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ABSTRACT
In this paper, we propose a multimodal deep learning architecture
for emotion recognition in video regarding our participation to the
audio-video based sub-challenge of the Emotion Recognition in the
Wild 2017 challenge. Our model combines cues from multiple video
modalities, including static facial features, motion patterns related
to the evolution of the human expression over time, and audio infor-
mation. Specifically, it is composed of three sub-networks trained
separately: the first and second ones extract static visual features
and dynamic patterns through 2D and 3D Convolutional Neural
Networks (CNN), while the third one consists in a pretrained audio
network which is used to extract useful deep acoustic signals from
video. In the audio branch, we also apply Long Short Term Memory
(LSTM) networks in order to capture the temporal evolution of the
audio features. To identify and exploit possible relationships among
different modalities, we propose a fusion network that merges cues
from the differentmodalities in one representation. The proposed ar-
chitecture outperforms the challenge baselines (38.81% and 40.47%):
we achieve an accuracy of 50.39% and 49.92% respectively on the
validation and the testing data.
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1 INTRODUCTION
Emotion recognition is an active research topic in the affective com-
puting community. During the last decade, emotion recognition
systems have been integrated in a number of applications across
a growing number of domain fields such as cognitive science [31],
clinical diagnosis [15], entertainment [38] and human-machine
interaction [3]. Automatic emotion analysis and recognition in real-
world videos (i.e. in the wild) is nevertheless still an open challenge
in computer vision. One fundamental limiting factor is that there
is almost no large dataset with real-world facial expressions avail-
able for emotion recognition. Other challenging factors include
head pose variation, complex facial expression variations, different
illumination conditions and face occlusion.

Recent achievements in the field are based on the use of data
coming from multiple modalities, such as facial and vocal expres-
sions. Indeed, each modality presents very distinct properties and
combining them helps to learn useful and complementary represen-
tations of the data. Still, representing and fusing different modalities
in an appropriate and efficient manner is an open research question.

The extraction of visual cues for emotion recognition has been
receiving a great deal of attention in the past decade. Recently,
with the rapid growth of Convolutional Neural Networks (CNNs),
extracting visual features from video frames has been investigated
in many emotion recognition tasks and there are various face pre-
trained models made available [34, 36, 40]. However, those models
are not directly suitable for video due to the lack of the temporal
information and to the variation of emotion expression patterns
across individuals. To deal with this issue, 3D versions of CNN have
been recently proposed [43].

Adding the audio information surely plays an important role in
emotion recognition in video. Most of the multimodal approaches
mainly used hand crafted audio features such as the Mel Frequency

https://doi.org/10.1145/3136755.3143006
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Figure 1: Overview of the proposed architecture.

Cepstrum Coefficients (MFCC) or spectrograms, with either tradi-
tional [33, 42] or deep [48] classifiers. However, those audio features
are very low level and are not designed for video analysis.

In this paper, we propose a deepmultimodal architecture for emo-
tion recognition. Visual and temporal information are presented
using a hybrid 2D-3D CNN approach, whereas the audio infor-
mation is extracted using a deep CNN that has been trained by
transferring knowledge from vision to sound [2]. To the best of
our knowledge, learned deep audio features have not been yet in-
vestigated in the context of multimodal emotion recognition. The
remainder of the paper is organized as follows: Section 2 presents
related work, Section 3 describes the proposed multimodal emo-
tion recognition architecture, Section 4 presents experiments and
results, and finally Section 5 concludes the work and gives some
future directions.

2 RELATEDWORK
Emotions are displayed in video by visual and vocal means. Visual
information is related to the dynamics patterns of face while the
vocal information relies on audio signals. Recently, several deep
audio-visual emotion recognition approaches have been proposed.

In this section, we briefly review the related work regarding
the emotion recognition in videos, embracing the deep learning
representations of appearance, temporal and audio information and
the related multimodal fusion schemes.

Spatio-temporal evolution of facial features is one of the strongest
cues for emotion recognition. Prior works using Deep Neural Net-
works (DNNs) for emotion recognition in video have mainly relied
on temporal averaging and pooling strategies [5, 24]. More recently,
we note an increase in using temporal neural networks such as
Recurrent Neural Networks (RNN) to quantify the visual motion.
Several previous works trained temporal neural network models on
visual hand-crafted features [17, 35]. Few works have considered
combining CNNs with RNNs [11, 26]. For instance, in the work
of [11], the authors combine RNN with CNN to model the facial

expression dynamic in video. The later suggested that temporal
information integration improves classification results. In similar
works [6, 17, 29], the authors use Long Short-TermMemory (LSTM)
cells to aggregate CNN features over time. Other recent works
model the motion information using 3D convolutional networks
(C3D) [12, 48].

Regarding the audio information, deep learning-based approach-
es have recently attracted increasing attention among the computer
vision community. Classical approaches rely on extracting audio
hand-crafted features and apply a DNN classifier on those features.
For instance, [29] and [14] investigate the use of deep learning
approaches for emotional speech recognition. [14] train a DNN
with MFCC features to classify emotions into 6 classes. In [47],
the authors extract Mel-spectrogram features from audio signals
for each video segment to classify emotions using a DNN. In [10],
the authors train an LSTM on acoustic parameter set for affective
computing. In [4], the authors investigate the emotional impact
of movie genre to predict media interestingness. The later work
use Soundnet and VGG features for genre recognition. Few works
proposed to learn deep audio model from scratch and most of them
are dedicated to specific task such as speech recognition [18, 21, 30].
One of the main challenges to build deep audio models is the lack of
labeled sound data. For instance, in [41], the authors present a new
deep architecture with data augmentation strategy to learn a model
for audio events recognition. The later claims that combining visual
features with deep audio features leads to significant performance
in action recognition and video highlight detection compared to
either the use of visual features alone or the fusion with MFCC
features.

Multimodal data fusion remains an important challenge in emo-
tion recognition systems. Previous works in multimodal emotion
recognition using deep learning assume independence of differ-
ent modalities, performing either early fusion (feature-level fu-
sion) [7] or late fusion (decision-level fusion) [10, 11, 24, 44]. Fan et
al. [12] combine RNN and C3D network in a late-fusion fashion.
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Figure 2: Some examples of cropped faces extracted from input video frames.

The CNN-RNN, C3D and audio SVMmodel were trained separately
and their prediction scores were combined into the final score.
Kaya et al. [25] combine audio-visual data with least squares regres-
sion based classifiers and weighted late fusion scheme. Recent work
investigate the use of DNN to fuse multimodal information. One
advantage of DNNs is their capability to jointly learn feature repre-
sentations and appropriate classifiers [27]. Some fusion methods
based on fully connected layers have been suggested to improve
video classification by capturing the mutual correlation among dif-
ferent modalities. For example, in [47], a fusion network is trained
to obtain a joint audio-visual feature representation.

3 PROPOSED METHOD
To deal with the multimodal and temporal nature of the emotion
recognition task, we build a network which is able to jointly extract
static and dynamic features from different modalities, and to address
the temporal evolution of the video.

Our architecture, as illustrated in Figure 1, is composed of three
network branches, where the first and second ones are explicitly
designed to deal with the visual features from the video, while the
third one processes the audio of the input video clip. In particular,
the first branch is a 2D CNN that processes the single frames, the
second one is a C3D network that processes short frame snippets,
and the third one is a 1D CNN that processes audio snippets.

Since all the branches can process either one frame or a short
sequence, a temporal fusion strategy is devised, to deal with videos
of varying length and to exploit temporal dependencies. In par-
ticular, the features of the first two branches are combined in the
temporal dimension using a NetVLAD layer [1], which extends the
VLAD [23] aggregation technique by learning its cluster centers.
In the audio branch, instead, we make use of a LSTM network to
learn the temporal dependencies between consecutive audio snip-
pets, and represent them with the last hidden state of the network.
Features coming from the three branches, once aggregated over
time, are finally concatenated and fed to a multimodal network
which is in charge of combining the visual, the motion, and the
audio information.

3.1 Data Preprocessing
Video clips from emotion recognition datasets are usually collected
from classic movies and TV reality shows, so most of frames contain
irrelevant or misleading information, like background objects and

background motion. Therefore, it is beneficial to pre-process the
original video frames in order to limit this effect. Indeed, we extract
all faces from each frame of the input video clip, and retain only the
face bounding boxes, discarding all the rest in a frame. For the face
detection and extraction phase, we use a cascaded convolutional
neural network [46] in which faces are detected by means of a multi-
task convolutional network which jointly detects facial landmarks
and predicts the face bounding box. If more than one face is detected,
we only use the crop of the biggest one as input to the model. Some
examples of the performed pre-processing on video frames are
shown in Figure 2. Furthermore, we follow the work of Aytar et
al. [2] to extract and pre-process the audio information. Hence,
we sampled the audio from video clips at a frequency of 22050 Hz
and we saved every clip in mp3 format, single channel. Then, the
waveform of every sample is scaled to be in the range [−256, 256].

3.2 Hybrid Deep Visual Features Extraction
In order to capture visual and motion features, we design two
different branches: the first one, based on a recent version of the
popular FaceNet architecture [36], captures a set of visual features
representing the face, while the second one, built upon the C3D
network [43], jointly captures visual and motion information.

CNN Branch. In this branch, the Inception-ResNet v1 [40] net-
work, trained as proposed in [36], is used as feature extractor. The
network takes a color image of size 160 × 160 as input. The output
of the fifth Inception-resnet-C block (of size 3× 3× 1792) is then
used as input to a small neural network composed by a convolu-
tional layer with 256 filters of size 3 × 3, a fully connected layer
with 256 units and a softmax layer of 7 classes. This network is
trained using every extracted face from the challenge dataset and
every image of the FER-2013 dataset [13] (more details regarding
the datasets are available in Section 4.1). Images are preprocessed
accordingly to the chosen open-source implementation of the net-
work1. Note that only the last convolutional and fully connected
layers are trained from scratch.

C3D Branch. In this branch, the C3D network [43] is used as
feature extractor. The network takes 16 frames of size 112× 112× 3
as input. The output of the Pool5 block (of size 4× 4× 512) is given
as input to a small neural network composed by a max pooling layer

1Face Recognition using Tensorflow: https://github.com/davidsandberg/facenet/
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of size 2×2 and stride 2, a convolutional layer with 256 filters of size
2× 2, a fully connected network with 256 units and a softmax layer
of 7 classes. The network is trained using the challenge dataset only.
Slices of 16 extracted faces are used as input to the network and
only the last convolutional and fully connected layers are trained
from scratch.

3.3 Deep Acoustic Features Extraction
In the audio branch, the SoundNet network [2] is used as feature
extractor. The output of the conv4 block (of size 22 × 128) is given
as input to a network defined as follows. The first layer is a 1D
convolutional layer with 512 filters of size 4, applied with a stride
of 4. The size of the output is 6 × 512. The six feature vectors of
size 512 can be seen as the compression of the audio temporal
input, therefore they still contain temporal information. Based on
that, the six feature vectors are given as input of an LSTM [20]
layer with two levels and 128 hidden units. This layer is followed
by a softmax layer of 7 classes. The network is trained using the
challenge dataset and part of the eNTERFACE dataset [32] (more
details regarding the datasets are available in Section 4.1). Audio
raw waveform sequences extracted from the videos are used as
input to the network. Even in this case, only the last convolutional,
LSTM, and softmax layers are trained from scratch.

3.4 Temporal Aggregation and Multimodal
Fusion

The fusion network has a double purpose: to combine the temporal
information of the visual and motion features and to fuse the mul-
tiple modalities. In order to combine features extracted at different
timesteps, the CNN branch and the C3D branch are followed by a
NetVLAD layer [1].

Given a set of D-dimensional features {xi }, the layer can learn K
cluster centers {ci } in the same space of the features, and produce
an aggregated description of the set with size K × D, through the
sum of residuals with respect to the cluster centers. Formally, the
k-th row of the aggregated description is given by

ϕ
(
{xi }Ni=1, {ci }

K
i=1

)
(k) =

N∑
i=1

δ (xi , ck ) · (xi − ck ) (1)

where δ (xi , ck ) denotes the degree of membership of descriptor
xi to cluster ck . The resulting matrix is then column-wise L2-
normalized, flattened and then L2-normalized again. Since an hard
assignment of features to clusters would be non-differentiable,
the NetVLAD layer employs a soft-assignment variant, in which
δ (xi , ck ) is computed as

δ (xi , ck ) =
e−α ∥xi−ck ∥2∑
k ′ e

−α ∥xi−c′k ∥
2 (2)

where α controls the decay of the response with magnitude of the
distance. In practice, the learnable cluster centers ck are decoupled
into two sets of convolutional parameters, so that the layer can be
implemented via the composition of a convolutional layer, softmax
activation and the final L2 normalizations.

In the proposed architecture, the NetVLAD layer on top of the
CNN branch takes the features extracted from 48 frames and out-
puts an aggregated representation composed by 8 visual feature

vectors corresponding to 8 different clusters. The feature vectors
are then flattened and followed by a fully connected layer with 128
units to reduce the output dimension. In the C3D branch, instead,
the NetVLAD layer takes 32 motion features and outputs an aggre-
gated representation of 8 motion feature vectors corresponding to
8 different clusters. As before, the feature vectors are flattened and
followed by a fully connected layer with 128 units.

Regarding the audio information, we take only one second in
the middle of the video, since we found that this amount of data is
sufficient to perform a good classification without over-fitting the
training data. Then, the output of the two fully connected layers of
the CNN and C3D branch and the output of the LSTM layer of the
audio branch are concatenated forming a 384 feature vector. The
obtained feature vector is followed by a fully connected layer with
128 units and a softmax layer with 7 classes. The highest output of
the softmax layer is our classification of the video.

3.5 Training
The training process is composed by two phases. During the first
phase, the last layers of the three branches of our architecture are
trained separately. Then, the multimodal fusion network is trained
using the trained branches, without the softmax layer, as feature
extractors. This approach allows us to use additional datasets during
the training of the single branches, obtaining more robust and
generalizing networks as feature extractors.

The categorical cross-entropy loss function on the seven classes
of the challenge dataset is used to train all the networks of the
architecture except the multimodal fusion of the Submission 4. The
fusion network related to the last submission is trained using a
weighted version of the categorical cross-entropy loss function.
In order to increase the importance of the most frequent classes
and reduce the importance of the less frequent ones, the standard
loss value is multiplied by a regularizing parameter based on the
distribution of the seven classes in the training set. Specifically, an
exponential function is sampled following the classes distribution
on the training set to obtain the regularizing parameters.

The standard and the weighted loss function are as follows:

L = −

N∑
i=1

tTi log(pi ) (3)

L′ = −

N∑
i=1

λci t
T
i log(pi ) (4)

where N is the number of examples in the batch, ti is the target
probability vector of sample i (i.e. a one-hot vector), pi is the vector
containing the predicted probabilities for sample i , ci is the ground
truth class of sample i , and λk is the regularizing parameter for the
class k .

4 EXPERIMENTS AND RESULTS
In this section, we firstly describe the datasets used during the
experiments. Then, we detail the implementation of the proposed
model. Finally, we report and discuss the results achieved on the
validation and the testing data.
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4.1 Datasets
We trained our networks with different emotion datasets, evaluating
them on the challenge dataset only.

Acted Facial Expressions in the Wild (AFEW). The Acted Facial
Expressions in the Wild (AFEW) dataset [9] (2017 edition) is the
dataset of the Emotion Recognition in the Wild (EmotiW) challenge.
It is composed by 1809 video clips extracted from movies and, since
2016, TV series. Every clip is annotated with one of seven emotions
(Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral), but only
the annotations of the training and validation sets are publicly
available. Some statistics about the dataset are available in Table 1.

Table 1: Statistics of the AFEW dataset [9].

Emotion Train Validation Test
Angry 133 64 98
Disgust 74 40 40
Fear 81 46 70
Happy 150 63 144
Neutral 144 63 193
Sad 117 61 80
Surprise 74 46 28
Total 773 383 653

In Figure 2, some frames from the dataset and the corresponding
cropped faces are shown. The dataset is used for both training and
evaluation of all the branches and the multimodal fusion.

Facial Expression Recognition 2013 (FER-2013). The Facial Expres-
sion Recognition 2013 (FER-2013) dataset [13] has been created
for the Facial Expression Recognition Challenge. 35, 887 grayscale
images have been crawled on the web and annotated with one
of seven emotions (Angry, Disgust, Fear, Happy, Sad, Surprise, and
Neutral). These additional images increase the accuracy of the CNN
branch when used during the training.

eNTERFACE. The eNTERFACE dataset [32] consists of 1166 video
clips annotated with one of the six basic emotions (Angry, Disgust,
Fear,Happy, Sad and Surprise). The clips are recorded in constrained
environments and contain both audio and video data. This dataset
is used during the training of the Audio branch of our architecture,
decreasing the over-fitting.

4.2 Implementation Details
Detected faces are pre-processed and resized to comply with the
expected input of the CNN and C3D network, respectively 160×160
and 112 × 112. Data augmentation techniques are applied during
the training in order to reduce the over-fitting and increase the
generalization capabilities of our architecture. Random flip, crop,
and zoom are applied to the visual input, while the audio is used
“as it is”, but a random 1 second-length slice is selected every time.

Furthermore, batch normalization [22] is applied before every
activation of the trained layers in conjunction with dropout [19, 39]
between fully connected layers. Dropout is also applied on the

LSTM block of the Audio branch, following [45] and [37]. The re-
lated keep probabilities range between 0.1 and 0.8 based on the
position and the network where dropout is applied. Low keep prob-
ability values allow to reduce the over-fitting despite the small
amount of training data.

The parameters of the layers for whichwe did not use pre-trained
weights are initialized following what was proposed in [16]. The
Adam optimizer [28] is used during the training in every network
of our architecture with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The
learning rate varies depending on the network, due to the consid-
erable differences between the branches and the fusion network.
Regarding the CNN, C3D, Audio, and fusion network, the learning
rate are respectively 0.0001, 0.001, 0.001, and 0.0005. In all the net-
works, the target batch size is 128, but we are forced to drastically
reduce it in the C3D and fusion network due to memory space
limits.

4.3 Results
In this section, we present the achieved results using our different
approaches on the challenge validation and test sets.

4.3.1 Results on validation set. To validate the performance of
our models, we conduct first a set of experiments on the valida-
tion set. Table 2 presents the best achieved results for the single
branches and the multimodal fusion approaches. For the CNN and
C3D branch, the accuracy is reported with respect to both every
single frame and the whole video. In the latter case, the prediction
of every video is obtained averaging the predictions of its frames.

Table 2: Experimental results on the AFEW validation set.

Model Accuracy (%)
CNN Branch (single frame) 39.95
CNN Branch (average) 44.50
C3D Branch (single slice) 33.31
C3D Branch (average) 31.59
Audio Branch (1 second) 33.65
Multimodal Fusion (whole video) 50.39

As one can note, the multimodal fusion gives an absolute ac-
curacy gain of nearly 6% with respect to the best single branch.
Both the temporal combination on the visual branches and the
multimodal fusion of the three branches contribute to the accuracy
improvement. The corresponding confusion matrix is shown in
Figure 3a.

It is worth to notice that the proposed architecture is able to
classify almost every emotion with a good accuracy on the vali-
dation set. The only exception is the class Fear, mainly confused
with Angry, Neutral, and Sad. Interestingly, while analyzing results
on the validation data we observed that the CNN branch correctly
classify about every emotion with an acceptable accuracy, the C3D
branch is unable to classify the classes Disgusted, Fear, and Surprise
in most of the cases whereas the Audio branch never correctly
classify the classes Disgusted and Surprise.

Additional experiments were made on the validation set to inves-
tigate the fine-tuning of the pre-trained networks (FaceNet, C3D,
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Figure 3: Confusion matrices on the AFEW validation and test sets [9].

SoundNet), but they resulted in an early over-fitting of the models.
Indeed, over-fitting has been a major issue in most of the exper-
iments performed in this work. We think this is mainly caused
by the limited size of the available datasets regarding multimodal
emotion recognition. Furthermore, most of the available datasets
contain video clips recorded in constrained environments in which
a subject acts an emotion. As a result, expressed emotions are not
natural and audio information is rarely available.

4.3.2 Challenge Submissions: Results on test set. In order to eval-
uate the performance of our different approaches/models on the

challenge test set, we submitted 4 runs to EmotiW 2017 challenge.
In this paper, we present only the three best submissions (1, 3 and 4).
In particular, submission 1 corresponds to a preliminary version of
our architecture: it contains the CNN branch and the Audio branch
only and it is trained with the standard categorical cross-entropy
loss function (Eq. (3)). Differently, both submission 3 and submis-
sion 4 correspond to the architecture described in Section 3. The
standard categorical cross-entropy loss function (Eq. (3)) is used
in the first case while its weighted version (Eq. (4)) is used in the
second one.
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To increase the training data while keeping a stopping condition,
the validation set of the AFEW dataset was split in five folds and
the models are trained five times, following the k-fold cross valida-
tion technique. The folds were created maintaining the train and
the validation fold subject-independent. Submission 2 attempted
to keep emotion-balance instead of subject independence while
training the same architecture as submission 1, but poor results
were obtained and hence are not reported.

Table 3: Experimental results of our three best submissions.

Submission Cross Validation (%) Test Set (%)
1 49.61 44.87
3 53.49 44.56
4 48.30 49.92

The results of our submissions are presented in Table 3. The
second column of the table contains the averaged accuracy on the
five validation folds, while the third one contains the results of our
submissions on the test set.

Looking at Figure 3 and Table 3, it can be noticed that the multi-
modal fusion network trained with the weighted loss (Submission
4) performs better on the test set, while the model trained with
the standard loss performs better on the five validation folds. This
counter-intuitive behaviour is presumably attributable to the differ-
ent class distribution of the test set of the AFEW dataset compared
to the train and validation set of the same dataset. Moreover, the test
set contains video clips extracted from TV series (since 2016), while
the training and the validation set don’t. We think that these are the
reasons of the discrepancy between our results on the validation
set and on the test set.

Table 4: Proposed method accuracy compared to the chal-
lenge baseline.

Method Validation Set (%) Test Set (%)
Challenge baseline 38.87 40.47
Proposed method 50.39 49.92

As shown in Table 4, our deep learning-based architecture out-
performs by a clear margin the challenge baseline [8] both on
validation and test set. In particular, our best submission reaches
an accuracy of 49.92%, corresponding to an absolute improvement
of 9.45% with respect to the challenge baseline.

5 CONCLUSION
We proposed a multimodal deep learning framework for emotion
recognition in video that participated to the audio-video based sub-
challenge of the Emotion Recognition in the Wild 2017 challenge.
Our approach combines visual, temporal and audio information
using neural network-based architectures only. Notwithstanding
the small amount of labelled data regarding the emotion recognition
in video, the proposed method outperforms the challenge baselines
of 38.87% and 40.47% obtaining an accuracy of 50.39% and 49.92% on
the validation and the test dataset respectively. In the future, making

use of larger annotated datasets, we are planning to train the entire
architecture in one step and to fine-tune the pre-trained audio and
visual models to make the extracted features more domain specific.
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