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AB ST R ACT  

Iris recognition on mobile devices is a challenging task, performing acquisition via the embedded sensors can introduce the 
sensor interoperability problem. Biometric systems developed so far are limited in their ability of comparing biometric data 
originated by different sensors because they operate under the assumption that the data to be compared are obtained using the 
same sensor. This problem leaded to the development of biometric recognition algorithms able to work independently from the 
data source. In this paper, we get around the sensor interoperability problem leveraging on the picture differences due to 
acquisition by different sensors. We present a novel system that combines the recognition of user‘s iris and user’s device, i.e. 
something the user is plus something the user has. To do so, we adopted an iris recognition algorithm, namely Cumulative 
Sums, and a well-known technique in the image forensic field for camera source identification based on the extraction of the 
Sensor Pattern Noise. The two identification processes are performed on the same picture leading to a system with a good trade-
off between ease of use and accuracy. The approach is tested on MICHE, a database composed by iris images captured with 
different mobile devices in unconstrained acquisition conditions.  

2012 Elsevier Ltd. All rights reserved. 
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1. Introduction  

Biometric recognition for a long time has been used in 
confined spaces, usually indoor, where security-critical operation 
required high accuracy recognition systems, e.g. in police 
stations, banks, companies, airports (usually for frequent flyers, 
so just for a limited number of voyagers). Field activities, on the 
contrary, required more portability and flexibility leading to the 
development of devices for less constrained biometric traits 
acquisition and consequently of robust algorithms for biometric 
recognition in less constrained conditions [18]. However, the 
application of “portable” biometric recognition, was still limited 
in specific fields e.g. for immigration control, and still required 
dedicated devices. 

A further step would be to spread the use of biometric 
recognition on personal devices, as personal computers, tablets 
and smartphones. Some attempts in this direction were made 
embedding fingerprint scanners in laptops or smartphones [26]. 
However, so far biometric recognition on personal devices has 
been employed just for a limited set of tasks, as to unlock the 
screen using fingerprints instead of passwords, PINs, or patterns. 
One of the reasons is that systems presented so far can be easily 
spoofed, as the well-known hacking of the Touch ID on iPhone6. 

To improve biometric recognition robustness against attacks it 
is worth using multimodal recognition. This topic has already 
been addressed (see section 2) and few works suggest to combine 
two biometric traits for user identification on mobile devices, i.e. 
multi-biometric recognition. In this paper indeed, a multimodal 
authentication system that combines a biometric trait, namely the 
iris, with a personal object owned by the user, namely the 
smartphone is presented. This approach has several advantages: 

• The genuine sample consists in the couple user-
device, making more difficult the spoofing process; 

• The two recognition processes are applied on a 
single photo of the eye captured by the user with 
his/her smartphone; 

• Good trade-off between accuracy and ease of use; 

• Performances of iris recognition and, in particular, of 
sensor recognition, are very high. 

The system we propose is therefore a multimodal recognition 
system based on the combination of sensor recognition 
(hardwaremetry) and iris recognition (biometry), i.e. something 
the use has + something the user is. If we analyze the 
authentication systems security levels shown in Figure 1, we can 
see that the degree of security assured by the combination of 
biometry and a physical object is higher with respect of the use of 
biometry only [1]. The second aspect that we address in this 
paper is the sensor interoperability problem [28]. This problem 
rises up when the data to be compared (e.g. the pictures of the 
eye) are acquired with different sensors and thus contain 
differences depending on the sensor characteristics. As we will 
show later in the paper, this can affect the biometric algorithm 
performances since two pictures of the same eye can appear 
different because if they were captured by different devices. Our 
approach can be seen as a way to bypass the sensor 
interoperability problem, instead of focusing on the development 
of an algorithm able to operate regardless of the sensor 
employed, we leverage on the differences introduced by different 
sensors on photos in order to obtain a more robust recognition 
system. 

We studied different techniques for the fusion of iris and 
sensor recognition. We tested the system on a database that 

accurately simulates the application of the system in real 
life. In fact MICHE [3] is an iris images database consisting of 
photos of the eyes of 75 different persons, captured with different 
mobile devices in different illumination conditions. Thanks to 
this database, it is possible to actually perform the double check 
of iris and device identity on a single photo and at once. Finally, 
we analyzed system response to noise, showing that the use of 
two traits (iris texture and Sensor Pattern Noise) of a so different 
nature can mitigate the deterioration of the global system 
performance, i.e. the more the quality of acquired iris images 
degrades the more the SPN is important in a verification process. 

The outline of the paper is as follows: in chapter 2 we will 
present previous works on biometric recognition on mobile 
phones; the techniques employed for sensor recognition, iris 
recognition, score normalization, and fusion are presented in 
chapter 3, 4, 5, and 6 respectively; in chapter 7 experimental 
settings and results are illustrated, performance are assessed in 
terms of Cumulative Match Score curve (CMS), and Receiver 
Operating Characteristic curve (ROC); the paper ends in chapter 
8 that summarize our main findings and conclusions. 

 
Figure 1 Authentication systems security levels: (1) Something the user 
knows; (2) Something the user has; (3) Something the user knows + 
something the user has; (4) Something the user is or does; (5) Something 
the user has + something the user is or does; (6) Something the user 
knows + something the user is or does; (7) Something the user knows + 
something the user has + something the user is or does. 

 

2. Background 

The biometric trait firstly chosen for biometric recognition on 
mobile phones, leveraging the presence of embedded cameras, is 
of course the face. In fact face recognition algorithms do not 
require high resolution images, and for this reason face was more 
suitable than iris at the beginning, when the resolution provided 
by mobile phone embedded cameras was limited. Some example 
of face recognition on mobile phone are presented in [4] and [5], 
the latter also addresses the problem of performing complex face 
recognition tasks on a mobile terminal. This could shorten the 
battery lifetime, while it is better to use the mobile phone only as 
an interface and perform all computationally heavy operations on 
the server side. In [6] the face recognition system presented also 
addresses the issue of using biometric recognition for security-
critical operations, e.g. home banking, providing an anti-spoofing 
module and the opportunity of performing continuous 
recognition. 

Nowadays smartphones provide built-in high resolution 
imaging sensors that can be used to perform also iris recognition. 
This gave the researchers the green light to study proper solutions 
to perform all the phases of iris recognition on mobile phones. 
For what concerns iris detection, in [7] and [8] methods for pupil 
and iris boundaries detection are presented, in these two works 
however, the databases employed were collected respectively 
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with a Samsung SPH-S2300 and Samsung SPH-2300 [9] (in [7] 
only 132 images were captured with the mobile phone and the 
others were from CASIA database [10]) which embed a 3.2 
megapixel digital camera with a 3X optical zoom, which is a very 
specific imaging sensor that cannot commonly be found in the 
most popular smartphones. Toward the aim of providing a 
solution suitable for any kind of mobile devices, in [11] and [12] 
a database acquired with different mobile devices, namely 
MICHE database [3], is employed to test iris segmentation. 

One of the first works investigating the possibility of 
optimizing iris segmentation and recognition on mobile phones is 
[13], Jeong et al. propose a method for computing the iris code 
based on Adaptive Gabor Filter. In [14], Park et al. present a 
recognition method based on corneal specular reflections, while 
Kang in [15] presents a method to pre-process iris in order to 
remove the noise related to occlusions of eyelids and improve 
system performances. In [16] and [17] an iris recognition system 
based on Spatial Histograms is presented. Finally, we focus on a 
work that represents a step forward the development of a secure 
authentication system via mobile phone, in fact in [18], De 
Marsico et al. present a face and iris recognition system that also 
integrates an anti-spoofing module. 

3. Hardwaremetry 

In order to recognize the sensor that captured a given photo, 
we implemented the Enhanced Sensor Pattern Noise (ESPN) 
based algorithm presented by Li in [19]. This method extracts 
from a picture the noise pattern of the sensor, it can also be used 
to distinguish cameras of the same model [20][21]. The approach 
presented by Li, is based on a previous work by Lukás et al. [20] 
in which the authors present the algorithm for extracting the 
Sensor Pattern Noise (SPN).  

The ESPN is extracted from the Sensor Pattern Noise (SPN) 
by applying a filter that removes the details of the image located 
in the highest frequencies. The SPN is obtained using the 
following formula: 

n=DWT(I)-F(DWT(I)) 

where DWT() is the discrete wavelet transform to be applied 
on image I and F() is a denoising function applied in the DWT 
domain. For F() we used the filter proposed in appendix A of 
[20]. In Figure 2 the denoising process is illustrated: Figure 2 (a) 
shows a sample of the MICHE database. We selected this image 
because it contains many “strong details”, e.g. the frame of the 
glasses or the dark hair on a light background, that in the 
frequency domain are located in the high frequencies and can 
affect the Sensor Patter Noise extraction process. In Figure 2 (c) 
and Figure 2 (e), we can see how the denoising process has 
mitigated the presence of those details. 

SPN is then enhanced as suggested in [19] according to the 
following formula: 

ne(i, j) = � e−0.5n2(i,j)/α2 ,   if 0 ≤ n(i, j)
−e−0.5n2(i,j)/α2 ,      otherwise

 

where ne is the ESPN, n is the SPN, i and j are the indices of 
the components of n and ne, and α is a parameter that we set to 7, 
as indicated in [19]. An example of the difference between the 
SPN and the ESPN is shown in Figure 3, the original picture 
contains many details that influence the SPN but they can be 
mitigated by the enhancing step. 

 

 
Figure 2 Denoising process: (a) original image; (b) original wavelet 
coefficients; (c) local variance; (d) selection of the minimum variance; (e) 
denoised wavelet coefficients. 

 

 
Figure 3 Sensor Pattern Noise enhancing: (a) original image; (b) the SPN 
extracted from the image contains image details (e.g. hairs, part of the 
eyeglasses frame); (c) ENSP, after the enhancing step the influence of 
image details is mitigated. 

 

The process shown above, allows us to obtain the ESPN, i.e. 
the “fingerprint” of the sensor that captured the given photo. To 
associate then the extracted fingerprint to the correct sensor, we 
have to compare this fingerprint to the Reference Sensor Pattern 
Noise (RSPN) of the sensor. To extract the RSPN nr of a sensor, 
we compute the average SPN over N photos acquired with the 
given camera (see section 7.2 for details): 

nr =
1
N
∗� nk

N

k=1
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Where nk is the SPN extracted from the kth image. To compare 

the ESPN extracted from a photo with a RSPN of a sensor, we 
compute their correlation as follows: 

corr(ne, nr) =
(ne − ne���) ∗ (nr − nr� )
‖ne − ne���‖‖nr − nr� ‖

 

where the bar above a symbol denotes the mean value. 

4. Biometry 

Iris recognition on mobile devices is a challenging task, in 
fact, with respect to other dedicated iris acquisition devices, the 
smartphone embedded sensors introduce a number of noisy factor 
during the iris acquisition process [25]: out-of-focus, off-angle 
iris, rotated iris images, motion blurring, occlusions due to 
eyelashes, occlusions due to eyelids, occlusions due to 
eyeglasses, occlusions due to contact lenses, specular reflections, 
diffuse reflections, partially captured iris. 

For this reason in this context it is preferable to adopt an iris 
recognition algorithm suitable for low quality iris images. The 
algorithm we employed is the Cumulative SUMs (CSUM) [22]. 
This method analyzes the image local variation in gray level. In 
our implementation, the iris image is first normalized 
transforming the Cartesian coordinates in polar ones, obtaining a 
rectangular shape. Then the image is subdivided into cells and for 
each cell, the representative value X is computed as the average 
gray level. Then the cells are grouped (horizontally and vertically 
in turn) and the average value X� of the representatives of the cells 
of each group is computed. An illustration of an iris image 
subdivided in cells and groups is shown in Figure 4. The 
cumulative sums are then computed over each group as follows: 

S0 = 0 

Si =  Si−1 + (Xi − X�)        for i = 1, 2, … , N 

where N is the number of elements of the group. 

Finally, the iris code is generated comparing each pair of 
consecutive sums and assigning values 1 or 2 to a cell if the value 
of the corresponding sum contributes respectively to an upward 
slope or to a downward slope. Otherwise, value 0 is assigned to 
the cell. 

The matching of the iris codes computed as explained before, 
is performed by Hamming distance. 

 
Figure 4 Cumulative Sums algorithm illustration 

5. Score Normalization 

Score normalization is a necessary step when combining 
different modules. The algorithms employed by each module can 
generate scores that are different in terms of distribution and 
numerical range. In the past several different methods of score 
normalization have been proposed [29], addressing different 
issues that can emerge during the fusion process. In our 
experiments, we tested five different normalization techniques, 
namely: Max-Min, Z-score, Median/MAD, TanH, and 
Sigmoidal. We will briefly explain these techniques in the 
following. Let’s denote the set of K scores as: 𝑆𝑆 →  {𝑠𝑠𝑘𝑘},𝑘𝑘 =
1, 2, … ,𝐾𝐾, and the resulting set of normalized scores as: 𝑆𝑆′
→  {𝑠𝑠′𝑘𝑘},𝑘𝑘 = 1, 2, … ,𝐾𝐾. 

 
5.1. Max-Min normalization technique 

With the Max-Min technique, the scores are normalized based 
on the maximum and the minimum values in the scores set. The 
advantage of this simple technique is that the resulting scores set 
has a fixed numerical range: [0, 1]. In addition the shape of the 
original scores distribution is preserved. The Max-Min 
normalization technique can be implemented using the following 
formula: 

𝑠𝑠′𝑘𝑘 =  
𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘  𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘  𝑠𝑠 −𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘  𝑠𝑠
 

5.2. Z-score normalization technique 

The Z-score normalization technique is based on the 
calculation of the arithmetic mean and the standard deviation of 
the scores set. Thus, the resulting normalized scores set has a 
mean of zero and a standard deviation of one. However, this 
technique does not assures that the resulting scores set has a 
common numerical range, and it can also be sensitive to the 
presence of outliers. The Z-score normalization technique can be 
implemented using the following formula: 

𝑠𝑠′𝑘𝑘 =  
𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)
 

5.3. Median/MAD normalization technique 

This technique is based on the median and median absolute 
deviation (MAD) that are insensitive to outliers. The 
Median/MAD normalization technique can be implemented using 
the following formula: 

𝑠𝑠′𝑘𝑘 =  
𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)

𝑀𝑀𝑀𝑀𝑀𝑀
 

where 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(|𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)|). This technique 
too has the disadvantage that does not preserve the input 
distribution and does not transform the scores into a common 
numerical range. 

5.4. TanH normalization technique 

The tanH technique was introduced by Hampel et al. [30]. It is 
robust and highly efficient and the normalization formula is: 

𝑠𝑠′𝑘𝑘 =  
1
2

 �𝑠𝑠𝑚𝑚𝑚𝑚ℎ �0.01 �
𝑠𝑠𝑘𝑘 −  𝜇𝜇𝐺𝐺𝐺𝐺
𝜎𝜎𝐺𝐺𝐺𝐺

�� + 1� 

where 𝜇𝜇𝐺𝐺𝐺𝐺 and 𝜎𝜎𝐺𝐺𝐺𝐺 are the mean and standard deviation 
estimates, respectively, of the genuine score distribution as given 
by Hampel estimators [30]. An advantage of this  method is that 
it is not sensitive to outliers. 

5.5. Sigmoidal normalization technique 



5 
Cappelli et al. [31] adopted this technique in order to combine 

the scores of a multimodal biometric system based on the 
combination of different fingerprint classifiers. The normalized 
score can be obtained by the following double sigmoid function: 

𝑠𝑠′𝑘𝑘 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

1

1 + exp �−2 �𝑠𝑠𝑘𝑘 − 𝑠𝑠
𝑟𝑟1

��
    𝑚𝑚𝑖𝑖 𝑠𝑠𝑘𝑘 < 𝑠𝑠,

1

1 + exp �−2 �𝑠𝑠𝑘𝑘 − 𝑠𝑠
𝑟𝑟2

��
    𝑜𝑜𝑠𝑠ℎ𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑠𝑠𝑚𝑚,

 

where t is the reference operating point and r1 and r2 denote 
the left and right edges of the region in which the function is 
linear, i.e., the double sigmoid function exhibits linear 
characteristics in the interval (t − r1, t − r2). This technique 
guarantees that the set of normalized scores has a common 
numerical range [0, 1]. But, it requires careful tuning of the 
parameters t, r1, r2 to obtain good efficiency. 

6. Fusion 

The choice of the fusion strategy mostly depends on the 
application scenario of the system. For example it could be 
preferable to have a high security access to restricted areas, or 
just to provide a privileged access to a sub-set of users (e.g. fast 
track in airports). In our experiments we tested two different 
fusion techniques usually adopted for multimodal biometric 
systems, i.e. fusion at feature level and fusion at score level. 

Fusion at feature level has been performed as suggested by 
Ross and Govindarajan in [27], in this work the two feature 
vectors obtained from hand and face biometrics, are first 
concatenated and then feature selection is applied on the so 
obtained vector. The selection criterion is the average of Genuine 
Accept Rate (GAR) corresponding to 4 different FARs (0.05%, 
0.1%, 1%, 10%). In our paper, we applied a similar technique, we 
concatenated the feature vectors obtained from the iris 
recognition module and the sensor recognition module and used 
the resulting vector as the new feature vector. 

For the fusion at score level, we first computed the distance 
matrices for the two recognition modules and then we tested 
different score normalization techniques to be applied before  
combining the scores. 

7. Experimental results 

7.1. Data acquisition and preprocessing 

We tested our approach on MICHE database [3][2]. It 
includes more than 3000 eye images, taken from 75 individual 
subjects. Eye images were acquired with three different mobile 
devices, namely tablet Samsung Galaxy Tab 2, Apple iPhone5, 
and Samsung Galaxy S4 smartphone, under uncontrolled 
acquisition conditions both outdoor and indoor, leading to a very 
heterogeneous database. In our experiments we employed only 
the images captured by the two smartphones, with both their 
frontal and rear cameras (for a total of four different sensors). In 
Figure 5 some examples of MICHE eye images are presented, the 
images are rather different from each other due to the technical 
features characterizing each sensor and due to the uncontrolled 
acquisition conditions. 

 
Figure 5 Examples of images in MICHE: (a) captured from Galaxy S4, 
(b) captured from iPhone5. In both rows odd positions correspond to 
indoor images and even positions to outdoor ones. 
 

For sensor recognition no preprocessing is needed, the picture 
as it is, is submitted to the ESPN extractor. For iris recognition 
some further steps are required, in fact we need to extract the iris 
from the whole picture that contains also other information, e.g. 
the periocular area and part of the face, that we do not need in the 
following steps. As providing an automatic segmentation 
algorithm is beyond the scope of this paper, we manually 
segmented the images and we did not remove occlusions due to 
reflections, eyelids, etc. After iris segmentation we performed a 
transformation from Cartesian to polar coordinates in order to 
obtain a rectangular shape of the iris on which is easier to apply 
the CSUM algorithm. 

7.2. Sensor recognition 

It is well known [20,21] that device recognition based on SPN 
extraction is a very robust technique. However we investigated 
its use on mobile devices, which are limited in terms of memory 
and computational power. In this section we will present different 
experiments on sensor recognition in order to show the 
robustness of this technique even if applied on a small part of the 
image. In appendix A of [20], it is suggested to process large 
images by blocks of 512x512 pixel, but during our experiments 
we observed that using just one block, the same for all images, is 
sufficient to obtain a RR of 98%, for this reason, in our 
experiments we extracted from all the images a block of size 
512x512 starting from the top-left corner of the photo. 

As stated before, with the SPN-based technique it is possible 
to distinguish which is the device that captured a given photo 
even among different devices that embed sensors of the same 
model. In order to test the performance of the sensor recognition 
algorithm, we extracted the RSPNs of four cameras employed to 
acquire MICHE images: Galaxy S4 front camera, Galaxy S4 rear 
camera, iPhone 5 front camera and iPhone 5 rear camera. While 
collecting the images for MICHE database, the iPhone 5 was 
changed with another device of the same model, this means that 
from the subject with ID = 49, photos were acquired with the 
new device, and since we extracted the RSPN from the new 
device, pictures relative to IDs less than 49, should be detected as 
impostors by the system. Moreover, the presence of unrolled IDs 
in the probe, i.e. pictures captured with a device of which we do 
not have the RSPN (“old” iPhone 5) in the Gallery, makes the 
system performance assessment more reliable. We used the 
RSPNs extracted from the four cameras as Gallery set and the 
ESPNs extracted from 579 photos selected from the MICHE 
database as Probe set. The system obtained a RR of 98% and a 
very low average FAR of about 5%, AUC is equal to 0.99. 
Results for sensor recognition are shown in Figure 6. 
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Figure 6 Sensor recognition performances 

 

7.2 .1 .  Dif ferent  sensors  o f  the same model  
In the following experiment, we employed three smartphones 

of the same model, namely Samsung Galaxy S4. We compared a 
total of 6 different sensors, as we extracted the RSPNs from both 
the frontal and the rear cameras of the three devices. Gallery set 
is thus composed by the 6 RSPNs while the Probe consists in 
1297 images from MICHE database, the ones captured with 
Galaxy S4 smartphone. As just one of the three smartphones was 
actually employed in MICHE acquisition, the system should 
correctly assign all the 1297 images to the correct device. 
Results, see Figure 7, shows that the Recognition Rate (RR) is 
97% and the Area under the ROC curve (AUC) is equal to 0.99. 

7.2 .2 .  Reference  Sensor  Pat tern  Noise  Ex trac t ion  
In order to extract the RSPN of a sensor it is worth employing 

an high number on images (recommended more than 50) of the 
blue sky because this kind of pictures do not contain details that, 
as the sensor noise, are located in the high frequencies of the 
images and can be confused with it [20]. However, we imagined 
that for a user, collecting  images of the blue sky could be 
difficult, for this reason and as suggested in [24], we compared 
the performance of the sensor recognition system when using 
blue sky images or using any kind of pictures to extract the 
RSPN of the sensor, results are presented in Figure 8. 

Values obtained for RR and AUC are very close, with RR = 
98% for both the experiments and AUC = 0.92 and AUC = 0.93 
for the case in which RSPN is extracted from blue sky images 
and the case in which it is extracted from any kind on pictures, 
respectively. We performed these experiments on 1297 images 
captured by the Galaxy S4, and compared them with 3 RSPNs 
from three frontal cameras of three different Galaxy S4. 

 
Figure 7 Sensor recognition performance: experiment on same camera 
model 

 
Figure 8 Sensor recognition performances: in red the curves relative to 
the case in which the RSPN is extracted from blue sky images and in blue 
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the curves relative to the case in which the RSPN is extracted from any 
kind of images captured by the sensor. 

 

7.3. Iris recognition 

In this section we present the performances of the iris 
recognition module. Images selected from MICHE dataset were 
split in Gallery and Probe sets. Probe set is composed by 298 iris 
images belonging to 75 subjects. The Gallery is composed by 
150 iris images, we selected only a part (half) of the 75 
individual subjects composing MICHE dataset, we did it in order 
to simulate the attempt of not enrolled subjects to access the 
system. Results are shown in Figure 9, with RR = 85% and AUC 
= 0.77. Performances are poor due in part to the noise introduced 
by the acquisition in uncontrolled settings (e.g. specular 
reflections, eyelids and eyelashes occlusions, etc.) and in part to 
the sensor interoperability problem, in fact MICHE images of the 
same iris often appear very different because they were acquired 
by different sensors. 

7.4. Fusion at feature level 

In this paragraph we present the experiments relative to the 
combination of iris recognition and sensor recognition. We first 
tested the fusion at feature level, concatenating the feature 
vectors extracted from the two recognition modules. To compare 
the new feature vectors obtained, as the two algorithms employed 
for iris and sensor recognition use different matching techniques, 
namely hamming distance for iris recognition and correlation for 
sensor recognition, we tested both approaches. Results are 
presented in Figure 10: performances are very close with AUC of 
about 0.93 for both distance metrics and RR of 23% obtained by 
Hamming distance and RR of 20% when using Correlation. 

 
Figure 9 Iris recognition performances affected by sensor 
interoperability problem 

 
Figure 10 Fusion at feature level performances. 
 
7.5. Fusion at score level 

We also tested fusion at score level, we computed the distance 
matrices of the two recognition modules and then we combined 
the scores obtained averaging them. Before combining the score, 
a score normalization step is required. We tested different 
normalization techniques and we report the results obtained in 
Figure 11. The best performances are obtained via fusion at score 
with Max-Min score normalization: the AUC value is equal to 
0.98 while the RR is 86%. 

The results obtained show that fusion at score level is more 
suitable than fusion at feature level for this kind of system. Since 
the system recognize a couple of entities very different in nature, 
we assigned the same weight both to iris module scores and 
sensor module ones, in order to avoid the system to be biased 
towards recognizing the iris or the device. 

7.6. Noise response 

In this section we want to highlight the advantage in using the 
sensor recognition module in combination with biometric 
recognition. It has really high and robust performances as shown 
in section 7.2. Here we present an example that confirms what 
stated before: if we submit to the system more challenging 
pictures, e.g. eye pictures with strong noise due to large specular 
reflections, important occlusions etc., the iris recognition module 
performances drop while sensor recognition performances stay 
the same. We employed pictures from MICHE database acquired 
outdoor, in Figure 12 we can see that, with respect to 
performances obtained on indoor photos, the RR drops from 85% 
to 21% and the AUC from 0.77 to 0.67. Figure 13 shows that 
even on outdoor pictures, sensor recognition performances 
remain high, with RR = 98% and AUC = 0.99. 
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Figure 11 Fusion at score level performances 
 

 
Figure 12 Iris recognition performances on outdoor images. 

 
Figure 13 Sensor recognition performances on outdoor images. 

8. Conclusions 

The main goal of the paper is to present a novel idea, a 
multimodal system based on the combination of iris recognition 
and device recognition and demonstrate its applicability on 
smartphones. The advantages of this technique are manifold: 
high security level; the genuine sample consists in the couple 
user-device, making more difficult the spoofing process; good 
trade-off between accuracy and ease of use; the two recognition 
processes are applied on a single photo at once; performance of 
iris recognition and, in particular, of sensor recognition, is very 
high. 

We performed an extensive series of experiments to show that 
the SPN-based technique can be reliably applied on smartphones. 
This technique is based on the discrete wavelet transform. Large 
images, as those captured by nowadays smartphones, should be 
processed by blocks of 512x512 pixel. E.g. for a picture of 
MICHE database acquired by Galaxy S4, of size 2322x4128 
pixel, the ESPN extraction process should be applied around 36 
times. This would require a high computational cost not suitable 
for the application of this technique on smartphones, that are still 
limited in terms of memory and computational power. To speed 
up the process and reduce the computational cost we used just a 
small block of the image and we obtained a Recognition Rate 
(RR) of 97% and an Area under the ROC curve (AUC) equal to 
0.99. 

For what concerns the performances obtained by the fusion of 
device and iris recognition modules, we want to clear up that the 
performances were not expected to outperform the single 
modules. The reason is that the two modules recognize two 
different entities and their fusion recognize a combination of 
entities. This is different from a multi-biometric system were two 



9 
user’s traits are combined to recognize his/her identity (same 
entity) and thus the performances should outperform the single 
modules. Indeed the performance were expected to be limited by 
the weakest module: the iris recognition module. However, we 
can see that, as reported in Table 1, fusion performances greatly 
outperform iris recognition ones. The reason is that the CSUM 
algorithm employed for iris recognition, suffers for the sensor 
interoperability problem introduced before. Thus, when it is 
required to recognize the iris despite the sensor that acquired it, 
its performances drop down. On the contrary, on the fusion 
scenario, it is required to distinguish between irises acquired with 
different sensors, getting around the sensor interoperability 
problem, and obtaining better performances from the iris 
recognition module. 

 
Table 1 Experimental results summary 
 EER avg FAR avg FRR RR AUC 

Iris 0.2951 0.2747 0.6044 0.8553 0.7723 

Sensor 0.0447 0.0537 0.5592 0.9825 0.9883 

Fusion 0.0569 0.2758 0.3590 0.8585 0.9797 

 

Finally we demonstrated that the more the quality of acquired 
iris degrades the more the SPN is important in a verification 
process. In fact the experiments presented show that sensor 
recognition has very high and robust performances. 

8.1. Future Implications and Open Issues 

This novel system can provide a more secure authentication 
process without the disadvantage of requiring dedicated sensors. 
The authentication process is fast and easy, in one single shot the 
user can get authenticated via his/her iris and his/her smartphone. 
The smartphones are nowadays strictly related to the owners, and 
in many companies smartphones are provided to the employees 
and they are required to bring them during the working hours. 
This is the perfect scenario in which passwords, tokens or badges 
can be replaced by the authentication system proposed here. And 
it is worth noticing that this kind of system is particularly suitable 
for this scenario because it can distinguish devices of the same 
model with high accuracy, as shown in paragraph 7.2.1, and it is 
very likely that the devices provided by a company are of the 
same model or belong to a restricted set of models. 

The use of the recognition of the smartphone in addition to the 
iris, makes the spoofing attacks more difficult to be carried on. 
The opponent has to spoof both modules, that even if still 
possible, it is more complicated than spoofing a system based 
only on biometric recognition. 

Still to be investigated is the possibility of improving system 
robustness against attacks by adding anti-spoofing techniques, 
e.g. a liveness detector for the iris recognition module. 
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