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Abstract—In the context of multi-user Massive MIMO fre-
quency division duplex (FDD) systems, the acquisition of channel
state information cannot benefit from channel reciprocity. How-
ever, it is generally expected that covariance information about
the downlink channel must be estimated and fed back by the user
equipment (UE). As an alternative, it was also proposed to infer
the downlink covariance based on the observed uplink covariance
and a stored dictionary of uplink/downlink covariance matrices.
This inference was performed through an interpolation in the
Riemannian space of Hermitian positive definite matrices. We
propose to rewrite the interpolation step as a Riemannian coding
problematic. In this framework, we estimate the decomposition of
the observed uplink matrix in the dictionary of uplink matrices
and recover the corresponding downlink matrix assuming that
its decomposition in the dictionary of downlink matrices is the
same. Moreover, since this space is of large dimension in the
Massive MIMO setting, it is expected that these decompositions
will be sparse. We then propose new criteria based on this further
constraint.

I. INTRODUCTION

Accurate and up-to-date channel state information (CSI)
is a critical parameter in the operation of Massive MIMO
[1], [2]. However, for FDD systems, reciprocity does not hold
between uplink and downlink channels. Obtaining CSI then
requires over-the-air feedback. In order to lower the amount of
needed feedback in the Massive MIMO setting, several authors
have proposed to use channel covariance knowledge [3]–[5].
Exploiting relations between uplink and downlink covariances
was considered e.g. in [6] and [7] but these methods rely
on specific geometric assumptions. It was proposed in [8] to
deduce a new downlink covariance from an estimated uplink
covariance and a dictionary of pairs of known uplink/downlink
covariance matrices that has been stored in a first training
phase. This dictionary exploitation was performed on the space
of N ×N Hermitian positive definite matrices S+N via various
interpolation criteria.

The exposed problematic shares similarities with coding
techniques used for classification popular in the machine
learning literature. The coding formulation is as follows: given
a dictionary of codewords, a query is associated to one or
multiple dictionary elements with different weights. These
weights, or codes, act as the new representation for the query
and serve as input to a classifier. Several coding methods
have been proposed in the literature in both Euclidean [9] and
Riemannian [10]–[12] settings.
In the covariance interpolation setting, the new query will

consist in a new uplink covariance matrix. We will then use the
codes computed for the uplink matrix to deduce the downlink
covariance matrix by using a “decoding” process. Thus, by
doing this, we suppose that the codes of new uplink/downlink
covariance matrices are the same in their respective dictionar-
ies of uplink and downlink matrices.

Moreover, in the massive MIMO setting, N is supposed
to be large. The considered space of covariance matrices S+N
will then be high-dimensional. Since the considered covariance
matrices represent real physical scenes and lie in this high-
dimensional space, it is expected that they could be decom-
posed in a sparse basis. This assumption could be explained
through two contradictory insights:

• The mapping relating an uplink covariance matrix to
its corresponding downlink covariance can reasonably
be assumed to be continuous, then it is natural to
consider only the nearest elements of any new uplink
matrix to locally interpolate the corresponding down-
link covariance. Note that this insight does not rely on
the space being high-dimensional.

• On the other hand, we may consider that the covari-
ance matrix is the superposition of a small number
of phenomena which are different by nature and the
sparse decomposition would aim to recover this small
number of features.

Some authors, taking into account the first point, add
neighborhood constraints [12]. However, we will not
have such constraints, favoring a more agnostic approach.
Furthermore, we assume that K satisfies K ≤ N2, i.e.
the size of the dictionary is smaller than the dimension of
the considered space. This constraint comes from storage
constraints: the base station (BS) will be able to store a
moderate number of large covariance matrices.

The aim of this paper is to introduce interpolation criteria
in the spirit of Riemannian coding adapted for interpolation
purposes and study these criteria through their sparsity and
performance properties.

The paper is organized as follows. Section II briefly recalls
the model introducing uplink and downlink covariance matri-
ces. Section III is devoted to the interpolation criteria. Finally,



we will present an illustrative simulated scenario in Section IV
and compare the performances of the proposed criteria.

II. SYSTEM DESCRIPTION AND MODEL

For simplicity, we assume in the following single-antenna
UEs. Consider that during the downlink transmission phase,
a BS uses NT antennas to transmit, while during the uplink
phase, the BS uses NR antennas to receive signals (when
no confusion is possible, we will use the notation N to
indifferently designate NT or NR). Let us further assume that
the coefficients of the downlink (respectively uplink) channel
h (resp. hUL) are correlated, and that they can be written as
(see e.g. [4])

h = R1/2w and hUL =
(
RUL

)1/2
wUL (1)

where

• R is the NT ×NT BS-side covariance matrix of the
downlink channel and RUL is the NR × NR uplink
covariance matrix.

• w and wUL respectively are an NT -dimensional vec-
tor and an NR-dimensional vector with independent,
unit variance coefficients capturing the fast fading.

If R is known and rank limited (equal to NRL), it is shown
in [4], [5], [13] that the length of the training sequence can
be reduced from NT to NRL, thereby reducing the amount of
pilot symbols required to estimate h. The knowledge of R is
therefore crucial in the Massive MIMO setting. However, the
BS has only access to RUL.

Let us assume that during a training phase,
K pairs of downlink/uplink covariance matrices
(R1,R

UL
1 ), . . . , (RK ,R

UL
K ) have been collected (see

[8]). The problem is then to estimate a new R from an
observed RUL on the basis of this dictionary.

III. DOWNLINK COVARIANCE ESTIMATION THROUGH
INTERPOLATION

We will consider in the following a general Riemannian
distance d(·, ·) in S+N . Let us mention for example the Affine
Invariant distance dAI(X,Y) = ‖ log(X 1

2Y−1X
1
2 )‖F and

the Log-Euclidean dLE(X,Y) = ‖ log(X)− log(Y)‖F where
exp and log refer to matrix exponential and logarithm. In
the following, the expX and logX operators refer to the
Riemannian exponential and logarithm maps (applied to a
certain point X ∈ S+N ) corresponding to one of these distances
(see e.g. [14] for further details).

The coding/decoding method evoked for covariance inter-
polation in Section I can be seen as a “mirror” approach:

• Coding: “decompose” the new uplink matrix in the
basis composed by the dictionary of stored uplink
covariance matrices through weights computed for
each codeword.

• Decoding: compute the interpolated downlink covari-
ance matrix by doing the inverse operation with the
associated downlink codewords.

We then assume that the decomposition of a pair of
uplink/downlink covariance matrices are the same in the two
related dictionaries.

A. Decoder as a weighted barycenter

Similar to [8], the interpolated downlink matrices will
be interpreted as a weighted barycenter of the downlink
covariance matrices in which weights (denoted by w =
[w1, ..., wK ]T ) are computed according to the situation of RUL

in the space of uplink covariance matrices:

R̂ = arg min
Y∈S+

NT
(C)

K∑
k=1

wkd(Rk,Y)2 (2)

We furthermore choose to constrain the weights to be such
that

∑K
k=1 wk = 1 in order to be compliant with the Euclidean

framework. Note however that we do not constrain the weights
to be nonnegative. The existence and uniqueness of such a
minimum is still an open problem for an arbitrary distance d.
Sander proves a partial result in [15] restraining the existence
domain of the weights in a ball but he conjectures that the
general result should be true since the sectional curvatures of
the space of positive definite matrices are negative.

B. Encoder: choice of the interpolation weights

The weights w = [w1, . . . , wK ]T are the “codes” of the
observed uplink covariance matrix RUL in the basis constituted
by the uplink dictionary elements.
In [8], we considered the following criterion:

ŵ = arg min∑K
k=1 wk=1
wk≥0

∥∥∥∥∥
K∑
k=1

wk logRUL(RUL
k )

∥∥∥∥∥
F

. (3)

This intrinsic criterion has been considered with different
variants (considering other constraints or adding regularization
terms) in [10], [12] to perform Riemannian coding. The choice
of positive weights restrain the decoder to consider barycenters
in the convex hull of the downlink covariance codewords. This
constraint may seem arbitrary. A first proposition is then to
allow to define negative weights considering as a consequence
a form of extrapolation in the decoding process.

1) A way to introduce extrapolation: A criterion allowing
a compromise between a kind of sparsity and extrapolation
would be to consider a `1 regularization like in [11]

ŵ = arg min∑K
k=1 wk=1∑K

k=1 |wk|≤1+η

∥∥∥∥∥
K∑
k=1

wk logRUL(RUL
k )

∥∥∥∥∥
F

. (4)

where η is a real positive parameter. Let us explain the two
chosen constraints. The first one, namely

∑K
k=1 wk = 1 is

there to avoid that ŵ = 0 is a solution.
The second one permits a form of extrapolation while imposing
a form of sparsity. If η = 0, the `1 constraint in eq. (4) is
equivalent to impose that every weight is positive reducing eq.
(4) to be equal to eq. (3). Choosing a positive but small η how-
ever means that we constrain the approximation to be η-close
to the convex hull but not strictly inside, thereby achieving a
compromise between weights sparsity and dictionary accuracy.
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Fig. 1: Boundary of the feasible set from eq. (4) for a toy
dictionary in an Euclidean framework of dimension 2

In order to give insights on the role of η, we may look at the
Euclidean version of eq. (4), namely,

ŵ = arg min∑K
k=1 wk=1∑K

k=1 |wk|≤1+η

∥∥∥∥∥
(

K∑
k=1

wkR
UL
k

)
−RUL

∥∥∥∥∥
F

.

We represent in Fig. 1 the boundaries of the set of “approx-
imating elements”

(∑K
k=1 wkR

UL
k

)
in a space of dimension

2 with w satisfying
∑K
k=1 wk = 1 and

∑K
k=1 |wk| ≤ 1 + η.

From a numerical point of view, let M be the N2×K matrix
defined by

M =
[
vec
(
logRUL(RUL

1 )
)
, . . . , vec

(
logRUL(RUL

K )
)]

with vec the vectorization operator. Then, if we denote A =
Re(MHM), eq. (4) is equivalent to

ŵ = arg min∑K
k=1 wk=1
‖w‖1≤1+η

wTAw. (5)

Quadratic programming can then be used to solve (5). Since
K ≤ N2, A is a full rank matrix with probability one and
w 7→ wTAw is then a strictly convex function. Thus, the
minimization problem is well defined and ŵ is unique.

2) Intrinsic sparsity criterion: A way to introduce more
sparsity in the choice of weights is to consider weights
in a 1-norm ball around w∗ corresponding to the nearest
neighbor solution. With probability one, it holds w∗ =
[0, . . . , 0, 1, 0, . . . , 0]T . Noting 1 = [1, . . . , 1]T , we would like
to solve

ŵ = arg min
‖w−w∗‖1≤η

wT 1=1

wTAw. (6)

The parameter η tunes the sparsity of the solution. If η = 0,
the solution ŵ corresponds to the nearest neighbor solution.
Conversely, considering η = +∞ is equivalent to remove the
constraint.
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Fig. 2: Illustration of a ray tracing model: the UE antenna is
assumed to be surrounded by scatterers randomly located in a
ball of radius r (black and white bullets respectively represent
antennas and scatterers).

IV. PERFORMANCE EVALUATION

We now compare simulated performance results corre-
sponding to the introduced interpolation methods for a scenario
based on the ring model described in [8] that we briefly recall.

A. Simulated scenario

We consider an array of NR = NT = 32 antennas
communicating with a single user at distance D uniformly
distributed in the interval [100, 900] meters. In order to capture
the limited angular spread under which the UE is seen at the
BS, the channel is generated using a modification of the ring
model of [16], each single-antenna UE being surrounded by
scatterers uniformly distributed in a ball of radius r = 50
meters containing NS = 1000 scatter points (see Figure 2).
The random position of the UE antenna is taken uniformly in
the area at a distance between 100m and 900m around the base
station. Moreover, the uplink and downlink channels operate
at different frequencies (downlink at 1.8 GHz, uplink at 2.8
GHz).
A ray tracing model with a simple quadratic pathloss is
assumed, whereby the covariance R = (Rij)1≤i,j≤N of the
channel at wavelength λ is then modeled by [16]

Rij =
P

D2NS

NS∑
l=1

e2i
π
λ (dSlAi−dSlAj ) + PNδij , (7)

where P is the received power at the user side and PN the
power of thermal noise, dSlAi denotes the distance between
the l-th scatterer and the i-th BS antenna, and with δii =
1 and δij = 0 if i 6= j. For each position of the UE, the
uplink/downlink covariance matrices are obtained through the
sample covariance computed from L = 1000 realizations of
the channel h. A realization of the channel is a realization of
the random vector h = R

1
2w with w ∼ CN (0, IN ). Note that

R depends on the UE location according to (7).

We will compare the following criteria using the log-
Euclidean distance exploring extreme cases for each criterion:

• interpolation with positive weights (eq. (4) with η =
0),

• extrapolation criterion (eq. (4)) with η = 1,

• a strong sparse criterion (eq. (6)) with η = 0.2,
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Fig. 3: MSE for different interpolation criteria vs dictionary
size

• a weak sparse criterion (eq. (6)) with η = 10,

• the unconstrained solution (η = +∞ for both criteria
(4) and (6)),

• the perfect feedback case as a lower bound.

The MSE used for comparison is computed as the mean error
between the true covariance matrix R and the estimated ones
R̂n where n is the index over NMC Monte Carlo runs

MSE =
1

NMC

NMC∑
n=1

∥∥∥log(R 1
2 R̂−1n R

1
2 )
∥∥∥
F
.

B. Performances results

Figure 3 represents the Riemannian interpolation error for
K between 50 and 700 (lower than the dimension of the
considered space equal to 1024). We also illustrate the sparsity
properties in the following way: let ŵ = [ŵ1, ..., ŵK ] be the
estimated weights for any criteria associated to the uplink
matrix RUL. We compute the permutation σ illustrating the
rank of each codeword, i.e. such that

d(RUL,RUL
σ(1)) < · · · < d(RUL,RUL

σ(K)).

We then indicate in Fig. 4 for each 1 ≤ k ≤ K the absolute
value |ŵσ(k)| averaged over Monte Carlo runs. We deduce from
these figures the following insights:

• All criteria favor close codewords. This argues against
introducing further neighbor constraint since it is
already naturally taken into account.

• When few codewords are available, it is less efficient
to consider any constraint. We will then use all avail-
able information in the dictionary. However, we see
in Fig. 3 that the error of the unconstrained criterion
increases with the size of the dictionary as soon as
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Fig. 4: Mean absolute value of interpolating weights vs. the
rank of the codeword sorted with respect to distance to uplink
covariance matrix (K = 500)

K > 200 because the sparse structure of our simulated
model is not taken into account.

• The difference between sparse and extrapolation cri-
teria lies in the distribution of the weights amongst
the dictionary (see Fig. 4). The sparse criterion with
η = 0.2 leads to consider less weights with high
modulus (i.e. closer to 10−1). The consequence of
that behavior is a higher MSE. On the other hand,
the criteria that lower too much the impact of far
codewords are less efficient.

• The extrapolation citerion with η = 0.1 cumulating
the two aforementioned properties is then the best
criterion.

V. CONCLUSION

We proposed a study of different criteria for covariance
interpolation through Riemannian coding. We considered the
regime where the number of covariance matrices in the dictio-
nary is smaller than the dimension of their space. These criteria
introduce a parameter tuning the sparsity of the “codes”. It
appears that there exists an optimal parameter lowering the
approximation error in that regime corresponding to the true
degree of sparsity of the simulated model. A perspective for
further research would be to chaeck if dictionary learning tech-
niques (see e.g. [9]) could lower the size of dictionary without
degrading the approximation error by computing “optimal”
codewords from an initial dictionary.

REFERENCES

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Transactions on Wireless Communica-
tions, vol. 9, no. 11, pp. 3590–3600, Nov. 2010.



[2] J. Choi, D. Love, and P. Bidigare, “Downlink training techniques for
FDD massive MIMO systems: Open-loop and closed-loop training with
memory,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 5, pp. 802–814, Oct. 2014.

[3] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach
to channel estimation in large-scale multiple- antenna systems,” IEEE
J. Sel. Areas Commun., vol. 31, no. 2, pp. 264–273, 2013.

[4] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and
multiplexing – the large-scale array regime,” IEEE Trans. on Inform.
Th., vol. 59, no. 10, 2013.

[5] B. Tomasi and M. Guillaud, “Pilot length optimization for spatially
correlated multi-user mimo channel estimation,” Proc. Asilomar Con-
ference on Signals, Systems and Computers, 2015.

[6] B. Hochwald and T. Marzetta, “Adapting a downlink array from uplink
measurements,” IEEE Transactions on Signal Processing, vol. 49, no. 3,
pp. 642–653, Mar. 2001.

[7] Y. Han, J. Ni, and G. Du, “The potential approaches to achieve channel
reciprocity in FDD system with frequency correction algorithms,” in
Proc. Communications and Networking in China Conferece (CHINA-
COM), Beijing, China, Aug. 2010.

[8] A. Decurninge, M. Guillaud, and D. Slock, “Channel covariance es-
timation in massive mimo frequency division duplex systems,” IEEE
Global Telecommunications Conference (GLOBECOM), 2015.

[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” Advances in Neural Information Processing Sys-
tems, vol. 21, pp. 1033–1040, 2009.

[10] M. Harandi and M. Salzmann, “Riemannian coding and dictionary
learning: Kernels to the rescue,” 2015, pp. 3926–3935.

[11] Y. Xie, J. Ho, and B. Vemuri, “On a nonlinear generalization of sparse
coding and dictionary learning,” vol. 28, 2013, pp. 1480–1488.

[12] M. Yin, S. Xie, Y. Guo, J. Gao, and Y. Zhang, “Neighborhood preserved
sparse representation for robust classification on symmetric positive
definite matrices,” arXiv:1601.07336v1, 2016.

[13] J. Kotecha and A. Sayeed, “Transmit signal design for optimal esti-
mation of correlated MIMO channels,” IEEE Transactions on Signal
Processing, vol. 52, no. 2, pp. 546–557, 2004.

[14] M. P. do Carmo, Riemannian geometry. Birkhauser, 1992, vol. 1st
Edition.

[15] O. Sander, “Geodesic finite elements of higher order,” IMA Journal of
Numerical Analysis, 2015.

[16] D. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fading correlation and its
effect on the capacity of multielement antenna systems,” IEEE Trans.
on Communications, vol. 48, no. 3, 2000.


