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Abstract—This positioning paper provides an overview on an
envisioned platform, intended as a set of technologies, protocols
and algorithms, to achieve highly accurate localization for
cooperative-intelligent transport systems. This is the result of a
three years investigation conducted within the scope of the EU
H2020 HIGHTS project and offers an insight on the envisioned
hybrid service platform to enable vehicular positioning services
for highly automated driving (HAD) scenarios. This paper
reviews the main components of such a platform, drafting the
guidelines for the seamless integration (i.e. hybridization) and
field validation of multiple localization solutions to support
robust HAD functionalities.

I. INTRODUCTION

Autonomous driving is certainly the hype of the moment
within the Intelligent Transport System (ITS) sector. Al-
though we are relatively far from a futuristic vision where
all vehicles on the road are fully autonomous, day one tech-
nologies for Highly Automated Driving (HAD) are expected
to bring a huge improvement for the safety and protection
of Vulnerable Road Users (VRUs). A core capability of
every autonomous vehicle is therefore the geo-temporal
awareness, i.e., to know, with significant confidence, both its
own real-time position and those of all other entities (e.g.,
surrounding vehicles, VRUs, road boundaries and lanes, road
artifacts and objects), i.e., the so-called electronic horizon.
Such awareness is based on a vehicular localization system
that goes beyond GNSS in terms of both accuracy and
continuity.

The EU H2020 HIGHTS project has been putting for-
ward the fundamental idea of a cooperative hybrid ser-
vice platform, collecting geo-temporal inputs from different
technologies to enable new vehicular positioning services
that require accurate and resilient Local Dynamic Maps
(LDMs). The design, the implementation and the proof-
of-concept validation of this platform are key technical
outcomes of the HIGHTS project. One central aspect of
the envisioned service platform is the cooperation between
vehicles for sensing and positioning. In order words, car-
centric sensor data transmitted between vehicles will be
even more beneficial if their context is also shared between
cars. This is the purpose of LDMs, which will be available
on future ITS. Maps are central to any positioning solu-
tion, as they assist cooperative positioning algorithms with
potentially known landmarks, Global Navigation Satellite
System (GNSS) for map matching, and more generally

TABLE I
LOCALIZATION TECHNOLOGIES

Technology Benefits Drawbacks
GNSS 1.5 meters absolute posi-

tioning accuracy (20 cm
for RTK)

needs Line-of-Sight
(LOS) between satellites
and receiver

Lidar cm-level accuracy
tracking and identification
of objects

needs line of sight, re-
quires map for absolute
localization

Radar cm-level accuracy, track-
ing and identification of
objects

less accurate than Lidar

Odometer simple, low cost only measures distance
Camera recognition of environ-

mental objects
only relative information,
needs line of sight

V2X sharing of measurement
data
extract range information
from radio signals

unreliable wireless chan-
nel
poor accuracy of measure-
ments

provide an enhanced environmental perception for future
autonomous vehicles. Despite the fact that maps represent a
fundamental part of positioning systems, multiple challenges
related to their uniform usage arise, such as differences in
map technology and data structures. Hence, it is necessary
to define recommendations and promote standardization of
ontologies and semantics for roads, objects, communication
channel properties, navigation and any other similar aspect.
The ETSI ITS integrated a specification for LDMs [1], [2],
which should be extended to integrate the additional sensor
and contextual data from HAD and VRU services. Another
challenge is to make this enhanced LDM specification
compact and efficient, with data classified in layers. Finally,
due to the required delay to guarantee map freshness and
the potential large capacity required to transfer mapping
data, the location of servers needs to be well planned,
possibly with preference of edge-based solutions over cloud
ones. Despite the multiple and heterogeneous positioning
technologies already present in the market (see Table I), both
in term of GNSS-based systems and on-board sensors, none
of them are effective under all road conditions and scenarios.
However, suitable fusion into a hybrid architecture will allow
to overcome all the peculiar limitations enabling a robust,
resilient and effective service platform.

In this paper, we describe the main concepts of this coop-
erative hybrid service platform, architecture implementation,
and early field validation.



II. COMMUNICATION TECHNOLOGIES AND PROTOCOLS

Besides accuracy requirements, the envisioned hybrid
service platform also aims at a latency level compatible
with Cooperative Intelligent Transport System (C-ITS) ap-
plications. The approach is to rely on disruptive cooperative
V2X communication strategies and protocols (i.e., between
vehicles, infrastructure elements and possibly, VRUs and/or
Internet-of-Things (IoT) devices) to exchange and consol-
idate positioning and contextual information, thus comple-
menting the data produced by on-board systems. The aim
is to exchange data of various kind and quality (ranging,
GNSS data, maps, caching, contexts), which can be used by
the cooperative fusion algorithms described in Section III.

A second objective is to develop methodologies to en-
rich the LDM with high precision maps, local elementary
views of vehicles and dangers, environmental landmarks, or
statistical data (space-time mobility/connectivity contexts).

The main challenges of the communication subsystem are
thus threefold:
• Communication Capacity - any available communi-

cation technology shall be used to support the required
data volume and delay between ITS stations and ser-
vices.

• Message Format - none of the four types of messages
within the current C-ITS architecture has been specified
to support the exchange of environmental/contextual
data.

• Contextual Information - most of the information
gathered by one ITS station will be meaningful in a
specific context, which also needs to be exchanged in
an understandable way.

To this end, six current state-of-the-art communication
technologies have been used for testing within HIGHTS
projects (ETSI ITS-G5 V2X, Bluetooth, IEEE 802.15.4, Zig-
Bee, WiFi-Direct and 4g LTE) and two other technologies
(3GPP LTE-D2D and mm-WAVE) have been considered for
more prospective investigations and future developments.
Table II summarizes their main characteristics.

III. HYBRID LOCALIZATION WITH HETEROGENEOUS
INFORMATION

This chapter offers an overview on the main algorithmic
solutions envisioned within the HIGHTS project to perform
hybrid vehicular localization, i.e. to do positioning with
heterogeneous information.

A. Implicit Cooperative Positioning

Explicit range measurements between vehicles can be
performed with high accuracy when using dedicated tech-
nologies, including UWB or the Fine-Timing-Measurement
(FTM) protocol defined in IEEE 802.11mc. When such
technologies are unavailable, V2V and V2I radio links can
still be used for implicit cooperative positioning (ICP).
The aim of ICP is to improve the localization accuracy of
vehicles by having multiple vehicles observe the same scene
and sharing information about this scene. In ICP, at time

step k, each vehicle i has a local GNSS measurement of
its own state yi,k in a global coordinate system, and a local
measurement zi,k of surrounding mobile objects (vehicles,
pedestrians, or other objects not available in offline maps)
in the scene, obtained from an on-board sensor, such as a
radar, LIDAR, or stereo camera. Denoting by xi,k the state
of vehicle i (position, heading, velocity) and by sk the state
of the objects (position, velocity), measurements are of the
form

yi,k = f(xi,k) + ni,k (1)
zi,k = g(xi,k, sk) + wi,k, (2)

where f(·) is the GNSS measurement function, g(·, ·) is the
vehicle-to-object measurement function, which depends both
on the state of the vehicle and the state of the mobile objects,
and ni,k and wi,k are stochastic measurement errors. Aggre-
gating all measurements in yk and zk, the goal of ICP is
to determine p(xi,k|yk, zk) through either centralized (with
V2I) or distributed processing (with V2V). This problem
is challenging as vehicles may not be able to perceive the
complete sk and g(·, ·) may be invariant to permutations
of the objects (as objects have no natural identifier). The
ICP determines approximations of p(xi,k|yk, zk) through
Bayesian filtering, as described in [3], [4].

B. Cholesky MDS

Consider a vehicular network of N nodes in a 2-
dimensional Euclidean space. There are Na nodes with
known location (anchors) and Nt nodes with unknown loca-
tion (targets) which are to be localized. Such a network can
be represented by an undirected graph Gη,N (Z,V,D), with
vertices Z = {z1, . . . , zNa

, zNa+1, . . . , zNa+Nt
}, undirected

edges V = {vn,m} and weights D = {dn,m}, where
n,m ∈ {1, · · · , N}.

Here edges represent communication links while weights
are the Euclidean distances between sources, given by

dn,m = D(zn, zm) ,
√
〈(zn − zm); (zn − zm)〉, (3)

where 〈zn; zm〉 denotes the inner product of zn and zm.
The new proposed algorithm, namely Cholesky MDS

(CMDS), creates the so called Edge-Gramian Kernel (EGK)
K based on the distance and (optionally) angle information
to estimate, via algebraic manipulations (full details are
provided in [10]) to finally derive Z.

More in details, the EGK can be written as product of a
lower and upper triangular matrix

K = V ·V† (4)
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where † is the conjugate transpose operator and V contains
all the individual edges represented in complex form such
that

vi= (zm,x−zn,x) + j(zm,y−zn,y). (5)



TABLE II
COMMUNICATION CAPABILITIES BY CURRENT AND NEW TECHNOLOGIES [7]

Technologies Throughput Delay D2D Range Sec/Privacy Ranging Cap.
ITS-G5 3-12Mbps ∼10ms Yes 300-1000m Strong No

Bluetooth 24Mbps ∼100ms#link Yes 20-30m Weak No
IEEE 802.15.4 250Kbps ∼20ms#link Yes 10m Weak Yes

UWB 25Gbps ∼20ms#link Yes 10m Weak Yes
3GPP LTE 100Mbps UL/50 Mbps DL ∼250-100ms No >1Km Strong No

WiFi (Direct) 1Gbps ∼1s Yes ∼100m Weak No
New Technologies

LTE D2D ∼ 70Mbps ∼50ms Mode1/∼10ms Mode2 Yes 300-900m Mode 1 Yes/Mode 2 No Not defined
mmWAVE > 10 Gbps 1ms e2e Yes <200m Implicit Not defined

The Cholesky algorithm can be briefly described by the
following pseudo-code:

Algorithm 1 Cholesky MDS
Input:
• Pairwise distance and angle estimates.
• The coordinates of at least Na ≥ d 1+

√
8N−7
2 e.

Steps:
1. Construct the kernel K.
2. Compute V̂ via Cholesky-decomposition of K.
3. Compute Ẑ.
4. Retrieve Z from Ẑ via Procrustes transformation.

C. Virtual Anchor Cooperative Localization
In Vehicular Ad hoc NETworks (VANETs), an “ego”

vehicle can consider its neighbors as potential “virtual
anchors” [12], [13], [11] (i.e. mobile anchors with only
approximate knowledge about their own positions). The prin-
ciple of our vehicular Virtual Anchors assisted Cooperative
Localization (VA-CLoc) works in three phases. First, each
vehicle piggybacks its absolute position information in a
“Beacon” sent over “V2X” communication links1. Through
the reception of these “Beacons”, a given “ego” vehicle
becomes aware of the absolute position estimates of its
neighbors. The second phase consists of using the “Bea-
con” signal statistics to sample relative position-dependent
information from these “virtual anchors” (e.g., Vehicle-
to-Vehicle (V2V) distances, relative angles, etc.). Ad hoc
trilateration can then be locally applied to fuse the latter
information with on-board GNSS position estimates and
further enhance the absolute localization (see Fig. 1). In
the final phase, the “ego” vehicle cooperates to improve
the localization of other vehicles by further broadcasting its
fusion results in subsequent “Beacons”. CLoc has already
been applied in [12], [13], [11] to fuse on-board GPS
positions with opportunistic V2V Received Signal Strength
Indicators (RSSIs) out of “Beacons” such as Cooperative
Awareness Messages (CAMs), relying on the V2X ITS-G5
technology.2 A major advantage of using V2V RSSI lies in

1To remain technology neutral, a “Beacon” is a message periodically
broadcast by each node, while “V2X” (Vehicle-to-X) refers to any tech-
nology capable of Device-to-Device (D2D) communication in a vehicular
context.

2CAM and ITS-G5 are European counterparts to the Basic Safety
Message (BSM) and Dedicated Short Range Communication (DSRC) in
the US.

Fig. 1. “Ego” car receiving asynchronous CAMs from one-hop “virtual
anchors” to perform distributed CLoc. The dispersion of CLoc location
estimates (through both GNSS and ITS-G5) is expected to be lower than
that of non-CLoc estimates (i.e., standalone GPS).

the full compliance with future ITS-G5 connected vehicles.

D. Channel-SLAM

The fundamental idea of Channel-SLAM is to exploit the
information contained in the multipath components of sig-
nals of opportunity. In particular, each multipath component
arriving at a receiver via a different propagation path is
regarded as a signal from a so-called virtual transmitter in a
pure LOS condition to the receiver. While the derivation
and a detailed description are presented in [8], Figure 2
illustrates the idea of Channel-SLAM, with one physical
transmitter Tx in the scenario. The signal component in
blue reflected at the surface and arriving at the user is
treated as a LOS signal from the virtual transmitter vTx1.
Geometrical considerations show that the location of vTx1 is
the location of Tx mirrored at the reflecting surface, and that
the two transmitters are inherently perfectly synchronized.
The signal component in green scattered at the punctual
scatterer is regarded as being transmitted by the virtual
transmitter vTx2, which is at the scatterer location. Though,
in the case of scattering, there is a delay offset τ0 among
the physical and the virtual transmitter corresponding to the
Euclidean distance between the two. The delay offset can be
regarded as a clock offset. In both cases, the locations and
delay offsets of the virtual transmitters are static as the user
is moving.

Channel-SLAM works in two stages. In the first stage, the
Time of Arrival (ToA) and Angle of Arrival (AoA) of each
multipath component are estimated. No knowledge on the
geometry of the scenario is assumed, and hence the locations
of the physical and virtual transmitters are unknown. The



Fig. 2. A physical transmitter Tx broadcasts a signal. The blue multipath
component arriving at the user via the reflecting surface is treated as a
LOS signal from the virtual transmitter vTx1 and the green multipath
component scattered at the punctual scatterer as a LOS signal from the
virtual transmitter vTx2. The location of both virtual transmitters is static
as the user moves.

estimates from the first stage are used as measurements in the
second stage to simultaneously localize the user and map the
physical and virtual transmitters with a Rao-Blackwellized
particle filter in a Simultaneous Localization and Mapping
(SLAM) approach. The user state consists of the position
and velocity in two dimensions each. For each transmitter,
its location and clock offset are estimated. In particular,
we assume that different virtual transmitters correspond to
multipath components interacting with distinct objects, and
hence the transmitters are estimated separately.

As a user moves through a scenario, different physical
and virtual transmitters can be observed for a certain time.
When a new transmitter is detected, it is important to know
if this transmitter had been observed before, and if so, to
which of the previously observed transmitters the new one
corresponds. This problem is known as data association.
Data association is crucial for long-term robust SLAM, and
hence, Channel-SLAM has been expanded by an association
method in [9].

While users moves through a scenario, they estimate the
states of physical and virtual transmitters, and thus create
maps of transmitters. Such transmitter maps can be shared
among users as features of LDMs in an ITS context.

IV. ARCHITECTURE AND IMPLEMENTATION APPROACH

An on-board demonstrator setup for experimental vali-
dation of the cooperative localization approaches presented
here is realized as part of HIGHTS. Figure 3 shows the
generic architecture of this realization approach. The sens-
ing sub-systems provide measurements from different sens-
ing technologies, while the communication sub-system ex-
changes data with other vehicles and infrastructure. Table III
gives an overview of the technologies integrated in HIGHTS.
Further main elements are the LDM, the data fusion plane
hosting the hybrid localization algorithms (described in
Section III), as well as the interfaces between these modules.

At each vehicle, the LDM is realized by means of note-
book PC hardware hosting a MongoDB database to collect,
store and provide the sensor data as well as the data fusion

LDM

Data Fusion
Plane

LIDAR sub-system

Radio-ranging
sub-system

Camera sub-system

Odometry
sub-system

GNSS sub-system

Communication
sub-system

Application

Application

Fig. 3. Generic system architecture of the demonstrator setup

TABLE III
DATA PROVIDED BY THE SUB-SYSTEMS

Sub-system Technology Provided data
Lidar object tracking based on the

history of scan echoes
object ID, relative
object position

V2X Radio-
ranging

IEEE 802.15.4 phase mea-
surement, UWB time-of-flight
measurement, RSSI-based dis-
tance estimation for ITS-G5

station ID, range

Camera Lane boundary detection distance to lane
marking

Odometry Ego-motion estimation based
on IMU and wheel-speed sen-
sors

velocity, heading,
yaw rate

GNSS Satellite-based global position-
ing via GPS

latitude, longitude

Communication ITS-G5 V2X Communication
(Cohda MK5)

neighbor ID, posi-
tion and velocity

results. The LDM is connected to all sub-systems via on-
board Ethernet or CAN bus (via CAN gateway). All data
are time-referenced, a common time base is ensured by
using Network Time Protocol (NTP) synchronization based
on GPS. The database is organized in groups by means of
the sub-systems, following the W3C Automotive naming
convention. A critical requirement to the platforms used for
implementation of the algorithms is the ability to execute
the required computations in real time.

V. VALIDATIONS

A. Experimental Settings

Preliminary offline validations of the algorithms3 de-
scribed in Sec. III have been conducted based on experi-
mental data.

3Channel-SLAM could not be validated, given the available technologies
integrated onto the proof of concept platform by the time of these trials.
The reader is invited to refer to [6] for a more complete simulation-based
performance assessment.



a) Scenario 1: One first large-scale trial took place
at TASS’ vehicular test facilities in Helmond, Netherlands.
The involved platoon consisted of 3 equipped cars driving
in line (See Fig. 4). Each vehicle was equipped according
to Sec. IV, except for the data fusion plane, which was not
yet realized at this stage. The vehicles made two full rounds
along the A270/N270 highway section. The followed route
deliberately included a combination of straight and curvy
portions of road for better representativity and more realis-
tic performance assessment4. Ground-Truth (GT) positions
were logged using the on-board Real Time Kinematic (RTK)
GPS.

While evaluating ICP, the first leading vehicle was viewed
as the ”Ego” vehicle under test, using uniquely its low-
accuracy GPS for fusion, whereas the high-accuracy RTK
GPS of the second vehicle was used to assist and improve
the former. Three well-identified features detected by the on-
board lidars of both vehicles (uniformly distributed along the
road and separated by approximately 30 m) were extracted as
observations. Performance was evaluated over a short time
period when at least one of these features was simultane-
ously detected by the two lidars (i.e., for about 7 sec) in a
harsh area for standard GPS. The fusion result was updated
every 100 ms to benefit from lidar refreshment rate, after
manually removing biases (measurement artifacts), without
loss of generality about the findings accounted hereafter.

As for VA-CLoc, the third and last vehicle of the pla-
toon was considered as the ”Ego” one, receiving CAMs
encapsulating RTK GPS data from both the first and sec-
ond vehicles, measuring their respective RSSIs as explicit
V2V range-dependent measurements, and finally performing
fusion with its own on-board GPS data. Relying on mobility-
based prediction, the ”Ego” vehicle also re-synchronized the
RTK GPS information received from its neighbors, up to
the fusion time. The CAMs rate was approximately 3 Hz,
whereas the fusion rate was set to 8 or 4 Hz. Finally, so as
to calibrate the required V2V path loss model parameters,
we considered the RSSI readings collected over all the trials
and all pairs of MK5 devices, along with the GT distance
based on the three embedded RTK receivers. The fitted path
loss exponent (2.5) and shadowing standard deviation (3.7
dB) were further used in the observation model of the fusion
filter.

b) Scenario 2: One more focused test took place at
Zigpos headquarters, in a parking lot equipped with 6 static
anchor nodes (see Fig. 5). This scenario was primarily
intended to evaluate the suitability of CMDS at moderate
speed in GNSS-denied urban environments. This algorithm
is indeed viewed as a fast low-complexity alternative to
GNSS, for instance for initializing other fusion algorithms
(e.g., VA-CLoc, ICP...), while relying on ranging-enabled
Road Side Units (RSUs) or static parked cars serving as
fixed anchors. Input V2I range measurements were collected
based on the Impulse Radio-Ultra Wideband (IR-UWB)

4An interactive map is provided at http://u.osmfr.org/m/151124

Fig. 4. Test vehicles involved in the first HIGHTS field trials carried out in
Helmond: Objective’s BMW, TASS’s Prius and Ibeo’s Passat (left to right).

Fig. 5. Test site and estimated vehicle’s trajectory (green) on a parking lot
in Dresden, Germany - Sc. 2 (original pic. from Google Map).

technology embedded inside the radiolocation sub-system
of the proof of concept platform.

B. Results and Discussions

Table IV summarizes the 2D location errors achieved with
ICP and VA-CLoc in the first scenario for three character-
istic values of their empirical cumulative density function
(ECDF) (i.e., 0.1, 0.5 and 0.9 respectively).

Despite a relatively low fusion rate of 4 Hz, VA-CLoc
is shown to outperform standard GPS on both trips, even
though the gain is somehow lower than expected (provided
that neighbors are endowed with accurate RTK GPS and
thus, could have been more helpful). This is partly due to
the large dispersion of V2V RSSI measurements, but also
to the low number of cooperative neighbors involved in the
test case (only 2, at most), to the relatively low CAM rate
while providing RSSIs and neighboring positions (at approx-
imately 3 Hz in average, compared to the expected 10 Hz
nominal rate) and finally, to unfavorable geometric dilution
of precision (GDoP) conditions (as the three vehicles were
forming a longitudinal platoon most of the time and the
”Ego” vehicle was peripheral). Regarding the latter issue,
further investigations have confirmed that the 2D location
error is by far dominated by its cross-track component,
whereas the cooperation gain is mostly visible on the along-
track dimension. Other off-line tests have also shown that
increasing the fusion rate up to 8 Hz in this case is however
not really beneficial to V2V cooperation in the sense most
of the iterations just correspond to filtered GPS but not to
a true fusion event and thus, the amount of information
remains approximately the same. For next field trials, we
thus recommend higher V2x IST-G5 transmission rates (up



TABLE IV
2D LOCATION ERRORS IN SCENARIO 1 AT ’EGO” VEHICLE

Critical ECDF values 10% 50% 90%
Raw GPS (local/harsh GPS
area, 1st veh.) - 1st trip (7sec)

6.8m 6.9m 7.1m

ICP (local/harsh GPS area,
1st veh.) - 1st trip (7sec)

3.5m 3.8m 4.2 m

Raw GPS (full trajectory, 3rd
veh.) - 1st/2nd trips

2.5m/2.1m 3.6m/3.0m >5m/4.7m

VA-CLoc (full trajectory, 3rd
veh.) - 1st/2nd trips

0.6m/0.2m 2.1m/1.6m 4.0m/3.2m

to 10Hz), the use of additional V2I RSSI measurements with
respect to ITS-G5 enabled RSUs (serving as anchors), a
more realistic platoon topology varying over time, as well
as the use of complementary ranging-enabled technologies
such as IR-UWB (e.g., for V2V measurements).

Regarding ICP, despite an even more modest cooperation
level (i.e., 1 side vehicle only) and a quite restrictive sensing
scenario (i.e., evaluation over 7 sec with 3 sensed features at
most), significant gains larger than 40% in terms of both the
median and worst-case positioning errors could already be
noticed in comparison with nominal GPS performance (e.g.,
from approximately 7 m down to 4 m). The gain looks even
slightly better in the lower error regime. However, several
critical issues such as precise GPS/LIDAR synchroniza-
tion, distributed association procedures on specific (static)
sensed features, or translation errors in feature detections
(presumably propagated vehicle pose errors, were manually
corrected here), will have to be addressed for next field
validations.

As for Scenario 2, RTK data were not yet available at the
vehicle under test for GT comparisons. Accordingly, only
qualitative localization performance could be assessed for
CMDS. However, the implemented algorithm was shown to
be functional and could deliver consistent outputs in com-
pliance with the accuracy level required in the considered
scenario [14], that is to say, approximately on the same
order of the 30 cm V2X IR-UWB ranging accuracy (as
characterized in [6]). Other complementary tests conducted
in the first scenario (though not reported herein) have pointed
out the current limitations of the Zigbee-based ranging tech-
nology at high speed and/or in case of adverse deployment
of fixed anchors along the road (in terms of both spatial
coverage and geometric dilution of precision). Accordingly,
in next experimental tests, Zigbee-based ranging and CMDS
will be mostly considered within local portions of road
at reasonable speed (typically, at urban intersections, on
roundabouts), while optimizing both the number and the
relative configuration of static anchors.

VI. CONCLUSION

We have reviewed and illustrated the main components
of a service platform to provide highly accurate localization
for C-ITS, developed in the EU H2020 HIGHTS project,
where heterogeneous technologies, sensors, algorithms, ser-
vices and protocols come together to provide accurate lo-
calization capable to meet the aforementioned requirements.

We described preliminary off-line validations of HIGHTS
algorithms, based on the integrated platform. These first
results not only show encouraging gains beyond nominal
GPS, but they also provide useful field feedback for the next
integration and demonstration steps scheduled in the project.
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