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Abstract— Traditionally optimum-adaptive beamforming algorithms
have been developed assuming fully coherent plane wavefronts, ie., as-
suming a data model of point sources. In most applications this assump-
tion is inappropriate, since the channel model has to account for different
kinds of dispersion phenomena due to both the propagation environment
and the array itself. Significant examples are SONAR and underwater
communication systems. Indeed, in such circumstances, the resulting
wavefronts can be randomly distorted, usually suffering a loss of spatial
coherence. Here, assuming a more realistic stochastic channel model, we
analyze the performance of a traditional optimum-adaptive beamformer
for point sources, when the signal or the interference undergo a spatial
coherence degradation. It is shown, with analytical details, that the same
coherence loss, for the interference results in larger performance degra-
dation than for the signal. Furthermore, we provide a theoretical com-
parison among different beamforming aigorithms, based on the estimate
of the channel parameters and on spatial smoothing methods.

I. INTRODUCTION

Mostly, sensor array beamforming algorithms have been
developed based on the assumption of a data model of point
sources with only a direct fully coherent plane-wave path
between the source and the receiving array. Nevertheless,
in most real scenarios this assumption is clearly inappropri-
ate because many kinds of dispersion phenomena make re-
ceived signals exhibit a limited spatial coherence, even when
the corresponding sources are fully coherent for any propaga-
tion distance. Causes of such a spatial coherence degradation
can generally be attributed to the propagation medium and/or
to the array itself. Indeed, when non-rigid large aperture
acoustic arrays are used, random mechanical deformations
can occur because the array is in motion and/or due to ran-
dom fluctuations of the medium wherein it is located. These
effects are well known in SONAR and underwater commu-
nication systems operating in shallow water with non-rigid
acoustic arrays. Since spatially scattered sources and not
point sources exhibit limited spatial coherence, i.e., angular
spreading, we shall assume a more realistic channel model,
accounting for both the propagation medium and the array
dispersive effects, where the signal energy arrives at the array
in clusters of rays/modes, distributed around the nominal di-
rections of the signals sources. This model has been already
developed for array processing in radio mobile communica-
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tions (see [1] and references therein). The effects of a signal
reduced spatial coherence on the performance of optimum-
adaptive beamformers have been analyzed by many authors
[11-112], although the most attention has been focused on the
effects on Direction Of Arrival (DOA) estimation where sev-
eral algorithms have been derived [1]-[6). Concerning the
analysis of the effects, Cox [11] derived a simple exponen-
tial correlation model to describe the coherence degradation
of a plane-wave signal, to compare the array output Signal-to-
Noise Ratio (SNR) with the output SNR attainable with only
one sensor, assuming a linear array in the absence of interfer-
ence. Other authors provided spatial coherence loss models
based on measured data in real testbeds [14], [15]. More re-
cently, Morgan and Smith [9] analyzed the same effects on
the detection performance of linear and quadratic array pro-
cessors using an exponential-power-law model for the signal
wave-front coherence in the presence of uncorrelated noise,
but always in the absence of interference. A first analysis of
the effects due to the interference coherence loss was given in
{71, [8]. Here we show that the detection performance of an
optimum-adaptive array can be substantially degraded due to
an interference with limited spatial coherence even though the
signal is fully coherent. In order to give a complete insight,
here we study both the effects of the signal and the interfer-
ence spatial coherence degradation on the performance of an
optimum-adaptive array processor, which has been designed
to maximize the output Signal-to-Interference-plus-Noise Ra-
tio (SINR), when receiving fully coherent signal and inter-
ference (i.e., when the angular spread is zero, i.e., for point
sources) [13]. The single signal and the single interference
cases are studied with analytical details in order to identify
the main causes of performance loss. Analytical expressions
for the output SINR are derived in terms of signal and in-
terference coherence coefficients (source coherence length or
angular spread) and parameters related to the array proces-
sor. Then, on the basis of that analysis, the performances of
different beamforming algorithms are compared.

II. MODEL AND ASSUMPTIONS

We consider a linear uniform array with m sensors and
inter-element spacing of d, receiving narrowband signals.



Each signal wavefront can be modeled as resulting from
the superposition of a large number of fully coherent plane-
wavefronts, i.e., rays or modes, due to the scattering phenom-
ena described above. Each mode has a random complex gain
factor v and arrives from a random direction 8 + ¢, where
¢ is the nominal DOA of the source and ¢ is a random zero
mean angular deviation. In addition, we shall assume the ab-
sence of channel delay spread, i.e., the differences in path
delay between the different modes very small so that they can
be considered as phase shifts in the gain factors.

The complex baseband signals related to ¢ independent
sources, received at the antenna array can be represented by
the vector

z(t) =) @lt) +n(t) (1)
k=1

where n(t) is temporally and spatially white Gaussian noise
such that En(t1)n (t2) = 6214(¢; — t2), and the contribu-
tion z(t) from the kth source is modeled as

M
2k (1) = sk(t) D vk (t)alfe + k(1)) = sult)or(t) @

i=1

where s, (t) is the signal transmitted by the kth source, a(f)
is the array response vector of a point source at DOA 8, M, is
the number of modes related to the kth source. We assume
that the Probability Density Function (PDF} of ¢;; is the
same for all j’s and obeys a known PDF with unknown stan-
dard deviation o, . Note that from the central limit theorem,
since usually we have My 3> 1, v4(t) ~ N(0, R, (6%, 04,)).
Since we assumed a linear uniform array it can be shown that

R, (8, o) = [a(0)a” (6)] © B(6, oy) ©)

where ¢ denotes the Schur Hadamard product (i.e., the el-
ementwise product) and B(f, o) is a Toeplitz matrix with
[B(8, 03)i; = C(i — 7, 8, 64), the characteristic function
corresponding to the PDF of ¢/o4. In the derivation of (3)
we normatized the gain factors such that Eﬁ"l Elvkl? = 1
for all k's. We denote B(f, o) spatial coherence matrix
thronghout the paper. In underwater acoustic wave propaga-
tion it is usual to refer to the spatial characteristic coherence
length L related to a specified source. Note that since L, is
a measurable quantity at the receiver, contrary to ¢, it can be
estimated without assuming any specified PDF’s for ¢/o4. It
is straightforward to show that L4 ~ 1/¢, anyway. We also
introduce the equivalent angle spread oy = o'y cos @ and the
equivalent characteristic coherence length Ly = Ly / cos §.

Several authors have suggested different PDF’s for ¢/04
(e.g., see [11, [5]). ‘A general model in terms of coherence
length is given by

Ci = §, Ly) = e W&/ La)li=jl" (4)

where r is a parameter that typically varies between 1 (ex-
ponential coherence decay) [11], and 2 (Gaussian coherence

decay) [1], [2], [15]. In the case of r = 1, we can defind
B = exp(—d/ Ly) so that expression {4) assumes the form

C(i — j, Lo) = g7 &)

Finally, note that if the sources are uncorrelated, the covari-
ance matrix of x(t} is given by

q
R, =) peRu(by, 0,) + 021 ©
k=1

where p; = Efsg|%

IT1. SIGNAL WAVEFORM ESTIMATION

Assume that among the ¢ different signals received at the
array the 1st is the signal of interest. Form the estimate
§1{t) = wH=z(t). Then we divide the estimate in three
terms, §; = y, + % + yo where y, = win(t), y =
w377 vi(t)si(t) and y, = wi v, (t)s,(t) are the con-
tributions from the noise, the interference and the signal re-
spectively. Then the SINR is given by

:I:-"'nf-'zl2

SINR = '
Elyi|? + Elya|?

M

or, using the previous mode! in terms of coherence length,

wiR,w
wH R, w

where R, = p1 R, (81, Lg, ), Rin = 3§ _o Du Ry Ok, Ly, )+
o2 1. The optimal weight vector in terms of SINR is the gener-
alized principal eigenvector wopt = Vinax(R,, Rin) and the
optimal SINR is the associated eigenvalue Apax (R, Rin)
(e.g., [1]). We refer to this beamforming criterion as the Gen-
eralized Optimum Beamformer (GOB). When the source are
fully coherent, ie., the angular spread is zero, the optimal
weight vector coincides with the Minimum Variance Beam-
former (MVB)e.g., [13])

SINR = 8

wyyve < R la(6)) )}

IV. EFFECTS OF COHERENCE LOSS USING THE MVB

On the basis of the previous results, we compare the perfor-
mance degradation due to both the signal and the interference
coherence loss when the MVB is assumed as SINR optimiza-
tion criterion. In order to provide analytical results we shall
consider the following scenarios:

+ A partially coherent signal in the presence of a fully coher-
ent interference and white noise;

+ A fully coherent signal in the presence of a partially coher-
ent interference and white noise.

For the sake of notation all the quantities related to the signal
and to the interference in the sequel will be denoted {-), and
(-): respectively.



A, Signal coherence loss

When the interference is a point source, if the angular sep-
aration between the signal and the interference is larger than
the mainlobe width and the interference-to-noise ratio (INR)
is large enough (i.e., INR > 1), it can be shown that the beam-
former output SINR is practically the same as when assuming
the absence of interference. For the sake of our analysis we
can assume that those conditions hold, i.e., R;, =~ o21. Re-
mark that even though the interference and the signal DOA’s
are very close, the results obtained in the previous approxima-
tion are still indicative of the order of magnitude of the output
SINR (note that the error increases as the signal coherence
increases).

The maximum SNR in the presence of white noise only is
equal to

SNR, = mp, /o2 = my, (10

In the following we consider the ratio G = SINRmve/SNR,
to provide a normalized quantity for the performance loss
evaluation. Then, in the specified scenario we have

an

G:%ZZC(:‘—;’,L,)
14=1

i=

where we denoted L, = Ly,. If r = 1, according to (5)
equation (11) reduces to

1 2 W
G—E+$§ﬁi(m—1) (12)
Note that in the case of fully coherent signal 3, ~ 1 so that
G = 1. On the other hand, if 3, = 0, then G =~ 1/m, i.e., the
array does not provide any gain compared to a single sensor.

B. Interference coherence loss

Here we evaluate the effects of interference with limited
spatial coherence considering a MVB receiving a fully coher-
ent signal and a single partially coherent interference. Since
the signal is fully coherent then SINRpvp = SINRgop and
it reduces to [11], [13]

SINRopt = p,at? (6,) R}, a(f,) (13)

According to (6) we have R; = p;{a(6;)a” (6:))]0B(8;, 04,)
and the corresponding inverse

R = (1/p)a(@:)a” (6:)] @ B~ (0, o4,)

Unfortunately, a closed form expression for R; ! exists only
for r = 1. In this case the matrix B]' = B~ (#;, 0',} can
be written as

(14)

1 ~Bi 0 0
. -8 1482 —-f .- 0
B!'= rp—r : : (15)
e e —s 1482 -
0 -8 1

In order to achieve an analytical closed form expression fot
( in this scenario we need to assume INR 3 1 so that B; ~
R;,,. In that first order approximation the MVB reduces to the
Zero-Forcing Beamforming criterion (ZFB) [16]. Note that
the MVB for high INR performs very close to the ZFB and
they yield the same optimum SINR in the absence of noise.
Then (7 is given by

i

G = —a (8,)[a(0:)a” (6:)] © B~ (8:, 04,)a(6,)

3
where we denoted the INR with »; = p; /02, If r = 1, B]!
is given by (15) and G reduces to

¢= m[m + (m — 2)87 — 26;(m — 1) cos u,]
(16)

where, assuming d equal to half a wavelength u,; =
m(sin §, — sin #;). From expression (16) it can be noted that
the optimum beamformer gain (7 is 2 monotonically decreas-
ing function of 3; and v;. In the case of m > 1, from expres-
sion (16) we have

G

(1 + 8% — 2B; cos u,4) Qan

_
vi(l ~ f7)
If in addition we have u,; = 0,then G =~ (1—3)/[(145:)v:]-
Remark that the ZFB yields to G — co for 3; — 1. Hence,
when the interference is fully coherent we shall replace (16)
with the following expression [13]

mr;
a (6:)a(8,)|?

G=1- ——
1 4 m;

(18)
Figures 1,2 show the dependence of G ontheratio L, /L, and
L;/ L, respectively, for different values of », where Z; = Ly,
and L, denotes the array aperture. The array has m = 16
half a wavelength spaced elements. Figure 1 shows that G
is weakly dependent on r, for a specified coherence length
L. On the contrary, in figure 2 it is shown that (7 is strongly
dependent on r. In particular by increasing the parameter r
the output SINR increases as well, if the ratio L; /L, is large
enough (if (L;/L,) > 0.1 in the presented example). Oth-
erwise, for very small values of the L;/L, ratio, the output
SINR is quite independent on .

C. Effects of the signal-interference angular separation

We observed that the function G is strongly influenced by
the parameter u,;, especially when the parameter r increases.
In general, for a specified r, interference DOA and array
aperture L., we can identify a critical interference coherence
length L;(.) corresponding to a minimum of the function G.
If r = 1 an analytical expression for L;(.) can be found

1
(m—1)In B

where 3;(c) = (1—sin u,;)/(cos u,;). Note that areal positive
value for L;() requires 3.y > 0, thatis 0 < u,; < 7/2

Ligey/La =~ (19
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Fig. 1. Signal coherenceloss effects on G fori, = 20dBandr = 1, 1.5, 2
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Fig. 2. Imerference coherence loss effects on G for »; = 20dB and r =
1,152

or 3n/2 < u, < 2w (ie., 0; < 30deg in the considered
example). Finally, note that for a specified value of u,;, as
the number of array elements m decreases, the ratio L;(c)/ L,
rapidly increases.

V. ALGORITHMS

Here we provide a preliminary theoretical comparison
among some beamforming algorithms. Some of them have
been designed to deal with scattered sources as well. We
consider a typical SONAR system operating in shallow wa-
ter, where the channel delay spread is negligible, but we
can have significant angle spread. We assume perfect esti-
mates of the channel parameters and the covariance matrices
given by (3). Hence we compare the GOB [1], the MVB,
the ZFB with Derivative constraints (ZFBD)[16] and the For-
ward/Backward Spatial Smoothing (FBSS) beamformer [17].

Note that the GOB needs structured covariance matrices es-
timates, i.e., the estimates of R, (6, o4, ), px for all k’s and
o in order to avoid severe signal cancelation phenomena.
In the ZFBD, zero-forcing conditions are applied to both the
beampattern up to its nth derivative in correspondence of the
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Fig. 4. Output SINR vs. source separation for different algorithms and r = 2

interference DOA’s. It can provide significant performance
improvement with respect to the classical ZFB for large num-
ber of array sensors and high INR. Finally, spatial-smoothing
techniques are well known to provide good performance in
the presence of scattered sources at the cost of a reduced spa-
tial resolution but without the need of structured covariance
matrices.

In the following we provide a preliminary theoretical com-
parison among the algorithms mentioned above. Hence we
assume the array having 'n = 16 sensors, receiving one sig-
nal of interest and one interference. We consider a scenario
where the signal DOA is fixed at #, = 0° and the interfer-
ence DOA 8; varies in the range [1°, 60°] with respect to the
array broadside. Both the signal and the interference have co-
herence length L = 4.2 half wavelengths and they are 20dB
stronger than the noise.

Figures 3, 4 show the dependence of the SINR on the
signal-interference angular separation for »r = 1 and » = 2
respectively. Note that much larger differences arise in the
case of » = 2 than in the case of » = 1. Moreover, for large
source separations the FBSS algorithm performs better than
the GOB forr = 2.



Extensive simulations have shown r (i.e., the coherence
loss model) to be the most influential parameter on the dif-
ferences in the beamforming algorithms performances. As a
general trend, we observed that such differences increase as r
increases. Hence the choice of the coherence loss model rep-
resents the most important issue to compare the performances
of different algorithms.

VI. CONCLUSIONS

In this paper we considered a receiving array of acoustic
sensors operating in shallow water. In such a scenario the
resulting transmission channel makes the signals received at
the array exhibit a considerable angle spread, i.e., a reduced
spatial coherence. We provided a unified analysis of the per-
formance loss inherent to the use of an optimum beamformer
for fully coherent sources (i.e., point sources), when it oper-
ates in the presence of partially coherent sources. A general
coherence loss model has been proposed and analytical re-
sults have been provided for both the cases of signal and in-
terference coherence loss, in order to identify the main causes
of the beamformer performance degradation. Then we com-
pared the performances of four different bearnforming algo-
rithms in the presence of partially coherent signal and inter-
ference, providing a numerical example. Moreover, extensive
simulations have shown a high sensitivity of the algorithms
performances to the coherence loss model. We point out that
there are many possible strategies available to improve the
beamformer performance and we have only covered a few.
Further investigations are needed to find a set of criteria for
the choice of the beamforming algorithm, including the prob-
lems concerned with parameter estimation and with real-time
implementation, when also impulsive sources are present and
only short data samples are available.

(1]
iz
[3]
{4

(51

(6]

[71

(8]

9

(10

(11
[12]

[13]

(14

(15

[16]

17

REFERENCES 3
M. Bengtsson and B. Ottersten,“On approximating a spatially scattered
source with two point sources,” NORSIG-98, to appear.
M. Bengtsson, Sensor array processing for scattered sources, Licenti-
ate Thesis, KTH, Stockholm, Sweden, Nov. 1997,
M. Bengtssonand B. Ottersten,Signal waveformestimation from array
data in angular spread environment,” 30th Asilomar Conf., Nov. 1996.
Y. Meng, P. Stoica, and K. M. Wong,“Estimation of the directions of
arrival of spatially dispersed signals in array processing,” IEE Proc.
Radar, Sonar and Nav., Vol, 143, No, 1, pp. 1-9, Feb. 1996,
S. Valaee, B. Champagne, and P. Kabal,"Parametric Jocalization of dis-
tributed sources,” JEEE Trans. on SP, Vol. 43, No. 6, pp. 2144-2153,
Sept. 1995,
A. Paulraj and T. Kailath, “Direction of arrival estimation by eigen-
structure methods with imperfect spatial coherence of wavefronts,”
JASA, Vol. 83, No. 3, pp. 1034-1040, March 1987.
G. Montalbano and G. V. Serebryakov,“Adaptive arrays performances
in presence of signals with limited spatial coherence,” Proc. IEEE
ICEAA-97, Sept. 1997.
G. V. Serebryakov, D. Sidorovich, and C. Meclenbrituker, “Coherence
interference effects on the optimum/adaptive arrays,” Proc. ICASSP'95,
Vol. 5, pp. 30163019, May 1995.
D. R. Morgan and T. M. Smith, “Coherence effects on the detection
performance of quadratic array processors, with applications to large-
array matched-field beamforming,” JASA, Vol. 87, No. 2, pp. 737-747,
1990.
A. Paulraj, V. U. Reddy, and T. Kailath, “Analysis of signal cancel-
lation due to multipath in optimum beamformers for moving arrays,”
IEEE Trans. Oceanic Engineering, Vol. 12, No. 1, pp. 163-172, Jan-
uary 1987.
H. Cox, “Line array petformance when the signal coherence is spatially
dependent,” JASA, Vol. 54, pp. 1743-1746,1973,
A_ A. Malekhanov and G. V. Sercbryakov, “The detection performance
of optimal discrete spectrum signal array processing,” Radioteknika ¢
elekironika, Vol. 38, No. 6, pp. 1169-1183, 1993 {Translated from Rus-
sian).
R. A. Monzingoand T. W. Miller, Introduction io Adaptive Arrays, New
York: Wiley, 1980.
R. Dashen, S. M, Flatte, and $. A. Reynolds, “Path-integral treatment
of acoustic mutual coherence functions for rays in a sound channel,”
JASA, Vol. 77, pp. 1716-1722, 1985,
W. M. Carey, 1. B. Gereben, and B. A. Brunson, “Measurement of
sound propagation downslope to a bottom-limited sound channel,”
JASA, Vol. 81, pp. 244-257, 1987.
A. B. Gershman, G, V. Serebryakov, and F B&hme,"Constrained
Hung-Tumer adaptive beam-forming with additional robustness to
wideband and moving jammers,” JEEE Trans. AF, Vol. 44, No. 3, pp.
361-367, March 1996.
S. U. Pillai and B. H., Kwon, Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Trans. ASSF, Vol.
ASSP-37, No. 1, pp. 8-15, Jan. 1989.



