson, G. Greve, M. Compton, J. Wilhelm,
S. Kurkowski, and R. Thomas, “Optimization of trust system placement
for power grid security and compartmentalization,” in 2011 IEEE Power
and Energy Society General Meeting, July 2011, pp. 1–1.

[16] M. M. Hasan and H. T. Mouftah, “Latency-aware segmentation and
trust system placement in smart grid scada networks,” in 2016 IEEE
21st International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD), Oct 2016, pp. 37–42.

[17] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5g,” in Proceedings
of the 2015 1st IEEE Conference on Network Softwarization (NetSoft),
April 2015, pp. 1–6.

[18] M. M. Hasan and H. T. Mouftah, “Optimal trust system placement in
smart grid scada networks,” IEEE Access, vol. 4, pp. 2907–2919, 2016.

[19] I. Parvez, A. Rahmati, I. Güvenç, A. I. Sarwat, and H. Dai, “A
survey on low latency towards 5g: Ran, core network and caching
solutions,” CoRR, vol. abs/1708.02562, 2017. [Online]. Available:
http://arxiv.org/abs/1708.02562

[20] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann,
A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
critical iot applications in 5g: Perspective on the design of radio interface
and network architecture,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 70–78, February 2017.

[21] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0–Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007, http://sndlib.zib.de, extended version accepted in
Networks, 2009.

[22] L. Zhou and H. Guo, “Applying NFV/SDN in mitigating DDoS attacks,”
TENCON 2017 - 2017 IEEE Region 10 Conference, pp. 2061–2066,
2017.

[23] A. Califano, E. Dincelli, and S. Goel, “Using Features of Cloud
Computing to Defend Smart Grid against DDoS Attacks,” 10th Annual
Symposium on Information Assurance (ASIA15), no. July, p. 44, 2015.

[24] T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan, F. Zeiger, S. Spirou,
I. Askoxylakis, X. Vilajosana, H. J. Einsiedler, and J. Quittek, “Vir-
tuwind: virtual and programmable industrial network prototype deployed
in operational wind park,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 27, no. 9, pp. 1281–1288, 2016, ett.3057.

[25] N. Bjorner and A.-D. Phan, “Z - maximal satisfaction with z3,” in
SCSS 2014. 6th International Symposium on Symbolic Computation
in Software Science, ser. EPiC Series in Computing, T. Kutsia and
A. Voronkov, Eds., vol. 30. EasyChair, 2014, pp. 1–9.

[26] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[27] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology awareness and optimiza-
tion,” Computer Networks, vol. 56, no. 6, pp. 1797 – 1813, 2012.

[28] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta, “An experi-
mental investigation of malware attacks on scada systems,” International
Journal of Critical Infrastructure Protection, vol. 2, no. 4, pp. 139 – 145,
2009.

[29] T. Camilo, J. S. Silva, A. Rodrigues, and F. Boavida, “Gensen: A topol-
ogy generator for real wireless sensor networks deployment,” in Software
Technologies for Embedded and Ubiquitous Systems, R. Obermaisser,
Y. Nah, P. Puschner, and F. J. Rammig, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 436–445.

[30] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions
placement problem,” in Proceedings of the 4th Workshop on All Things
Cellular: Operations, Applications, &#38; Challenges, ser. AllThings-
Cellular ’14. New York, NY, USA: ACM, 2014, pp. 33–38.

[31] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’10. New York, NY,
USA: ACM, 2010, pp. 267–280.

[32] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring isp
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp.
2–16, Feb. 2004.


