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Abstract—Massive MIMO (multiple-input multiple-output) is
a promising technology for the upcoming 5G as it provides
significant beamforming gains and interference reduction capa-
bilities due to the large number of antennas. However, massive
MIMO is computationally demanding, as the high antenna count
results in high-dimensional matrix operations when conventional
MIMO processing is applied. In this paper, we focus on two-
stage digital beamforming, where the beamformer is split into
a slow-varying statistics-based outer beamformer and an inner
beamformer accounting for fast channel variations. We formulate
two two-stage precoding optimization problems: weighted sum-
rate maximization and minimum user rate maximization for a
single-cell downlink system. We also provide different heuristic
methods of forming the outer precoder matrix via user channel
covariance, while the inner precoder is obtained as a result for the
optimization problem. Unlike most previous work, which consider
the outer precoder design based on energy maximization and
user group location, our aim is to design it to offer a tradeoff
between energy maximization and interference reduction, and
also take into account the fairness between users. We evaluate
the performance of the different heuristic methods as a function
of the number of statistical pre-beams and a fixed user angular
spread to see the overall effect of complexity reduction on the
system sum-rate and minimum user rate. We also evaluate the
advantages of different methods in terms of user fairness.

I. INTRODUCTION

Massive MIMO has been regarded as one of the most

promising technologies for the upcoming fifth generation

(5G) cellular systems [1], [2], [3]. While traditional MIMO

systems can house few antennas in the transmitter or receiver,

massive MIMO can have tens, even hundreds of antennas.

The increase in antenna count results in greatly increased

degrees of freedom (DoF) and beamforming gains, opening up

possibilities for increased data rates, diversity and reliability

with reduced interference. At very high antenna numbers,

the simpler signal processing methods such as maximal ratio

transmission/combining (MRT/MRC) and zero-forcing also

become near optimal [1].

Massive MIMO can provide significant gains and benefits

in terms of throughput, energy efficiency and interference

management. However, due to the greatly increased antenna

count, conventional MIMO processing quickly becomes too

computationally prohibitive due to the high-dimensional ma-

trix operations in the precoders and decoders. In order to

utilize conventional receiver and transmitter processing, such

as minimum mean square error (MMSE), zero-forcing and

regularized zero-forcing (RZF), the computation of matrix

inverses based on the high dimensional channel matrix are

necessary. The conventional methods with high dimensional

channel also require accurate channel-state information (CSI)

and thus, the CSI acquisition can get cumbersome with higher

number of antennas.

The complexity reduction of massive MIMO systems has

gained significant interest in the research community, both in

terms of hybrid analog/digital beamforming and fully digital

beamforming. The hybrid beamformer is a concatenation of

an analog outer beamformer implemented with analog radio

frequency (RF) components and a digital inner beamformer.

The analog part forms pre-beams (analog beams for different

spatially separated users/streams) and reduces the effective

channel dimension, since there are less RF-chains than there

are antennas. The digital beamformer can then multiplex the

transmitted data streams on the effective channel with reduced

dimension, i.e., reduced complexity. This structure can support

as many data streams as there are RF-chains in the transceiver.

The focus of this paper is on fully digital two-layer

beamforming in massive MIMO setting. Generally, the idea

is the same as with hybrid analog/digital beamforming. In

digital two-layer beamforming, an outer beamformer forms

pre-beams for different users or propagation paths, effectively

reducing the channel dimension by accounting only for the

strongest paths. Then, an inner beamformer applies spatial

multiplexing on the effective channel of reduced dimension.

The effective channel also reduces the amount of coefficients

in channel estimation and due to the statistical beams, the

pilot SNR is increased, resulting in a more accurate channel

estimate. The statistics-based outer precoder varies over long

time scales compared to the inner precoder and thus requires

less frequent updates.

One of the most notable current methods of fully digital

two-stage (or two-layer) beamforming is the joint spatial

division and multiplexing (JSDM), coined by Nam et al. in [4].

JSDM exploits the similar channel covariance eigenspaces of

co-located users when forming the outer beamformer, resulting

in slow-varying pre-beams based on the channel statistics.

The method also exploits the fact that if the user groups

are sufficiently well separated in the angle of arrival (AoA)

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 2000



domain, the inner beamformer can be made block diagonal

reducing the complexity even further. The JSDM method

is described in detail in [5] with various ways of forming

the outer beamformer, for example using the eigenvectors of

the per-group covariance matrices as outer beamformers. The

article also provides performance analysis using the techniques

of deterministic equivalents for different types of group pro-

cessing, namely joint group and per-group processing (JGP

and PGP). The concept of JSDM is extended further in [6],

in which the authors consider the finite antennas regime and

user grouping via minimum chordal distance. The article also

considers opportunistic user selection and user scheduling. In

[7] and [8] the user grouping problem is researched further,

utilizing Fubini-Study distance in the former and weighted

likelihood in the latter to enhance the grouping performance.

In addition to JSDM, other two-stage or multi-stage beam-

forming techniques have also been suggested. In [9], the

authors consider interference mitigation with two-stage pre-

coding, where the outer and inner beamformers are used

to control the inter- and intra-cell interferences, respectively.

The precoder design is formulated as a joint optimization

of the outer precoders, user selection and power control.

Furthermore, in [10] the precoder design is approached with a

three-layer design in 3D channels, exploiting the low rank of

the elevation covariance matrix. The three layers are utilized to

mitigate inter-cell interference, provide the best possible signal

level and spatially multiplex the transmit data for different

users.

In this paper, we formulate weighted sum-rate maximization

(WSRM) and minimum user rate maximization problems for a

single-cell system utilizing two-stage beamforming. Following

the approaches of [11] and [12] for WSRM and [13] for the

minimum user rate, the problems are formulated as successive

second order cone programs (SSOCP), which aim to optimize

the inner precoder according to the fast channel variations with

a given fixed outer precoder, i.e., the effective channel. The

channel model used in this paper is the classical uniform linear

array (ULA) model of [14], but extension to uniform planar

arrays (UPA) is also straightforward. We propose different

heuristic methods of constructing the outer precoder based

on the total channel covariance and individual user covari-

ance matrices, offering tradeoffs between sum-rate and user

fairness. The different methods include:

• Choosing the eigenvectors corresponding to the strongest

eigenvalues of the total channel covariance matrix.

• Choosing the total channel covariance eigenvectors pro-

viding the best match with user covariance matrices, one

user at a time.

• Choosing the total channel covariance eigenvectors pro-

viding the best match with user covariance matrices

among all users.

Unlike previous work in outer precoder design, which mostly

focus on energy maximization based on user location and

interference mitigation among different groups, our focus is

to design the outer precoder based on long-term channel

statistics to offer a tradeoff between energy maximization

and interference mitigation between users. We also provide

a design that aims to allocate statistical beams to all users,

providing fairness between users by increasing individual

user SNR. Using the different heuristic tactics, we construct

the outer precoder and simulate the rate performance of the

system as a function of the outer precoder dimension, i.e., the

number of statistical pre-beams. This provides us insight into

the tradeoff between dimensionality (complexity) reduction

and both system sum-rate and minimum user rate. We also

compare the results achieved with zero-forcing precoding and

precoder optimization when formulating the inner precoder.

The simulation results show that the outer precoder dimension

can be reduced significantly without greatly impacting the

achieved rates. Differences between various outer precoder

formulation techniques are visible in the low-dimensional case,

especially in the case of maximizing the minimum user rate

with the fair matching mehtod.

II. SYSTEM MODEL

We consider a downlink single-cell multi-user massive

MIMO system, where a single base station (BS) with M
transmit antennas serves K single-antenna user terminals (UT)

with M > K. The received signal at user k can be expressed

as

yk = h
H
kvkxk +

∑

i6=k

h
H
kvixi + nk, (1)

where the first term is the desired signal and the second

term represents intra-cell interference. The channel between

the base station and user k is denoted by hk ∈ C
M×1,

while vk ∈ C
M×1 denotes the precoding vector of user k.

The transmitted data symbol for user k is denoted by xk

with E[|xk|2] = 1, ∀k. nk represents the zero-mean white

Gaussian noise at the receiver with variance N0. The precoding

is applied in two stages as V = BW, where V ∈ C
M×K

is the total precoding matrix of all users, B ∈ C
M×S is

the outer precoder based on slow-varying channel statistics

and W ∈ C
S×K is the inner precoder applying multi-user

processing based on the effective channel H̃ = H
H
B of

dimensions K × S. Here S is a design parameter describing

the amount of statistical pre-beams used in the transmission.

The channel vector hk is modeled as the classical multipath

model for uniform linear arrays [14]:

hk =
βk√
L

L
∑

l=1

a(θk,l)e
jφk,l , (2)

where βk denotes the path loss between the base station and

user k, L denotes the number of independent (and identically

distributed, i.i.d) paths, φk,l is a random phase caused by the

channel for path l, i.i.d. between different paths, and a(θ) is

the array signature vector given by

a(θ) =











1

e−j2πD
λ

cos(θ)

...

e−j2π
(M−1)D

λ
cos(θ)











, (3)
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where D is the BS antenna spacing, λ is the carrier wavelength

and θ is the angle of departure (AoD). The user-specific

channel correlation matrix can be defined as Rk = E[hkh
H
k ],

and the sum of these determine the total channel correlation

matrix R =
∑

k

Rk.

Accounting for the two-stage precoding, the signal-to-

interference-noise ratio (SINR) of user k can be expressed

as

γk =

∣

∣

∣

∣

h
H
kBwk

∣

∣

∣

∣

2

∑

i6=k

∣

∣

∣

∣

hH
kBwi

∣

∣

∣

∣

2

+N0

. (4)

Utilizing the SINR expression above, we can determine the

weighted sum-rate of the system as

R =
∑

k

αk log2(1 + γk), (5)

where αk ≥ 0 is a user specific weight coefficient that can be

determined with user scheduling.

III. PRECODER DESIGN

The joint optimization of B and W is highly complex

due to their different variation time-scales. In this paper, we

split the precoder design by considering the outer and inner

precoders separately, starting with various heuristic methods

of constructing the outer precoder B. Furthermore, when

optimizing the inner precoder, B is assumed to be fixed as

it is based on the slow-varying channel statistics.

A. Outer precoder design

Let us first consider the outer precoding matrix B. The

outer precoder is based on slow-varying channel statistics, i.e.,

the user covariance matrices. Therefore, one obvious solution

for the formulation of B is to decompose the total channel

covariance matrix via eigenvalue decomposition (EVD) as

R = UΛU
H and choose S channel covariance eigenvectors

corresponding to the S largest eigenvalues. This results in

the outer precoder B = [u1 u2 . . . uS] ∈ C
M×S , which

effectively forms pre-beams towards the strongest signal paths.

We denote this selection method eigen selection (ES). The

downside of this method is that it neglects user fairness and can

be expected to prioritize users closer to the base station that

have stronger signal paths and larger angular spreads which

overlap with more statistical beams.

We can also adopt a more greedy approach by constructing

the outer precoder one vector at a time from the total channel

covariance eigenvectors U = [u1 u2 . . . uM ]. We select the

beamformers in B that maximize the per-user matching metric

ui = argmax
i,k

(ui
H
Rkui), (6)

and exclude any selected eigenvector from future selections.

This results in an outer precoder matrix B with orthogonal

columns that covers the best per-user signal paths. This

method, which we denote as greedy matching (GM), is very

similar to ES, which collects the globally best signal paths.

The fairness of the aforementioned method can be improved

by also excluding the covariance matrix of user k that resulted

in the best beamformer in (6) from future selections. After all

the covariance matrices have been used once in the selection

process, they can be included again in future selections. As

a result, the outer precoder B will have orthogonal columns

that cover all users, provided S ≥ K. This fair matching (FM)

method is not necessarily sum-rate optimal but improves the

overall fairness between users.

B. Inner precoder design

The inner precoder design is formulated as a successive

second-order cone program (SSOCP). For the WSRM, we

mimic the precoder design of [11], which considered a multi-

cell system, and for minimum user rate maximization we use

a similar approach to [13]. We follow similar reasoning as in

[11] in linearizing the non-convex constraints present in this

design and we also account for the outer precoding matrix B,

which has an effect on the SINR expression and the power

constraint. Overall, the precoder design can be cast as the

following WSRM problem:

maximize
wk

∏

k

(1 + γk)
αk

subject to
∑

k

‖Bwk‖22 ≤ Ptot,
(7)

or as the following SINR-rate balancing problem:

maximize
wk

min
k
(γk)

subject to
∑

k

‖Bwk‖22 ≤ Ptot,
(8)

where the total power constraint is denoted with Ptot. We

consider problem (7) first and make a simple modification

so it can solve (8). Alternatively, the SINR-rate balancing

problem can be solved optimally via combination of power

minimization and bisection as in [13], which essentially gives

the same result as our proposed method.

Starting from (7), we can omit the logarithm as a mono-

tonically non-decreasing function. Denoting the objective as

tk = (1 + γk)
αk and introducing a slack variable βk for the

denominator of the SINR expression, we can reformulate the

weighted sum-rate maximization problem as

maximize
tk,βk,wk

∏

k

tk

subject to
|hH

kBwk|
2

βk
≥ t

1/αk

k − 1, ∀k,
∑

i6=k

|hH
kBwi|2 +N0 ≤ βk ∀k,

∑

k

‖Bwk‖22 ≤ Ptot.

(9)

The left-hand side (LHS) of the first constraint in (9) is convex

(quadratic over linear) and on the right-hand side (RHS), t
1/αk

k

is convex for 0 < αk ≤ 1 and concave when αk > 1.

Therefore, linearization is required for both sides, or with

proper scaling of αk, only for the LHS. The last constraint
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for the total power is convex, and the second constraint can

be expressed in an SOC form as

(

∑

i6=k

∣

∣

∣

∣

h
H
kBwi

∣

∣

∣

∣

2

+ (
√

N0)
2 +

1

4
(βk − 1)2

)
1
2

≤ 1

2
(βk + 1), ∀k,

(10)

exploiting the fact that a hyperbolic constraint of the form

z2 ≤ xy can be expressed as ‖2z, (x − y)T‖2 ≤ (x + y),
where x, y ∈ R+ [15].

To linearize the LHS and RHS of the first constraint, we

follow the steps taken in [11], [12] by first dividing the LHS

numerator into its real and imaginary parts as

pk , Re(hH
kBwk) and qk , Im(hH

kBwk), (11)

and taking the first order Taylor expansion of (p2k + q2k)/βk

around the local point {p̃k, q̃k, β̃k}, ∀k. As a result, the first

constraint can be expressed as

1+
2p̃k

β̃k

(pk − p̃k) +
2q̃k

β̃k

(qk − q̃k)

+
p̃2k + q̃2k

β̃k

(

1−
(

βk − β̃k

β̃k

))

≥ t
1/αk

k .

(12)

We also take the first order approximation for the RHS around

the local point t̃k, and obtain

t
1/αk

k ≤ t̃
1/αk

k +
1

αk
t̃
(1/αk)−1
k (tk − t̃k), (13)

and thus, the first constraint in (9) can be written as

1 +
2p̃k

β̃k

(pk − p̃k) +
2q̃k

β̃k

(qk − q̃k) +
p̃2k + q̃2k

β̃k

×
(

1−
(

βk − β̃k

β̃k

))

≥ t̃
1/αk

k +
1

αk
t̃
(1/αk)−1
k (tk − t̃k).

(14)

After linearizing the first constraint of (9), fixing the outer

beamformer B, and transforming the second constraint into

an SOC form, we can summarize the sum-rate maximization

problem as a geometric mean maximization which can be

formulated as an SOCP:

maximize
tk,βk,wk

(

K
∏

k=1

tk

)1/K

subject to (14), (10)
∑

k

‖Bwk‖22 ≤ Ptot,

(15)

which can be solved iteratively by updating the local point

{p̃k, q̃k, β̃k} after each optimization of (15) until convergence.

The formulation of the objective into geometric mean has

no effect on the optimal value. Also, as the precoder design

optimization problem is non-convex, global optimality is not

guaranteed.

The modification into minimum user rate maximization is

straightforward. We change the objective in (15) to maximize a

minimum SINR level r and add extra per-user constraints tk ≥
r, ∀k. This formulation aims to always maximize the weighted
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Fig. 1. System sum-rate as a function of the outer precoder dimension for
different methods of choosing the outer precoder.

SINR of the weakest user. The rest of the constraints are same

and can be linearized in a similar manner as the WSRM, and

the formulation provides the same optimal performance as the

combination of power minimization and bisection in [13].

IV. NUMERICAL RESULTS

The simulation setup is as follows: We consider a single-

cell case with 16 single-antenna users served by a base station

with 64 antennas. The angular spread of the users is 15 degrees

with 20 independent paths per user. The user weights are set

to αk = 1, ∀k. The simulations are performed as a function

of the outer precoder dimension S (i.e., number of statistical

beams) and the results are averaged over 100 channel iterations

where both precoders are updated for each iteration.

For our first numerical example, we assume that all users

are randomly distributed around the base station with various

path gains and investigate the tradeoff between sum-rate and

outer precoder dimension S for three different transmit power

cases, Ptot = {0, 20} dB. The user path gains are uniformly

distributed in range [0,20] dB to account for stronger users

and still ensure a sufficient SNR for all users. We also plot

the results where the inner precoder is obtained via ZF for

comparison. The results of this simulation are presented in Fig.

1. We can immediately see that ZF has worse performance than

our optimized case for all different methods of constructing

the outer precoder. It is also apparent that the outer precoder

dimension can be greatly reduced without a significant impact

on the system sum-rate for all different cases. In terms of

different outer precoder construction methods, the FM method

performs slightly better than the others on high SNR but has

similar performance on low SNR. The users close to the base

station are served by a higher number of statistical beams in

the ES and GM cases at the expense of the distant users. At

high SNR, serving all users results in a higher total sum-rate

due to the diminishing returns in the rates when only serving

the near users.
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Fig. 2. Minimum user rate as a function of the outer precoder dimension
for different methods of choosing the outer precoder.

Our second example considers the minimum user rate

maximization, using the same transmit powers and path gains

as in the first simulation, as a function of the outer precoder

dimension S. The aim is to evaluate the performance of the

different heuristic methods in a case that maximizes the per-

user quality-of-service. The simulation results for minimum

per-user rates are presented in Fig. 2. We can see that the

method of constructing B has a significant effect with lower

column dimensions, where utilizing the FM method results in

the best minimum user rates. This is caused by selecting at

least one statistical beam for all users, resulting in increased

user SNR. Greedy matching also has a slight performance gain

compared to eigen selection.

V. CONCLUSIONS

In this paper, we formulated two optimization problems

for a single-cell system utilizing two-stage precoding. The

optimization problems considered were weighted sum-rate

maximization and minimum user rate maximization, focusing

on optimizing the inner precoder with a fixed outer precoder.

We also proposed different heuristic methods of constructing

the outer precoder to provide either a good coverage of

the strongest signal paths or fairness between users. The

performance of these different heuristic methods was evaluated

for both optimization cases as a function of the outer precoder

column dimension to provide insight into the tradeoff between

sum-rate or minimum user rate and the dimension reduction of

the effective channel. The numerical results show that the outer

precoder dimension can be greatly reduced without a signifi-

cant impact on the data rates. The results also show that at low

effective channel dimensions, the fair matching method results

in the same or slightly better sum-rates, while the minimum

user rate is significantly improved. Also at low dimensions,

optimizing the inner precoder results in better data rates than

using zero-forcing. When the column dimension of the outer

precoder is high, however, all the different methods provide

essentially the same sum-rate and minimum user rate. In

this regime, optimizing the inner precoder is computationally

intensive, so zero-forcing is preferred to reduce complexity.
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