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Abstract

In this paper1 we consider the Network MIMO channel under the so-called Distributed Channel

State Information at the Transmitters (D-CSIT) configuration. In this setting, the precoder is designed

in a distributed manner at each Transmitter (TX) on the basis of the locally available multi-user channel

estimate. Although the use of simple Zero-Forcing (ZF) was recently shown to reach the optimal DoF

for a Broadcast Channel (BC) under noisy, yet centralized, CSIT, it can turn very inefficient in the

distributed setting as the achieved number of Degrees-of-Freedom (DoF) is then limited by the worst

CSI accuracy across all TXs. To circumvent this effect, we develop a new robust transmission scheme

improving the DoF. A surprising result is uncovered by which, in the regime of so-called weak CSIT,

the proposed scheme is shown to achieve the centralized outerbound obtained under a genie-aided

centralized setting in which the CSI versions available at all TXs are shared among them. Building

upon the insight obtained in the weak CSIT regime, we develop a general D-CSI robust scheme which

improves over the DoF obtained by conventional ZF approach in an arbitrary CSI quality regime and

is shown to achieve the centralized outerbound in some other practically relevant CSIT configurations.

I. INTRODUCTION

Multiple-antennas at the TX can be exploited to serve multiple users at the same time, thus

offering a strong DoF improvement over time-division schemes [1]. This DoF improvement is

however critically dependent on the accuracy of the CSIT. Indeed, the absence of CSIT is known
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to lead to the complete loss of the DoF improvement in the case of a BC with symmetric users [2].

In the noisy (centralized) CSIT regime, a long standing conjecture by Lapidoth, Shamai, and

Wigger [3] has been recently settled in [4] by showing that a scaling of the CSIT error in P−α

for α ∈ [0, 1] leads to a DoF of 1 + (K − 1)α in the K-user BC.

A different line of work in the area of BC with limited feedback has been focused on the

exploitation of delayed CSI on the TX side. This research area was triggered by the seminal

work from Maddah-Ali and Tse [5] where it was shown that completely outdated CSIT could

still be exploited via a multi-phase protocol involving the retransmission of the interference

generated. While the original model considered completely outdated CSIT, a large number of

works have developed generalized schemes for the case of partially outdated [6], [7], alternating

[8], or evolving CSIT [9], to name just a few.

In all the above literature, however, centralized CSIT is typically assumed, i.e., precoding

is done on the basis of a single imperfect/outdated channel estimate being common at every

transmit antenna. Although meaningful in the case of a BC with a single transmit device, this

assumption can be challenged when the joint precoding is carried out across distant TXs linked

by heterogeneous and imperfect backhaul links, as in the Network MIMO context. Such a setting

could in particular be obtained if the user’s data symbols are cached at the different TXs before

the transmission [10]. In this case, it is expected that the CSI exchange will introduce further

delay and quantization noise such that it becomes necessary to study the impact of TX dependent

CSI noise.

In order to account for TX dependent limited feedback, a distributed CSIT model (here

referred to as D-CSIT) was introduced in [11]. In this model, TX j receives its own multi-

user imperfect estimate Ĥ(j) on the basis of which it designs its transmit coefficients, without

additional communications with the other TXs. The finite-SNR performance of regularized ZF

under D-CSIT has been computed in the large system limit in [12] while heuristic robust

precoding schemes have been provided in [13], [14] for practical cellular networks. In [15],

[16], Interference Alignment is studied in a D-CSIT configuration and methods to reduce the

required CSIT gaining at each TX are provided. The DoF achieved with delayed and local CSIT,

which is hence a particular D-CSIT configuration is also studied in several works [17], [18], but

the results provided are restricted to the particular local CSIT configuration considered.

In terms of DoF, it was shown in a previous work [11] that using a conventional ZF precoder
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(regularized or not) leads to a severe DoF degradation caused by the lack of a consistent CSI

shared by the cooperating TXs. A scheme was proposed to lift the DoF in the two-user case but

the scheme was relying on the particular structure of the 2-user case and could not be extended

to more users. In this paper, we further build up on this concept to establish a general strategy

for robust precoding in the distributed setting.

More precisely, the main findings read as follows.

• We show that optimal precoding strategies differ depending on the level of CSI accuracy

available at the TXs. To this end we differentiate a weak CSIT regime where the accuracy

at the least informed TX lies below a specific threshold, from an arbitrary CSIT regime

where such condition does not hold.

• In the weak CSIT regime –which will be defined rigorously below– we obtain the surprising

result that it is possible to reach the centralized outerbound, where the centralized outerbound

is obtained by centralizing all CSI feedback observations across all TXs.

• In the arbitrary CSIT regime, the above D-CSIT robust scheme is extended, helping lift the

DoF substantially above what is achieved by conventional ZF precoding and achieving the

centralized outerbound in several key CSIT configurations.

Notations: We denote the multivariate circularly symmetric complex Gaussian distribution

with zero mean and identity covariance matrix by NC(0, I). We use .
= to denote exponential

equality, i.e., we write f(P )
.
= P x to denote limP→∞

log f(P )
logP

= x. The exponential inequalities

≤̇ and ≥̇ are defined in the same way. We also use the shorthand notation [K] to denote the set

{1, . . . , K}.

II. SYSTEM MODEL

A. Transmission Model

We study a communication system where K TXs jointly serve K Receivers (RXs) over a

Network (Broadcast) MIMO channel. We consider that each TX is equipped with a single-

antenna. Each RX is also equipped with a single antenna and we further assume that the RXs

have perfect CSI so as to focus on the impact of the imperfect CSI on the TX side.

The signal received at RX i is written as

yi = hH
i x + zi (1)
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where hH
i ∈ C1×K is the channel to user i, x ∈ CK×1 is the transmitted multi-user signal, and

zi ∈ C is the additive noise at RX i, being independent of the channel and the transmitted signal,

and distributed as NC(0, 1). We further define the channel matrix H , [h1, . . . ,hK ]H ∈ CK×K

and the channel coefficient from TX j to RX i as Hi,j . The channel is assumed to be drawn from

a continuous ergodic distribution such that all the channel matrices and all their sub-matrices

are full rank with probability one.

The transmitted multi-user signal x is obtained from the symbol vector s ∈ Cb×1 having its

elements Independently and Identically Distributed (i.i.d.) according to NC(0, 1), where b is the

number of independent data symbols emitted, through joint precoding.

B. Distributed CSIT Model

The D-CSIT setting differs from the conventional centralized one in that each TX receives a

possibly different (global) CSI based on which it designs its own transmission parameters without

any additional communication to the other TXs. Specifically, TX j receives the imperfect multi-

user channel estimate Ĥ(j) = [ĥ
(j)
1 , . . . , ĥ

(j)
K ]H ∈ CK×K where (ĥ

(j)
i )H refers to the estimate of

the channel from all TXs to user i, at TX j. TX j then designs its transmit coefficients solely

as a function of Ĥ(j) and the statistics of the channel.

Remark 1. It is critical to this work to understand well how the distributed CSIT setting differs

from (embeds) the many different heterogeneous CSIT configurations studied in the literature.

Indeed, an heterogeneous CSIT configuration typically refers to a centralized CSIT configuration

(i.e., with a common channel estimate at all TXs), where each element of the channel is known

with a different quality owing to specific feedback mechanisms. In contrast, the distributed

setting considered here has as many different channel estimates as there are TXs (where each

TX does not have access to the CSIT knowledge at the other TXs), and where different channel

coefficients may also be represented with unequal quality (as in heterogeneous case).

We model the CSI uncertainty at the TXs as

Ĥ(j) = H +
√
P−α(j)∆(j) (2)

where ∆(j) is a random variable with zero mean and bounded covariance matrix. The scalar

α(j) is called the CSIT scaling coefficient at TX j.
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Remark 2. The CSIT scaling coefficient α(j) takes its value in [0, 1] where α(j) = 0 is generally

seen to correspond to a CSIT being useless in terms of DoF. In contrast, α(j) = 1 is usually

equivalent in terms of DoF to a perfect CSIT [4], [19].

The multi-user distributed CSIT configuration is represented through the multi-user CSIT

scaling vector α ∈ RK defined as

α ,


α(1)

...

α(K)

 . (3)

For ease of notation, we also define the maximum value of these CSIT scaling coefficients

αmax , max
j∈[K]

α(j). (4)

In addition, we consider that the channel realizations and the channel estimates are drawn in an

i.i.d manner. For a given transmission power P , we further assume that the conditional probability

density functions also verify that

max
H∈CK×K

(
pH|Ĥ(1),...,Ĥ(K)(H)

)
.
=
√
Pαmax . (5)

Remark 3. This condition extends to the distributed CSIT configuration the condition provided

in [4], which writes in our setting as

max
H∈CK×K

(
pH|Ĥ(j)(H)

)
.
=
√
Pα(j) , ∀j ∈ [K]. (6)

Condition (5) is a mild technical assumption, which holds for the distributions usually con-

sidered.

Example 1. We show in the Appendix that condition (5) is satisfied when the noise realiza-

tions ∆(j) ∈ CK×K are i.i.d. according to NC (0K , IK) and all the CSI noise error terms ∆(j)

are independent of each other. �

This D-CSIT setting is illustrated in Fig. 1.
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Fig. 1: Network MIMO with Distributed CSIT

C. Degrees-of-Freedom Analysis

Let us denote by C(P ) the sum capacity of the D-CSIT network MIMO channel above. The

optimal sum DoF in this distributed CSIT scenario is denoted by DoFDCSI(α) and defined by

DoFDCSI(α) , lim
P→∞

C(P )

log2(P )
. (7)

III. A TOY EXAMPLE

We start by presenting a simple transmission scheme in a Toy-example as it contains some

important features of the setting and allows to convey the main intuition in a clear manner. This

motivating scheme will then be improved to obtain the results in Section IV.

Let us then consider a 3-user setting in which α(1) = 0.1, α(2) = 0, and α(3) = 0. We will

show how it is possible to achieve the DoF of 1 + 2α(1) = 1.2, which is the value of the DoF

that would be achieved in a centralized setting with TX 2 and TX 3 having received the same
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estimate as TX 1 [19]. In fact, it will be rigorously shown in Section IV that the DoF obtained

when forming such a centralized setting is always an outerbound.

A. Encoding

The transmission scheme consists in a single channel use during which 3 private data symbols

of rate α(1) log2(P ) bits are sent to each user (thus leading to 9 data symbols being sent in one

channel use), while an additional common data symbol of rate (1−α(1)) log2(P ) bits is broadcast

from TX 1 to all users using superposition coding [20]. Note that the information contained in

this common data symbol is not only composed of “fresh” information bits destined to one user,

but is also composed of side information necessary for the decoding of the private data symbols,

as will be detailed below.

The transmitted signal x ∈ C3 is then equal to

x = s1 + s2 + s3 +


1

0

0

 s0 (8)

where

• si ∈ C3 is a vector containing private data symbols destined to user i, with power Pα(1)
/3

and rate α(1) log2(P ) bits.

• s0 is the common data symbol transmitted by TX 1 only and destined to all users, with

power P − Pα(1) and rate (1− α(1)) log2(P ) bits.

The signal received at user i is then equal to

yi=Hi,1s0︸ ︷︷ ︸
.
=P

+ hH
i s1︸ ︷︷ ︸
.
=Pα

(1)

+ hH
i s2︸ ︷︷ ︸
.
=Pα

(1)

+ hH
i s3︸ ︷︷ ︸
.
=Pα

(1)

(9)

where we have written under the bracket the power scaling, and where the noise term has been

neglected for clarity. The received signals at the users during this transmission are illustrated in

Fig. 2.

B. Interference Estimation and Quantization at TX 1

The key element of the scheme is that the common data symbol s0 is used to convey side

information allowing each user to decode their desired data symbols. More specifically, TX 1



8

Pα(1) 

P

3
H
12

H
11

H
101,1 shshsh sH 3

H
22

H
21

H
201,2 shshsh sH 3

H
32

H
31

H
301,3 shshsh sH

P1-α(1) 

RX 3RX 2RX 1

Fig. 2: Illustration of the received signals at the users.

uses its local CSIT Ĥ(1) to estimate the interference terms (ĥ
(1)
i )Hsk∀i, k, k 6= i, quantize them,

and then transmit them using the common data symbol s0. Each interference term is quantized

using α(1) log2(P ) bits such that the quantization noise remains at the noise floor. Hence, the

transmission of all the quantized estimated interference terms requires to transmit 6α(1) log2(P )

bits.

These 6α(1) log2(P ) bits can be transmitted via the data symbol s0 if 6α(1) log2(P ) ≤ (1 −

α(1)) log2(P ), which is the case for the example considered here. It the inequality is strict,

the data symbol s0 transmits some additional (1 − 7α(1)) log2(P ) fresh information bits to any

particular user.

C. Decoding and DoF Analysis

It remains to verify that this scheme leads to the claimed DoF. Let us consider without loss of

generality the decoding at user 1 as the decoding at the other users will follow with a circular

permutation of the user’s indices. Note that signals at the noise floor will be systematically

omitted.

Using successive decoding [20], the data symbol s0 is decoded first, followed by the data

symbol s1. The data symbol s0 of rate of (1−α(1)) log2(P ) bits can be decoded with a vanishing

probability of error as its SINR can be seen in (9) to scale in P 1−α(1) .

Upon decoding s0, the estimated interferences (ĥ
(1)
1 )Hs2 are obtained (up to the quantization



9

noise at the noise floor, which is thus omitted). It remains to evaluate the impact over the DoF

of the imperfect estimation at TX 1:

(ĥ
(1)
1 )Hs2 = hH

1 s2 +
√
P−α(1)(δ

(1)
1 )Hsk︸ ︷︷ ︸

.
=P 0

. (10)

It follows from (10) that the interference terms can be suppressed up to the noise floor at RX 1

using the quantized estimated interference terms received.

After having subtracted the quantized interference terms, the remaining signal at user 1 is then

y1 = hH
1 s1. (11)

Using this signal in combination with the estimated interference terms (ĥ
(1)
2 )Hs1 and (ĥ

(1)
3 )Hs1

obtained through s0, user 1 forms a virtual received vector yv
1 ∈ C3 defined as

yv
1 ,


hH

1

(ĥ
(1)
2 )H

(ĥ
(1)
3 )H

 s1. (12)

Each component of yv
1 has a SINR scaling in Pα(1) such that user 1 can decode with a vanishing

error probability its destined 3 data symbols having each the rate α(1) log2(P ) bits.

Considering the 3 users, it is possible to transmit in one channel use 9α(1) log2(P ) bits and

(1− 7α(1)) log2(P ) bits (through the data symbol s0), which yields a sum DoF of 1 + 2α(1).

It can be easily seen that this scheme is able to achieve the optimal DoF 1 + 2α(1) as long as

α(1) ≤ 1/7. In Section IV, this scheme will be improved by introducing some ZF precoding to

reduce the amount of interference to retransmit, thus allowing for larger values of α(1).

Remark 4. Interestingly, the above scheme builds on the principle of interference estimation,

quantization and retransmission, which has already been exploited in the different context of

precoding with delayed CSIT (see e.g. [6], [7], [21]). In contrast to these previous works, the

distributed nature of the CSIT is exploited here such that the interference terms are estimated

and transmitted from the TX having the most accurate CSIT, during the same channel use in

which the interference terms are generated.

IV. MAIN RESULTS

As one of the key observations made in this paper, we found that the DoF behavior in a

Network MIMO channel with distributed CSIT quite depends on the CSI quality regime. To this
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end, notions of “weak CSIT” regime and “arbitrary CSIT” regime are introduced to characterize

the interval in which the CSI scaling coefficients α(j) are allowed to take their values. We first

provide results for a given weak CSIT regime and then move on to the arbitrary CSIT regime.

We define a weak-CSIT regime as follows:

Definition 1. In the K-user Network MIMO with distributed CSIT and K ≥ 2, we define a weak

CSIT regime as comprising all the CSIT configurations satisfying that

αmax ≤ 1

1 +K(K − 2)
. (13)

In the two-user case, this condition reduces to α(j) ≤ 1,∀j ∈ {1, 2}, while in the three-user

case, CSIT is said to be weak if α(j) ≤ 1/4,∀j ∈ {1, 2, 3}, and so forth. Before detailing the

results of achievability in Subsections IV-B and IV-C, we start by providing an outerbound which

will be useful to interpret the following results.

Remark 5. As hinted in Section III, the weak CSIT regime it not uniquely defined. In fact, the

weak-CSIT regime considered above is larger than the one obtained using the simple scheme

described in Section III.

A. Centralized Outerbound

In the following, we prove rigorously the intuitive result that CSIT discrepancies between TXs

does not improve the DoF.

Theorem 1. In the K-user Network MIMO channel with distributed CSIT, the optimal DoF is

upperbounded by the DoF achieved in a centralized CSIT configuration in which all the TXs

can share perfectly their CSI estimates. Specifically, it holds that

DoFDCSI(α) ≤ DoFCCSI (αmax) (14)

where DoFCCSI(α) denotes the DoF achieved in a centralized CSIT configuration with the CSIT

scaling coefficient α [4].

Proof. This intuitive result is proved by considering the outerbound formed by a genie-aided

setting where all the channel estimates are perfectly shared between the TXs. This genie-aided

configuration is a centralized setting as all TXs share the same CSI. Furthermore, because of
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the assumption over the probability distribution of the channel in (5), it holds that

pH|Ĥ(1),...,Ĥ(K)(H) = O
(√

Pαmax

)
. (15)

After having defined T , {Ĥ(1), . . . , Ĥ(K)} to represent the total available CSIT, it becomes

clear that it is possible to apply the outerbound derived in [4] for the centralized case. The DoF

of this genie-aided centralized setting is then equal to

DoFCCSI(αmax) = 1 + (K − 1)αmax. (16)

B. Weak CSIT Regime

Let us now consider the weak-CSIT regime defined in Definition 1.

Theorem 2. In the K-user Network MIMO with distributed CSIT, the optimal sum DoF in the

weak CSIT regime defined in Definition 1 satisfies

DoFDCSI(α) = 1 + (K − 1)αmax. (17)

Proof. The outerbound is obtained from Theorem 1 and a scheme achieving this outerbound is

described in Section VI.

In the weak CSIT regime defined, it is then sufficient in terms of DoF to provide a CSI estimate

at a single TX. This surprising result is in strong contrast with the performance obtained using

conventional ZF where the DoF is limited by the worst accuracy across all TXs (more precisely

the DoF is equal to 1 + (K− 1) minj α
(j) when considering successive decoding). Note that this

is despite the fact that the ZF approach was recently shown to be DoF optimal for the BC under

centralized CSIT setting [4].

Remark 6. In the two-user case, the weak CSIT condition considered reduces to α(j) ≤ 1,∀j ∈

{1, 2}, such that the notion of weak CSIT coincides with the arbitrary regime. This is in

agreement with the result in [11] that it is possible to achieve 1 + (K − 1) max
(
α(1), α(2)

)
in the 2-user case, for any value of α(1) and α(2).
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C. Achievable DoF for Arbitrary CSIT Regime with K = 3

Going beyond the weak-CSIT regime, we present below a new transmission scheme exploiting

the insights obtained in the weak CSIT regime to achieve a DoF well beyond the DoF achieved

using conventional transmission schemes. Deriving a transmission scheme for any CSIT config-

uration and any number of users is out of the scope of this work and is the topic of ongoing

research within our group.

Theorem 3. In the 3-user Network MIMO with distributed CSIT and α(1) ≥ α(2) ≥ α(3), it holds

that

DoFDCSI(α) ≥

1 + 2α(1) if α(1) ≤ 1
4

32α(1)−α(2)+2α(1)α(2)

4α(1)−α(2) if α(1) ≥ 1
4
.

(18)

Proof. See the scheme description in Section VII.

Comparing this achievability result with the Centralized Outerbound in Theorem 1 gives the

following corollary.

Corollary 1. The lower bound provided in Theorem 3 for K = 3 users is tight in the weak CSIT

regime defined in Definition 1 and in the arbitrary CSIT regime if α(1) = α(2).

The DoF achieved with the proposed scheme is illustrated in Fig. 3. For α(1) ≤ 1
4
, the

transmission occurs in the weak CSIT regime, and the proposed scheme coincides with the

transmission scheme for the weak CSIT, as described in Section VI. In that regime, the achieved

DoF only depends on the value of the best CSI scaling coefficient α(1), while for larger values

of α(1), the DoF also depends on the value of the second best CSI scaling coefficient α(2).

The proposed D-CSI robust transmission schemes rely on several ingredients which are (i)

Active-Passive (AP-) ZF precoding, (ii) interference quantization, and (iii) superposition coding.

AP-ZF was first introduced with a single so-called passive TX in [11] and we present below

a non-trivial generalization to an arbitrary number of passive TXs and an arbitrary number of

active TXs.
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α(2), while the value of α(3) is set to 0 to emphasize the sensitivity with respect to one estimate.

V. PRELIMINARIES: ACTIVE-PASSIVE ZERO FORCING

Let us consider a setting in which K single-antenna TXs aim to transmit K−n data symbols

to one user (e.g., a user having K − n antennas) while zero-forcing interference to n other

single-antenna users, where 0 < n < K. Within this section, we denote the channel from the

K TXs to the interfered users by H ∈ Cn×K . We divide the TXs between so-called active TXs

and passive TXs and we consider without loss of generality that the first n TXs are the active

TXs while the remaining K − n TXs are the passive ones.

We define the active channel as the channel coefficients from the active TXs, denoted by
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HA ∈ Cn×n, and the passive channel as the channel coefficients from the passive TXs, denoted

by HP ∈ Cn×(K−n), such that

H =
[
HA HP

]
. (19)

This transmission setting considered to introduce AP-ZF is illustrated in Fig. 4.

n Active TXs
K-n  Passive 

TXs

Kn x CH

n Interfered 

users

Served user

n)-(Kn x P CH
nn x A CH

K-n streams

Fig. 4: Illustration of the transmission scenario considered for AP-ZF.

Turning to the CSIT configuration, we assume that an estimate Ĥ(j) ∈ Cn×K is available

at TX j, for j ∈ [K]. We define the estimated active channel Ĥ
(j)
A ∈ Cn×n and the estimated

passive channel Ĥ
(j)
P ∈ Cn×(K−n) similarly to their perfectly known counterparts.

Let us now consider the signal processing at TX j. On the basis of the available CSIT Ĥ(j),

TX j computes TAPZF(j) ∈ CK×K−n where the part of the precoder which should be implemented

at the active TXs is denoted by λAPZFTA(j) ∈ Cn×K−n, where λAPZF is used to satisfy an average

sum power constraint (see its exact value in (23)), and is called the active precoder (computed

at TX j) while the part of the precoder which should be implemented at the passive TXs is
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denoted by λAPZFTP ∈ C(K−n)×(K−n) and is called the passive precoder. It then holds that

TAPZF(j) = λAPZF

TA(j)

TP

 . (20)

The precoder TP is arbitrarily chosen as any full rank matrix known to all TXs while the

precoder TA(j) is computed as

TA(j) =−
(
(Ĥ

(j)
A )HĤ

(j)
A +

1

P
In

)−1
(Ĥ

(j)
A )HĤ

(j)
P TP (21)

where P is the sum power of the data symbol transmitted. Note that the precoder TP is a CSI

independent precoder which is commonly agreed upon by all TXs beforehand.

The effective AP-ZF precoder is implemented in a distributed manner and is denoted by

TAPZF ∈ CK×K−n. It is a composite version of the precoders computed at each TX and is hence

given by

TAPZF , λAPZF


eH1 TA(1)

...

eHnTA(n)

TP

 (22)

where ei ∈ Cn for i ∈ [n] is the ith row of the identity In and where the normalization

coefficient λAPZF is chosen as

λAPZF ,
1√√√√√E

∥∥∥∥∥∥
− (HH

AHA + 1
P

In
)−1

HH
AHPTP

TP

∥∥∥∥∥∥
2

F


. (23)

This normalization constant λAPZF requires only statistical CSI and can hence be applied at

every TX. It ensures that an average normalization constraint is satisfied, i.e., that

E
[
‖TAPZF‖2F

]
= 1. (24)

Remark 7. The design of the Active precoder in (21) is an extension of the AP-ZF precoder

introduced in [11]. Intuitively, the active precoders invert the channel so as to cancel the

interference generated by the passive TXs. Note also that although TX j computes the full

precoder TAPZF(j), only some coefficients will be effectively used for the transmission due to

the distributed precoding configuration, as shown in (22).
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The key following properties can be easily shown from the precoder design.

Lemma 1. With perfect channel knowledge at all (active) TXs, the AP-ZF precoder with n active

TXs and K − n passive TXs satisfies

HTAPZF? −−−→
P→∞

0n×(K−n) (25)

where TAPZF? denotes the AP-ZF precoder based on perfect CSIT and is given as

TAPZF? , λAPZF

TA?

TP

 . (26)

Proof. Using the well known Resolvent identity [22, Lemma 6.1], we can write that(
HH

AHA +
1

P
In

)−1
−
(
HH

AHA

)−1
= −

(
HH

AHA

)−1( 1

P
In

)(
HH

AHA +
1

P
In

)−1
. (27)

We can then compute the leaked interference as

HTAPZF? = λAPZFHATA? + λAPZFHPTP (28)

(a)
= λAPZFHA

(
HH

AHA

)−1( 1

P
In

)(
HH

AHA +
1

P
In

)−1
HH

AHPTP (29)

where equality (a) follows from inserting (27) inside the AP-ZF precoder and simplifying.

Letting the available power P tend to infinity, the leaked interference tends to zero.

Lemma 2. The AP-ZF precoder with n active TXs and K − n passive TXs is of rank K − n.

Proof. The passive precoder was chosen such that TP is full rank, i.e., of rank K − n. The

precoder TA(j) is a linear combination of TP for each j, such that the effective AP-ZF pre-

coder TAPZF resulting from distributed precoding is exactly of rank K − n.

Lemma 3. If Ĥ(j) , H+
√
P−α(j)∆(j) for α(j) ∈ [0, 1] with ∆(j) being drawn from a continuous

ergodic distribution with zero mean and bounded full rank covariance matrix, it then holds that∥∥HTAPZF
∥∥2
F
≤̇ P−minj∈[n] α

(j)

. (30)

Proof. Following a similar approach as in [11], we can use once more the resolvent identity

[22, Lemma 6.1] to approximate the matrix inverse and show that∥∥TAPZF(j) −TAPZF?
∥∥2
F
≤̇ P−α

(j)

. (31)
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It then follows that ∥∥HTAPZF
∥∥2
F
≤̇
∥∥H (TAPZF −TAPZF?

)∥∥2
F

(32)

≤̇ ‖H‖2F
∥∥TAPZF −TAPZF?

∥∥2
F

(33)

≤̇ ‖H‖2F

(
n∑
j=1

∥∥TAPZF(j) −TAPZF?
∥∥2
F

)
(34)

≤̇ P−minj∈[n] α
(j)

(35)

where (32) follows from Lemma 1 and (35) follows from Lemma 3.

The interpretation behind this result is that the interference attenuation of AP-ZF precoding is

only limited by the CSIT accuracy at the active TXs, and does not depend on the CSI accuracy

at the passive TXs.

Remark 8. Interestingly, it can be seen that the number of passive TXs determines the rank of

the precoder, i.e., the number of streams, and the number of active TXs determines the number

of ZF constraints that are satisfied.

VI. WEAK CSIT REGIME: ACHIEVABLE SCHEME

We now consider the weak CSIT regime and we describe the transmission scheme achieving

the DoF expression given in Theorem 2. Without loss of generality, we assume that the TX with

the best CSIT accuracy is TX 1, i.e., that α(1) = maxj∈[K] α
(j).

A. Encoding

The proposed transmission scheme consists in only one channel use during which K− 1 data

symbols of rate α(1) log2(P ) bits are sent to each user (thus leading to K(K − 1) data symbols

being sent in one channel use), while an additional data symbol of data rate (1−α(1)) log2(P ) bits

is broadcast from TX 1. Note that the information which is contained in this broadcast symbol

is not only composed of information bits destined to one user, but is also composed of side

information necessary for decoding the other –private– data symbols, as will be detailed in

Subsection VI-B. The data symbol vector destined to user i is denoted by si ∈ CK−1 while the

broadcast data symbol is denoted by s0 ∈ C.



18

RX 1 RX 2 RX 3

3
APZF
3

H
22

APZF
2

H
21

APZF
1

H
201,2 sThsThsTh sH3

APZF
3

H
12

APZF
2

H
11

APZF
1

H
101,1 sThsThsTh sH 3

APZF
3

H
32

APZF
2

H
31

APZF
1

H
301,3 sThsThsTh sH

)1(P

P P1-α(1) 

Fig. 5: Illustration of the transmission scheme for the weak CSIT regime in the case of K = 3

users.

The transmitted signal x ∈ CK is then equal to

x =

 1

0K−1×1

 s0 +
K∑
i=1

TAPZF
i si (36)

where

• si ∈ CK−1 contains K−1 data symbols of rate α(1) log2(P ) bits and power Pα(1)
/(K(K−

1)) while TAPZF
i ∈ CK×(K−1) is the AP-ZF precoder described in Section V, with TX 1

being the only active TX such that the interference are zero-forced at a single user, which

we choose to be user i+ 1 where i+ 1 = i mod [K] + 1.

• s0 ∈ C is a data symbol of rate (1 − α(1)) log2(P ) bits and power P − Pα(1) , and is

transmitted from TX 1 only.

The signal received at user i is then

yi=Hi,1s0︸ ︷︷ ︸
.
=P

+hH
i TAPZF

i si︸ ︷︷ ︸
.
=Pα

(1)

+hH
i

K∑
k=1,k 6=i,k 6=i−1

TAPZF
k sk︸ ︷︷ ︸

.
=(K−2)Pα(1)

+hH
i TAPZF

i−1 si−1︸ ︷︷ ︸
.
=P 0

(37)

where the noise term has been neglected for clarity. The last term in (37) scales as P 0 following

the attenuation by P−α
(1) due to AP-ZF with TX 1 being the only active TX, as shown in

Lemma 3. The received signals during this transmission are illustrated in Fig. 5.
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B. Interference Estimation and Quantization at TX 1

The data symbol s0 is used to convey to the users side information allowing to decode

their destined data symbols. More specifically, TX 1 uses its local CSIT Ĥ(1) to estimate the

interference terms ĥH
i TAPZF

k sk for k 6= i, k 6= i− 1 that is going to be generated by the private

data symbols si,∀i ∈ [K]. Each interference term has a power scaling in Pα(1) such that using

α(1) log2(P ) bits, each term can be quantized with a quantization noise at the noise floor [20].

It can be seen by inspection that there are in total K(K − 2) such interference terms. In the

weak interference regime considered, it holds by definition that K(K − 2)α(1) ≤ 1− α(1) such

that these K(K− 2)α(1) log2(P ) bits can be transmitted via the common data symbol s0 of data

rate (1 − α(1)) log2(P ) bits. If the previous inequality is strict, these bits are completed with

information bits destined to any particular user.

C. Decoding and DoF Analysis

It remains to verify that this scheme leads to the claimed DoF. Let us consider without loss of

generality the decoding at user 1 as the decoding at the other users will follow with a circular

permutation of the user’s indices.

Using successive decoding, the data symbol s0 is decoded first, followed by s1. The data

symbol s0 of rate of (1−α(1)) log2(P ) bits can be decoded with a vanishing probability of error

as its SINR can be seen in (37) to scale as P 1−α(1) .

Upon decoding s0, the estimated interferences (ĥ
(1)
1 )HTAPZF

k sk, k ∈ {2, . . . , K − 1} are

obtained (up to the quantization noise at the noise floor). It holds that

(ĥ
(1)
1 )HTAPZF

k sk = hH
1 TAPZF

k sk + P−α
(1)

(δ
(1)
1 )HTAPZF

k sk︸ ︷︷ ︸
.
=P 0

(38)

such that subtracting the estimated interference from the received signals can be done perfectly

in terms of DoF.

Remark 9. Note that TX 1 knows perfectly the effective precoder used in the transmission as

he is the only active TX.

After having decoded s0 and subtracted the quantized interference terms, the remaining signal

at user 1 is then (up to the noise floor)

y1 = hH
1 TAPZF

1 s1. (39)
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The estimated interference terms (ĥ
(1)
i )HT

APZF(1)
1 s1, i = 3, . . . , K, which have been obtained

through s0, are then used by user 1 to form a virtual received vector yv
1 ∈ CK−1 equal to

yv
1 ,


hH

1

(ĥ
(1)
3 )H

...

(ĥ
(1)
K )H

TAPZF
1 s1. (40)

Each component of yv
1 has a SINR scaling in Pα(1) and the AP-ZF precoder is of rank K − 1

(See Lemma 2) such that user 1 can decode its desired K − 1 data symbols, each with the rate

of α(1) log2(P ) bits.

Considering all users, K(K − 1)α(1) log2(P ) bits are transmitted through the private data

symbols and (1−α(1)−K(K − 2)α(1)) log2(P ) bits to any particular user through the common

data symbol s0. Adding the two expressions yields the claimed DoF.

VII. ARBITRARY CSIT REGIME FOR K = 3

In the arbitrary CSIT setting, finding an efficient transmission scheme adapted to all the

possible CSIT configurations is made challenging by the fact that the CSIT configuration is

characterized by K CSIT scaling coefficients. Consequently, there are many different CSIT

regimes and the transmission scheme needs to be very adaptive. Therefore, we provide in the

following an efficient heuristic scheme for the case of K = 3 users, while the extension of the

same ideas to K users is left for further works.

A. Main Principle

The first phase of the scheme is exactly the same as the scheme presented for the weak CSIT

regime in Section VI. If the transmission occurs in the weak CSIT regime, then the scheme

coincides with the scheme presented above. However, outside the weak CSIT regime, it holds

that K(K−2)α(1) > 1−α(1) such that all it is not possible to transmit to each user sufficient side

information to decode its desired private data symbols. Consequently, we resort to a second phase

of the transmission, in successive channel uses, during which the interference terms computed

at TX 1 that could not yet be transmitted, are taken care of.

During the second phase, the private data symbols are transmitted using AP-ZF with 2 active

TXs (TX 1 and TX 2) and the power Pα(2) . The use of 2 Active TXs with a lower power has for
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consequence that interferences generated remain at the noise floor. Indeed, AP-ZF with k active

TXs is able to ZF interference at k users (See Section V), and the interference attenuation is

limited by the worst accuracy across the Active TXs (See Lemma 3). As a consequence, this

second phase does not generate any additional interference (in terms of DoF), such that the

common data symbol can be used to retransmit solely the interference generated during the first

phase.

This second phase is repeated until sufficient side information (i.e., quantized estimated

interference terms) have been transmitted to the users to decode the private data symbols emitted

during the first phase.

B. Encoding

As explained above, only the transmission during the second phase needs to be described.

The transmitted signal is then given by

x =


1

0

0

 s0 +
3∑
i=1

t′APZF
i s′i (41)

where

• s′i ∈ C is a private data symbol destined to user i, with power Pα(2)
/3 and rate α(2) log2(P ) bits.

The AP-ZF precoder t′APZF
i is designed with 2 active TXs –TX 1 and TX 2– and with one

passive TX –TX 3–. Consequently, the interferences can be zero-forced at both interfered

users (See Section V).

• s′0 ∈ C is a common data symbol, with power P − Pα(2) and rate (1 − α(2)) log2(P ) bits,

transmitted from TX 1 only.

The received signals at the users are then given by

y′1 = H1,1s0︸ ︷︷ ︸
.
=P

+hH
1 t
′APZF
1 s′1︸ ︷︷ ︸
.
=Pα

(2)

+hH
1 t
′APZF
2 s′2 + hH

1 t
′APZF
3 s′3︸ ︷︷ ︸

.
=P 0

y′2 = H2,1s0︸ ︷︷ ︸
.
=P

+hH
2 t
′APZF
2 s′2︸ ︷︷ ︸
.
=Pα

(2)

+hH
2 t
′APZF
1 s′1 + hH

2 t
′APZF
3 s′3︸ ︷︷ ︸

.
=P 0

y′3 = H3,1s0︸ ︷︷ ︸
.
=P

+hH
3 t
′APZF
3 s′3︸ ︷︷ ︸
.
=Pα

(2)

+hH
3 t
′APZF
1 s′1 + hH

3 t
′APZF
2 s′2︸ ︷︷ ︸

.
=P 0

(42)



22

RX 1 RX 2 RX 3

P

3
APZF
3

H
12

APZF
2

H
11

APZF
1

H
101,1 ''''''' sthsthsth sH

)2(
P 

3
APZF
3

H
22

APZF
2

H
21

APZF
1

H
201,2 ''''''' sthsthsth sH 3

APZF
3

H
32

APZF
2

H
31

APZF
1

H
301,3 ''''''' sthsthsth sH

P1-α(2) 

Fig. 6: Illustration of the second phase of the transmission in the arbitrary CSIT regime for

K = 3.

where the noise realizations have been neglected. The last terms of the received signals scale as

P 0 due to the attenuation by P−α
(2) from AP-ZF with TX 1 and TX 2 being Active TXs (See

Lemma 3).

This transmission scheme is illustrated in Fig. 6.

C. DoF Analysis

The common data symbol is decoded first and its contribution to the received signal is removed.

This is possible with a vanishing probability of error as the SNR at each user scales in P 1−α(2) .

Using successive decoding, each user can then decode with a vanishing probability of error its

desired data symbol from the received signal. Thus, a sum DoF equal to 3α(2) is achieved during

each channel use of the second phase.

This second phase lasts until the totality of the quantized estimated interferences have been

successfully broadcast, i.e., during d(4α(1) − 1)/(1 − α(2))e channel uses. The impact of the

ceiling operator is made arbitrary small by repeating the first phase n1 times and the second

phase n2 times, with n1 and n2 chosen such that (4α(1)− 1)/(1−α(2)) is arbitrarily close to its

next integer. Consequently, we omit in the following the ceiling operator for the sake of clarity.

A sum DoF of 6α(1) is achieved during the first phase (conditioned on the successful retrans-

mission of the quantized estimated interferences) while a sum DoF of 3α(2) is achieved during

each channel use of the second phase. As the second phase lasts for (4α(1) − 1)/(1 − α(2))
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channel uses, the DoF achieved by the full transmission scheme is

DoF =
6α(1) + 4α(1)−1

1−α(2) 3α(2)

1 + 4α(1)−1
1−α(2)

= 3
2α(1) − α(2) + 2α(1)α(2)

4α(1) − α(2)

(43)

which is the claimed DoF, and concludes the proof.

VIII. CONCLUSION

We have described a new D-CSIT robust transmission schemes improving over the DoF

achieved by conventional precoding approaches when faced with distributed CSIT. As a first step,

we have derived an outerbound for the DoF achieved with D-CSIT, coined as the Centralized

Outerbound, and consisting in a genie-aided setting where all the CSI versions are made available

at all TXs. We have then uncovered the surprising result that in a certain “weak CSIT regime”,

it is possible to achieve this Centralized Outerbound in a D-CSIT configuration with CSIT

handed at a single TX. The robust precoding schemes proposed rely on new methods such

as the estimation of the interference and their transmission from a single TX, and the AP-ZF

precoding with multiple Passive TXs and multiple Active TXs. These new methods have a strong

potential for improvement in other wireless configurations with distributed CSIT. Deriving an

optimal transmission scheme for an arbitrary number of users and an arbitrary CSIT configuration

is a challenging and interesting research problem.
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APPENDIX

For the sake of completeness, we start by recalling the following result on multivariate

Gaussian distribution.

Theorem 4. [23] Let X and Y be centered and jointly Gaussian with covariance matrix KXX

and KYY. Assume that KYY > 0. Then the conditional distribution of X conditional on Y = y
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is a multivariate Gaussian of mean

E
[
XYH

]
K−1YYy. (44)

and covariance matrix

KXX − E
[
XYH

]
K−1YYE

[
YXH

]
. (45)

For ease of notation, we will in the following consider the vectorized versions of the channel

and channel estimates, which we denote by h and ĥ(j),∀j ∈ [K], respectively. Applying

Theorem 4, the conditional distribution ph|ĥ(1),...,ĥ(K) is multivariate Gaussian. Our goal is to

compute the covariance matrix of this conditional distribution, denoted by K. Before writing it

explicitly, we introduce the shorthand notation Ī ∈ CK3×K2 as

Ī ,
[
IK2 . . . IK2

]T

︸ ︷︷ ︸
Ktimes

(46)

and Σ ∈ CK3×K3 as

Σ ,


P−α

(1)
IK2

. . .

P−α
(K)

IK2

 . (47)

With these notations, the covariance matrix K is then written using Theorem 4 as

K = IK2 − ĪT [Ī ĪT + Σ
]−1

Ī (48)

(a)
= IK2 − ĪTΣ−1Ī + ĪTΣ−1Ī

[
IK2 + ĪTΣ−1Ī

]−1
ĪTΣ−1Ī (49)

(b)
= IK2 −

[
IK2 + ĪTΣ−1Ī

]−1
ĪTΣ−1Ī (50)

= IK2 −

[
IK2 +

K∑
j=1

Pα(j)

IK2

]−1( K∑
j=1

Pα(j)

IK2

)
(51)

=
1

1 +
∑K

j=1 P
α(j)

IK2 (52)

where equality (a) follows from the Matrix Inversion Lemma [24, Chapter 3.1.1] and equality (b)

follows from basic algebraic manipulations. Hence, the conditional probability density function

is Gaussian with the variance of its elements scaling in P−αmax such that it satisfies that

max(ph|ĥ(1),...,ĥ(K)(h))
.
=
√
Pαmax . (53)
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