A Decentralized Prefetching Protocol
for VBR Video on Demand *

Martin Reisslein?, Keith W. Ross?, and Vincent Verillotte®

! Department of Systems Engineering, University of Pennsylvania,
Philadelphia, PA 19104, USA,
reissleilseas.upenn.edu,

WWW home page: http://seas.upenn.edu/“reisslei
? Institute Eurecom, Sophia-Antipolis 06904, France,
ross@eurecom.fr
WWW home page: http://wuvw.eurecom.fr/ ross
3 Sun Microsystems France S.A.,

13 Avenue Morane Saulnier - BP 53, 78142 Velizy Cedex, France,
vverillo€france, sun.com

Abstract. We present a high—performance decentralized prefetching pro-
tocol for the delivery of VBR. video on demand (VoD) from servers to
clients across a packet-switched network. The protocol gives constant
perceptual quality for high link utilizations. It also allows for imme-
diate commencement of the video upon user request and near instanta-
neous response to viewer interactions such as pause, resume and temporal
jumps. The protocol requires that (1) the client has a moderate amount
of memory dedicated to the VoD application (2} the client sends a pos-
itive acknowledgment back to the server for each received video frame.
Our decentralized prefetching protocol employs window flow control. A
send window limits the number of frames a server is allowed to send
in a frame period. The send window grows larger than one when the
network is underutilized, allowing the server to prefetch future frames
into the client memory. When the network becomes congested the send
window is reduced and the server is throttled. Simulation results based
on MPEG encoded traces show that our decentralized prefetching proto-
col compares favorably with other prefetching protocols in the existing
literature.

1 Introduction

We present a high-performance decentralized prefetching protocol for the deliv-
ery of video on demand (VoD) from servers to clients across a packet-switched
network. The protocol assumes that the videos are variable-bit-rate (VBR) en-
coded. Not only does this protocol give constant perceptual quality for high
link utilizations, but it also allows for immediate commencement of the video
upon user request and near instantaneous response to viewer interactions such
as pause, resume and temporal jumps.

* Supported partially by NSF grant NCR96-12781

Deterministic

/\

no smoothing smoothing
buffered mux [2—4] bufferless mux [5-8]
Probabilistic
no smoothing smoothing collaborative
bufferless mux [9] bufferless mux [10, 11)
centralized [12] decentralized

(this paper)

Fig. 1. Transmission Schemes for VBR Video on Demand

To achieve this high performance our protocol has two requirements. First,
we require that each client has a moderate amount of memory dedicated to the
VoD application. Second, we require that each client sends a positive acknowl-
edgement back to its server for each received video frame. The client could be a
television with a set-top box capable of performing buffering and decoding, or
it could be a household PC.

Our protocol explicitly assumes that the videos are VBR encoded with high
peak-to-mean ratios. The motivation for our approach is that, for the same
perceived video quality, Constant Bit Rate (CBR) encoding produces an output
rate significantly higher than the average rate of the corresponding VBR. encod-
ing for action movies [1). CBR traffic allows for nearly 100% link utilization; the
number of connections that can be carsied over a link of given capacity is roughly
the link capacity divided by the CBR rate (assuming homogeneous connections).
The number of VBR connections that can be transmitted simultaneously is the
achievable link utilization multiplied by the link capacity divided by the average
rate of the VBR video stream. Therefore schemes for transmitting VBR encoded
video that achieve high average link utilizations while keeping losses at a neg-
ligible level, can allow for significantly more video connections than does CBR.
video.

The traffic management schemes for VBR. video in the literature fall into four
main categories: deterministic; deterministic with smoothing and/or prefetching;
probabilistic; and probablistic with collaborative prefetching; see Figure 1. The
deterministic schemes send into the network the original VBR traffic, and ad-
mission control ensures that the delays never exceed a prespecified limit [2}[3](4].
For highly variable VBR traffic, these deterministic schemes typically require
large initial delays to achieve moderate link utilizations [13]. The deterministic
schemes with prefetching and smoothing do not send the original VBR traffic

into the network, but instead send some smoothed version of it. Severa) inde-
pendent research teams have proposed schemes whereby the server transmits the
video at different constant rates over different intervals; these schemes vary in
how the rates and intervals are chosen [5][6][7][8][10}. None of the deterministic
schemes (with or without prefetching and smoothing} allows for both high link
utilizations (>90%) and consistently high responsiveness (less than a second) to
interactivity.

For the probabilistic approaches, {9] considers sending the original VBR. en-
coded video into an unbuffered multiplexer. This scheme allows for responsive
interactivity, but introduces packet loss whenever the aggregate transmission
rate exceeds the link rate. In [10] and [11] related ideas are explored whereby
the original traffic is first smoothed before it is statistically multiplexed at an
unbuffered link; the statistical multiplexing of the smoothed traffic can substan-
tially increase link utilization at the expense of small packet loss probabilities.
In particular, in [11] the authors demonstrate that their prefetching scheme, Op-
timal Smoothing, can give moderately high link utilizations when it is combined
with statistical multiplexing.

A probablistic transmission scheme with collaborative prefetching, Join-the-
Shortest-Queue (JSQ) prefetching, is presented in [12]. It is shown in [12] that
JSQ prefetching has substantially less packet loss than does Optimal Smoothing
for the same link utilization. JSQ prefetching achieves nearly 100% link uti-
lization, immediate commencement of playback and instantaneous response to
viewer interactions. JSQ prefetching, however, can only be applied when one
centralized server feeds many clients. In this paper we introduce a decentralized
and collaborative prefetching protocol that allows the video streams to emanate
from multiple distributed and decentralized servers.

Our decentralized prefetching protocol performs almost as well as as JSQ
prefetching: it allows for nearly 100% link utilization, immediate commencement
of playback and instantaneous response to viewer interactions.

Our decentralized prefetching protocol employs window flow control; it is
inspired by the Transmission Control Pratocel (TCP) {14, 15] widely used in the
Internet. For simplicity, assume that each server is responsible for exactly one
connection. Admission control ensures that all link utilizations do not exceed
95%. Our basic decentralized prefetching protocol works roughly as follows, The
server maintains a send window, limiting the number of frames the server is
allowed to send in a frame period. The send window is increased by a small
increment when all acknowledgments arrive in time. Due to admission control
and the VBR nature of the traffic, there are periods of time during which the
network is underutilized. The send window grows larger than one during these
periods, allowing the server to prefetch future frames into the client memory. In
times of network congestion, frames are lost or delayed and the corresponding
acknowledgements do not arrive at the server before their timeouts. In this case,
the send window is reduced to throttle the server and alleviate the congestion.
The reservoir of prefetched frames in the client buffer allows the client to continue
playback during these periods of congestion. Starvation at the client occurs only

if the reserve of prefetched frames at the client is completely depleted and the
current frame is lost or delayed due to network congestion. We simulate our
protocol in the context of a simple network (see Figure 2). The simulations are
driven by frame size traces of MPEG 1 encoded videos from the public domain
[16). Our empirical work indicates that starvation at the client rarely occurs for
average link utilizations around 95% and smali client buffers.

This paper is organized as follows. In the following subsection we briefly
review two important on demand delivery schemes for VBR-encoded video. In
Section 2 we describe our VoD architecture. In Section 3 we introduce our decen-
tralized prefetching protocol. In Section 4 we introduce a number of refinements
of the decentralized prefetching protocol. In Section 5 we present simuilation
results for our decentralized prefetching protocol.

1.1 Review of Transmission Schemes for VBR Video on Demand

In this subsection we review two prefetching schemes for VBR video on demand,
Join—the-Shortest—Queue {JSQ) Prefetching {12] and Optimal Smoothing [17,
11,18]. These two schemes will be used as benchmarks when evaluating our
decentralized prefetching protocol.

The JSQ prefetching protocol is suited for the efficient transmission of VBR
encoded videos from a video server to a large number of clients with moderate
memory. The protocol allows for at most one shared link between the video server
and the clients. The policy is based on the observation that due to the VBR
nature of the multiplexed traffic there are frequent periods of time during which
the shared link’s bandwidth is under utilized. During these periods the server
prefetches frames from any of the ongoing connections and sends the prefetched
frames to the buffers in the appropriate clients. The JSQ policy specifies how
the server selects the prefetched frames. The server always selects the next frame
from the connection that has the smallest number of prefetched frames in its
client’s buffer. The JSQ prefetching protocol thus determines the transmission
schedule of a connection on-line, as a function of the buffer contents at all of the
clients. For this reason, JSQ is referred to as a collaborative prefetching scheme.

Optimal Smoothing can be applied when transmitting stored video from a
server to a client with buffering capabilities across a network. Given a specific
client buffer size, the optimal smoothing algorithm determines a “smooth™ rate
transmission schedule that ensures that the client buffer neither overflows nor
underflows. The algorithm is optimal in that it achieves the greatest possible
reduction in rate variability. Optimal smoothing is non—collaborative; the trans-
mission schedule is computed before transmission begins and thus does not take
the other ongoing connections into account. Admission control for the optimally
smoothed trace can be based on the peak-rate of the smoothed trace; this en-
sures lossless transmission. Another approach is to statistically multiplex the
optimally smoothed traces at an unbuffered link and base admission control on
a large deviation estimate of the loss probability [9, 11). We apply the latter ap-
proach when comparing optimal smoothing with our decentralized prefetching
protocol.

2 Architecture Description

Figure 2 illustrates our basic model for VoD!. The video servers contain videos

server 1 client 1
multiplexer
. buffer { R
. _/)
— R
F
server J client J

Fig. 2. Video on Demand Architecture

in mass storage. For notational simplicity, assume that each video consists of N
frames and has a frame rate of F frames/sec. The videos are VBR encoded using
MPEG 1, MPEG 2 or some other video compression algorithm. Let J denote the
number of video connections in progress. We assume for the purpose of this study
that each video server feeds one client; thus there are J video servers feeding J
clients. In explaining the client-server interaction we focus on a particular client—
server pair. For simplicity, we assume for the following discussion that each video
frame is transmitted in one packet?. Let z, denote the number of bits in the
nth frame. Because the videos are prerecorded, the sequence (z1,29,...,2N) is
fully known before the transmission of the video. At the beginning of each frame
period, that is, every 1/F seconds, the server decides according to a prefetching
policy, outlined in the next section, which and how many frames to transmit.
The server sends the frames to the multiplexer buffer. Frames that do not fit into
the multiplexer buffer are lost. The multiplexer buffer of size R/F bit is served
at rate R bps. The maximal delay incurred in the multiplexer is therefore 1 /F
seconds. For simplicity we assume that the propagation and processing delays
are negligible. The client instantaneously sends a positive acknowledgment to
the server for each frame received.

With these delay assumptions, the server receives acknowledgments for all
frames successfully received by the client within one frame period. The server
therefore knows whether the frames sent in the previous frame period were re-
ceived before deciding which frames to send in the current frame period.

! Although we discuss our protocol in the context of a single shared link, the protocol
applies to arbitrary networks with multiple shared links.
? In our numerical work we assume the more realistic case of fixed size packets.

When a client requests a specific video, the network makes an admission
control decision by deciding whether or not to grant the request. The admission
control policy is to accept connections as long as the average link utilizations
are < 95%. The average link utilization is util = F Z}J:l Zavg(7)/ R, where
Zavg(F) is the average frame size in bits of the jth connection, which is calculated
by averaging the corresponding sequence (zy,...,zn). If the network grants
the request, a connection is established and the server immediately begins to
transmit the connection’s frames into the network. The frames arriving at the
client are placed in the client’s prefetch buffer. The video is displayed on the
user's monitor as soon as a few frames have arrived at the client.

Under normal circumstances, every 1/F seconds the client removes a frame
from its buffer, decompresses it, and displays it. If at one of these epochs there
are no complete frames in its prefetch buffer, the client loses the current frame;
the client will try to conceal the loss by, for instance, redisplaying the previous
frame. At the subsequent epoch the client will attempt to display the next frame
of the video.

3 Decentralized Prefetching Protocol

In this section we present our basic decentralized prefetching protocol that allows
the server to determine how many frames to send in each frame period. This
protocol strives to (1) make efficient use of the buffers at the client and (2) avoid
bandwidth “hogging” by a particular connection and thus give each connection a
fair share of the bandwidth. The protocol attempts to allow each client to build
up a reservoir of prefetched frames. Although our design allows for pause and
temporal jumps, we will initially exclude these interactive features. We will also
initially assume that the client buffers are infinite.

When discussing the server policy we again focus on a particular connection.
We divide time into slots of length 1/F. Let ! denote the current slot; { is a local
variable maintained by the server. In the course of the transmission of a video
with N frames, [runs from 1 through N. We do not assume any synchronization
of time slots among the client-server pairs.

Of central importance to our policy is the send window, denoted w;, which
limits the amount of traffic the connection can transmit in slot I. Specifically, the
server is allowed to transmit w;] frames during slot I. (We assume for simplicity
that only complete frames are transmitted.) A new connection starts with a send
window of wy = 1. The send window is increased by a small increment Aw, say
0.1, at the beginning of each slot, i.e. wy = wy_; + Aw. After computing the
send window the server transmits |w;] frames; see Figure 3. Note that w > 2
allows for prefetching of future frames. To keep track of the number of prefetched
frames in the client buffer, let pr be the number of frames in the client buffer at
the beginning of slot !. This variable is initialized to p; = 0. Let a; denote the
number of frames that are received and acknowledged by the client during slot
l. Clearly, 0 < a; < {wy]; a; is equal to |wy] if all frames sent are received by the
client. If frames are lost we have ¢; < |w;]. Figure 3 illustrates the timing of the

prefetching protocol. We assume throughout that multiplexer buffer overflow is

|w:] frames placed a; frames acknowledged by this time;
in mux buffer server places |wiy1] frames in mux buffer
ti j } + i — ti
connection j slot [slot 1 +1 time
connection & } g et a1 - time

Fig. 3. Timing diagram of prefetching policy. Server j places {w;] frames in the mul-
tiplexer buffer at the beginning of slot I. The acknowledgements for a; frames arrive
from the client by the end of slot I. The server processes the acknowledgments and
puts |wry1] frames in the multiplexer buffer at the beginning of slot I 4+ 1. There is no
synchronization of slots between any distinct servers j and %

the only source of loss; the switch and interconnecting links are assumed lossless.
We also assume that acknowledgements are never lost. Frame [is removed from
the client buffer at the end of slot I if the client buffer contains one or more
frames. The server keeps track of p; through the following recursion:

Py = o +a — 1) (1)

Let s; denote the number of bits received and acknowledged by the the client
during slot 1. Let b be the number of bits in the client buffer at the beginning
of slot {; initially, by = 0. With the given definitions, the server keeps track of b,
through the following recursion:

by, = [b{ + 5 — I1}+. (2)

If the server does not receive a positive acknowledgement for a frame sent at
the beginning of the previous slot within one frame period, it assumes that
the frame is lost. If a connection without any prefetched frames in the client
buffer (p; = 0) suffers loss, the client experiences starvation and may apply error
concealment techniques to conceal the loss of video information. If the client
has some prefetched frames in its buffer (p; > 0), the server retransmits the
lost frames. Whenever loss occurs, the server resets its send window to w = 1.
The loss of frames is indicative of acute link overload and by reducing the send
window we can throttle the server and thus alleviate the congestion. We refer
to the send window policy described in this section as the basic window policy.
It can be summarized as follows. A connection starts with a send window of
one, that is, wg = 1. The window is increased by a small increment Aw (we
use Aw = 0.1) at the beginning of each frame period. The number of frames a
connection is allowed to send is limited by the integral part of the send window.
H loss occurs, the window is reset to one.

4 Refinements of the Decentralized Prefetching Protocol

4.1 Client Buffer Constraint

We first introduce an important modification of the decentralized prefetching
protocol. This modification limits the number of b'*s an ongoing connection
may have in its client buffer. This important refinement is useful when the client
has finite buffer capacity, B. This refinement works as follows. Suppose that the
server is considering transmitting frame k. It transmits this frame in the current
slot only if the send window allows the transmission of the frame and the client
buffer constraint

bh+z<B . : (3)

is satisfied. Condition (3) ensures that the server does not overflow the client
buffer.

4.2 Dynamic Send Window

We now introduce a refinement of the send window policy. The idea behind this
refinement is to increase the send window by a large increment when the client
buffer holds only a small reserve of prefetched frames and throttle the server
when the client buffer contains a large reserve of prefetched frames. To this end,
we compute the window increment as a function of the amount of prefetched
data in the client buffer:

20y = A (1 =), At >0, € > 0. (4)

‘When the client buffer is empty at the beginning of slot I, that is, when b; = 0,
the send window is incremented by Atwpyayx. When the client buffer is full, that
is, when b; = B, the send window is not increased at all. We refer to this send
window policy as the dynamic window policy. The dynamic window policy can
be summarized as follows. At the beginning of slot {, the server computes Aw;
according to (4), calculates the new send window, wy = wy_; + Awy, and sends
{w] frames. As with the basic window policy, a new connection starts with a
send window of wg = 1 and resets the window to w; = 1 if the acknowledgments
do not arrive by the end of slot [.

The parameters Awma, and e are used to tune the policy. We provide a
detailed numerical study of the impact of these parameters on the performance
of our decentralized prefetching protocol in the accompanying technical report
{19}. Because of page limitations we give here only a brief discussion of these
parameters. A large Awma, gives large increments Aw and thus allows the server
to send more frames. The parameter Aw has to be large enough to allow for
prefetching of future frames. If Awmnay is too large, however, a few connections
can “swamp” the multiplexer and degrade the protocols’ performance.

The parameter e can be set to give a connection with a nearly empty client
buffer an increased chance of filling its client buffer. To see this, note that for

e = 1, the window increment decreases linearly as the client buffer contents
increase. For e > 1, connections with fairly farge buffer contents are allowed
substantially smaller increments (compared to when e = 1), while a connection
with small client buffer contents has still a large window increment. This gives
a connection with a small reserve of prefetched frames a better chance of filling
its client buffer.

We found that the decentralized prefetching protocol works well for a wide
range of parameters. In particular, Awp,,, values between 2 and 8 and e values
between 4 and 10 give good performance {19]. We choose Awmax = 5 and e = 6
for the numerical work in this paper.

4.3 Randomized Transmission

In this subsection we introduce a refinement that helps to ensure fair bandwidth
distribution among the ongoing connections. In the protocol described so far, the
server transmits the first [w; | frames of the video immediately after the request
of the client has been processed. Subsequent transmissions are scheduled i/F
seconds, I = 1,..., N — 1, after the initial transmission. The relative slot phases
remain fixed for the entire duration of a video. To see how this can lead to unfair
bandwidth distribution consider the phase alignment with t; > ti depicted in
Figure 4. Suppose connections j and % are the only connections in progress. Now

i t;

» time

connection §
oo J slot 1 slot I4+1

connection k ot 1 St [41 - time

Fig. 4. Phase alignment favoring conrection j. If both connections fill the multiplexer
buffer to capacity whenever they transmit, connection j can transmit Rt; bits in a
frame period, while connection k can transmit only Rty bits

consider a scenario where connection j fills the multiplexer buffer completely at
the beginning of its slot {. Connection k is then able to fit Rt bits into the
multiplexer buffer at the beginning of its slot I. When connection j is up for
transmission again, at the beginning of its slot { + 1, it can fit Rt; bits into the
multiplexer buffer. With the depicted phase alignment (t; 3>), connection k
has clearly a disadvantage since it can transmit only Rt, bits in a frame period
as long as connection j keeps on filling the multiplexer buffer to capacity.

To avoid this unfair bandwidth distribution we introduce rendomized trans-
mission: The server transmits the first |w,] frames of the video immediately
after the request of the client has been processed. The server draws a random
phase §;, I = 1,...,N — 1 from a uniform distribution over [~1/2F,1/2F] in
each frame period. The subsequent transmissions are scheduled !/ F + & seconds,
!=1,...,N -1 after the initial transmission. With this transmission rule, the
slot phases are constantly reshuffled. Unfair phase alignments can therefore not
persist for extented periods of time.

Note that with randomized transmission, two consecutive transmissions can
be spaced less than 1/F seconds apart. (In fact, two transmissions can be sched-
uled for the same time. This happens when the server draws the random phases
& = 1/2F and &4, = —1/2F. Note, however, that we are ignoring processing
delays.) Thus, even with a maximal delay in the multiplexer of 1/F seconds
and ignoring propagation and processing delays, the acknowledgements may not
arrive before the next transmission.

We propose two solutions for this problem. The first solution relies on the
multiplexer sending back an error message to the server when a frame does not
fit into the muitiplexer buffer. We note that the Source Quench Error Message
defined in the Internet Control Message Protocol (ICMP) [20, p.160] may be
used for this purpose. The server assumes that a frame is successfully received
by the client if the multiplexer does not send an error message. The client is not
required to send acknowledgments when this approach is used. We refer to this
approach as multiplezer feedback.

An alternative solution is to randomly spread the transmissions not over the
entire frame period but instead over half the frame period by drawing the random
phases §; from a uniform distribution over [—1/2F,(]. Setting the multiplexer
buffer to R/2F ensures that the acknowledgements from the client are received
before the next transmission is scheduled. We refer to this approach as the
client feedback approach. We note that by spreading out the transmissions over a
smaller interval and reducing the multiplexer buffer client feedback does slightly
degrade the performance of the decentralized prefetching protocol. We provide
a detailed numerical study .of the impact of client feedback on the protocols
performance in the technical report {19].

5 Experimental Results

In this section we present the results of a simulation study of the decentralized
prefetching protocol. The study is based on MPEG 1 encodings of the four movies
in Table 1. The frame size traces, which give the number of bits in each video
frame, were obtained from the public domain [16]. (We are aware that these are
low resolution traces and some critical frames are dropped; however, the traces
are extremely bursty.) The movies were compressed with the Group of Pictures
(GOP) pattern IBBPBBPBBPBB at a frame rate of F = 24 frames/sec. Each
of the traces has 40,000 frames, corresponding to about 28 minutes. The mean
number of bits per frame and the peak-to—mean ratio are given in Table 1.

Trace Mean (bit}(Peak/Mean
lambs 7,312 184
bond 24,308 10.1
terminator 10,904 7.3
mr.bean 17,647 13.0

Table 1. Statistics of MPEG-1 traces

We assume in our numerical work that the video frames are transported in
packets consisting of 512 bytes of payload and 40 bytes of overhead. We fix the
link rate at R = 45 Mbps; the corresponding muitiplexer buffer holds 234,375
bytes (= R/F). We define the link utilization as the sum of the mean bit rates
of all ongoing connections divided by B. In our experiments we use a mix of the
the four movies that achieves 95% link utilization. Specifically, we use 55 lambs
connections, 17 bond connections, 37 terminator connections, and 23 mr.bean
connections. With these numbers, each of the four movies accounts for roughly
one fourth of the link load.

In each realization of our simulation, we generate a random starting frame
6(j) for each of the J ongoing connections. The value 8(j) is the frame that is
removed from the jth client buffer at the end of slot 1. The 8(5)}’s are independent
and uniformly distributed over [1, N]. All connections start with empty client
buffers at the beginning of slot 1. When the Nth frame of a video is removed
{rom a client buffer, we assume that the corresponding user immediately requests
to see the entire movie again. Thus, there are always J connections in progress.
For each replication of the simulation we also draw random (non-synchronized)
slot phases ¢(j) for each of the J connections. The t(5)’s are independent and
are drawn from a uniform distribution over [0,1/F]. The ¢(j)’s determine the
relative starting times of the slots for the J connections. Note that the frames
of connection j scheduled for transmission in slot ! are placed in the multiplexer
buffer at the beginning of the slot (see Figure 3), that is, server j puts its traffic
into the queue at instants ¢(j)+(I-1)/F, I =1,...,N t(7)+ (-0 /F+8_,, | =
1,..., N with randomized transmission). In all our simulations we assume that
all clients have the same buffering capacity, B. We allow a warm-up time of
40,000 frame periods for each replication before counting frame periods with
starvation. We run each simulation until the 90% confidence interval is less than
10% of the estimated loss probability. We define the loss probability as the long
run fraction of frame periods for which at least one client experiences starvation.

Figure 5 shows the performance of our basic decentralized prefetching proto-
col, and its various refinements. We plot the loss probability as a function of the
client buffer size for 95% link utilization. For the basic window policy we use a
fixed window increment of Aw = 0.1. The parameters of the dynamic window
policy are set t0 Awmayx = 5 and e = 6. The figure shows that the basic window
policy has unacceptably high losses. The loss probability is about 8 x 10~2 for
1 MByte of client buffer. We also see that the dynamic window policy brings
significant improvement over the basic window policy. The loss probability for

0.1 T

001 b T e

— .. .'..l..‘.‘.'.-.:-.-.. |
0.001 ““-‘:""""'&'-'::;--. \

e - .
” T,
2 o000t | SR 4
o b 'n.‘_‘.
Ly “"’mn
1e-05 |- s\, 4
X,
vy ¢
anee + \
Te-06 - dynamic window policy, randomized mmg'ﬁ a % 7
dyn. windaw, rand, transrmission, 2 frames start-up latency x S

1e-07 L
100 1000
Client Buffer B in KByte

Fig. 5. Loss probability as a function of client buffer size for the basic decentralized
prefetching protocol and its refinements

the dynamic window policy is almost one order of magnitude smaller. Adding
randomized transmission further reduces the loss probability significantly. The
loss probability for the dynamic window policy with randomized transmission for
1 MByte of client buffer is about 1.5 x 10~5. We employ multiplexer feedback
here. By allowing a short start—up latency of 2 frame periods we can further
reduce the loss probability significantly.

In Figure 6 we compare our decentralized prefetching protocol with Join—
the-Shortest-Queue (JSQ) Prefetching [12] and Optimal Smoothing [17,11,18].
The plot gives the loss probability as a function of the client buffer size for 95%
link utilization. The optimal smoothing curves are obtained by applying the op-
timal smoothing algorithm 17,11, 18] to the traces used for the simulation of the
prefetch policy. We then compute the loss probability for statistically multiplex-
ing the smoothed traces on a bufferless 45 Mbps link with the Large Deviation
approximation [9, 11). The large deviation approximation is known to be highly
accurate [9,21). We do this for two versions of optimal smoothing: no initiation
delay and a 10 frame initiation delay [8,11,22]. The decentralized prefetching
results are for the dynamic window policy with randomized transmissior, mul-
tiplexer feedback and 2 frames start—up latency. The JSQ prefetching results
are from [12). Decentralized prefetching clearly outperforms optimal smoothing,
both without and with start-up latency. The loss probability for decentralized
prefetching is over one order of magnitude smaller than the loss probability for

0.1 |
PR
------------ 9.-«---------.-.
LT e
T— T
001 | - o |
TN~ T -
_______ S—_—
0.001 1 |3.-.......-._._...__,__ -
g
8 'r “ |
£ 0.000 x.. B
..-.“'.h_-‘-)
‘\“‘ “
ﬁ..‘)
‘ | 'u'-_\ ..‘- -
'--..”. ‘E‘l
L opl. smoothing, no start-u .
1006 | dpt. smoothing, 10 fames start-op 5 -
{decentraized preleiching, mux x O
H))
! -]
1607 1 I
| 1000

Chent Buifer B in KHyts

Fig. 6. Loss probability as a function of client buffer size for optimal smoothing, de-
centralized prefetching and JSQ prefetching

optimal smoothing with start-up latency. The gap widens to over two orders of
magnitude for 1 MByte of client buffer.

References

1. I. Dalgic and F. A. Tobagi. Characterization of quality and traffic for various
video encoding schemes and various encoder control schemes. Technical Report
CSL-TR-96-701, Stanford University, Departments of Electrical Engineering and
Computer Science, August 1996.

2. D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds
for VBR video in packet-switching networks: Fundamental limits and tradeoffs.
IEEE/ACM Trensactions on Networking, 4(3):352-362, June 1996.

3. E. W. Kaightly and H. Zhang. Traffic characterization and switch utilization using
a deterministic bounding interval dependent traffic model. In Proceedings of IEEE
Infocom '95, Boston, MA, April 1995.

4. J. Liebeherr and D. Wrege. Video characterization for multimedia networks with
a deterministic service. In Proceedings of IEEE Infocom '96, San Francisco, CA,
March 1996,

5. W.Feng, F. Jahanian, and S. Sechrest. Providing VCR functionality in a constant
quality video-on—demand transportation service. In IEEE Multimedia, Hiroshima,
Japan, June 1996.

6. W. Feng and J. Rexford. A comparison of bandwidth smoothing techiniques for the
transmission of prerecorded compressed video. In Proceedings of IEEE Infocom,
Kobe, Japan, April 1997.

10.

i1,

i2.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

. J M. McManus and K.W. Ross. Prerecorded VBR sources in ATM networks:

Piecewise-constant rate transmission and transport. In Proceedings of SPIE, Dal-
las, TX, October 1997. Available at http://www.seas.upenn.edu/ ross/.

J. Salehi, Z.-L. Zhang, Kurose J, and D. Towsley. Supporting stored video: Reduc-
ing rate variability and end-to-end resource requirements through optimal smooth-
ing. Techrical report, University of Massachusetts, 1995.

. M. Reisslein and K. W. Ross. Call admission for prerecorded sources with packet

loss. IEEE Journal on Selected Areas in Communications, 15(6):1167-1180, August
1997.

M. Grossglauser, S. Keshav, and D. Tse. RCBR: A simple and efficient service for
multiple time-scale traffic. In ACM SIGCOMM, 1995.

Z. Zhang, J. Kurose, J. Salehi, and D. Towstey. Smoothing, statistical multiplexing
and call admission control for stored video. IEEE Journal on Selected Areas in
Communications, 13(6):1148-1166, August 1997.

M. Reisslein and K. W. Ross. A join-the—shortest—queue prefetchmg protocoel for
VBR video on demand. In IEEE International Conference on Network Protocols,
Atlanta, GA, October 1997. Available at http://www.seas.upenn.edu/ reisslei/.
J.M. McManus and K.W. Ross. A comparison of traffic management
schemes for prerecorded video with constant quality service. Available at
http:/ /www.seas.upenn.edu/ ross.

V. Jacobson. Congestion control and avoidance. In Proceedings of SIGCOMM 88
Sympostum, August 1988.

L. Brakmo and L. Peterson. TCP Vegas: end to end congestion avoidance on a
global internet. IEEE Journal on Selected Areas in Communications, 13(8):1465-
1480, October 1995.

O. Rose. Statistical properties of MPEG video traffic and their impact on traffic
modelling in ATM systems. Technical Report 101, University of Wuerzburg, In-
situte of Computer Science, Am Hubland, 97074 Wuerzburg, Germany, February
1995.

ftp address and directory of the used video traces:
ftp-info3.informatik.uni-wuerzburg.de /pub/MPEG/.

J. Salehi, Z. Zhang, J Kurose, and D. Towsley. Optimal smoothing of stored
video and the impact on network resource requirements. submitted to IEEE/ACM
Transactions on Networking, 1996.

J. Rexford and D. Towsley. Smoothing variable-bit-rate video in an in-
ternetwork. Technical Report CMPSCI-97-33, University of Massachusetts
at Ambherst, Department of Computer Science, May 1997. Availble via
ftp://gaia.cs.umass.edu/pub/Rex97:Tandem.ps.Z.

Martin Reisslein, Keith W. Ross, and Vincent Verillotte. A decentralized prefetch-
ing protocol for VBR video on demand (extented version). Technical report,
University of Pennsylvania, Department of Systems Engineering, November 1997.
Available at http://www.seas.upenn.edu/ reisslei/.

R. Stevens. TCP/IP Illustrated, Volume 1, The Protocols. Addison-Wesley, 1994.
A. Elwalid, D. Mitra, and R. H. Wentworth. A new approach for allocating buffers
and bandwidth to heterogeneous regulated traffic in an ATM node. IEEE Journal
on Selected Areas in Communications, 13(6):1115-1127, August 1995.

J. Dey, S. Sen, J. Kurose, D. Towsley, and J. Salehi. Playback restart in interactive
streaming video applications. In T appesr in Proceedings of IEEE Multimedie,
Ottawa, Canada, 1997.

