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ABSTRACT

In this paper, we focus on joint multipath angle and delay estimation
(JADE) in an OFDM communication setting. We analyse the effect
of Gaussian random snapshot (OFDM symbol) timing jitter on the
spatio-frequency sample covariance matrix containing delay and di-
rection information. This sample covariance matrix is an input to the
JADE and many other algorithms for signal parameter estimation.
The analysis suggests a simple way to compensate for the jitter in
the sample covariance matrix. We also present two simple methods
for estimating the jitter variance, allowing its compensation. These
techniques attempt to restore the low rank nature or other structure
in the signal contribution. We then finally present some simulations
for the resulting estimation quality of the multipath delays (ToAs)
and angles (AoAs) of the incoming signals.

Index Terms— Snapshot timing jitter, perturbed sample covari-
ance matrix, JADE, ToA , DoA, matrix rank minimization

1. INTRODUCTION

Localisation has been one challenging topic over the past 60 years.
In fact, many techniques have been developed in order to reliably
position a wireless emitter. The first classical approach involves
estimating the angle-of-arrival (AoA), received signal strenth (RSS),
time-of-arrival (ToA), time-difference-of-arrival (TDoA), phase-
of-arrival (PoA), etc.., of an emitter with respect to multiple base
stations, in order to localise through triangulation or trilateration
methods [1]. In favor of estimating signal parameters (i.e. AoAs,
ToAs, etc..), one of the first algorithms proposed was Maximum-
Likelihood (ML) [2], which is computationally exhaustive as it re-
quires a pq-dimensional search, (q being the number of sources and
p being the number of signal parameters of interest). Nevertheless,
subspace algorithms were proposed to cope with the aforementioned
issue, such as MUSIC [3] and JADE [4]. These algorithms are much
simpler and less complex than ML, as they require a p-dimensional
search. Recently, fingerprinting techniques are finding their way
through commercial use, where signal parameters are measured and
stored, for each location, in an offline phase, and are readily used in
the online phase via a matching criteria to lookup the database and
match the received signal with its corresponding location. Wax et al.
[5] introduced a fingerprinting technique based on multipath char-
acteristic subspaces containing ToA and AoA information, whereas
Oktem and Slock [6] have made use of other multipath characteris-
tics such as Power, ToA, and Doppler. In any of the above mentioned
techniques, the sample covariance matrix of the recieved signal is

the key essence towards estimating signal parameters.
In this paper, we address a practical issue faced by Wi-Fi 802.11

a/b/g/n systems, where received OFDM symbols are sampled, and
sent to a DFT bank. We strongly note that the sampler (ADC) is not
continuously ON, due to power and other constraints imposed by
the 802.11 standard. Therefore, there is no guarantee that all sym-
bols are sampled at the same starting instant, so it should be seen as
symbol-varying. This problem is to be distinguished from the one
mentioned in [7], where authors study the effect of sampling jitter
on one symbol, i.e. each sample collected at the output of the ADC
is randomly shifted from it’s nominal sampling instant due to noise
caused by ADC and other equipments. In this paper, we call snap-
shot timing jitter, or simply jitter for short, a random timing shift in-
troduced to all the samples collected from a certain symbol (or snap-
shot). We study this effect on the sample spatio-frequency covari-
ance matrix containing ToA and AoA information and try to com-
pensate for this jitter effect, in the presence of multipath. After jitter
compensation, one can apply JADE (or 2D-MUSIC) so as to effi-
ciently estimate the number of incoming multipath components and
their respective ToAs and AoAs.

As will be clarified throughout the paper, the jitter perturbs the
sample covariance matrix in a sense that the rank of this matrix
(which is a good estimate of the number of incoming signals) in-
creases. This rank-excess problem is, in fact, one problem in com-
pressed sensing, where the true signal subspace is sparsely contained
in the subspace of the covariance matrix. Such problems are tack-
led through optimisation problems, where the objective function is
to minimise the rank of the matrix under some affine constraints.
Unfortunately, solutions to this problem are quite complex and are
known to be NP-hard [8]. We shall not proceed in that direction, but
instead, make use of the signal structure and correlation sequences
to propose simpler solutions.

The paper is divided as follows: Section 2 presents the system
model. In Section 3, we introduce a function to analyse the effect of
the jitter. We propose , in Section 4, two jitter estimation algorithms,
which allow its compensation from the sample covariance matrix. In
Section 5, we present our simulation results and conclude in Section
6.
Notations: Upper-case and lower-case boldface letters denote ma-
trices and vectors, respectively. (.)T and (.)H represent the trans-
pose and the transpose-conjugate operators. E{.} is the statistical
expectation. ⊗ and � are the Kronecker and Hadamard products,
respectively. For any M ×M matrix X, vec(X) is the vector op-
erator which returns an M2 × 1 vector by stacking the columns of
X, starting from the first to the last column, ‖X‖22 is the Frobenius



norm of X, and X〈i,j〉 is the (i, j)th entry of X. |z| is the magnitude
of z ∈ C.

2. SYSTEM MODEL

Consider an OFDM symbol s(t) composed of M subcarriers and
centered at a carrier frequency fc, impinging an antenna array of
N antennas via q multipath components, each arriving at different
AoAs {θi}qi=1 and ToAs {τi}qi=1. In baseband, we could write the
lth received OFDM symbol at the nth antenna as:

r(l)
n (t) =

q∑
i=1

γ
(l)
i an(θi)s(t− τi) + n(l)

n (t) (1)

where

s(t) =


M−1∑
m=0

bme
j2πmMf t if t ∈ [0, T ]

0 elsewhere
(2)

where T = 1
4f

is the OFDM symbol duration, 4f is the subcar-

rier spacing, bm is the modulated symbol onto the mth subcarrier,
an(θ) is the nth antenna response to an incoming signal at angle
θ. The form of an(θ) depends on the array geometry. γ(l)

i is the
complex coefficient of the ith multipath component; Note that under
the slow fading assumption, γ(l)

i changes from symbol to symbol
and not within a symbol, thus the superscript (l) without any time
dependency. n

(l)
n (t) is additive Gaussian noise of zero mean and

variance σ2, assumed to be white over space, time, and symbols; we
also assume that the noise is independent from the signal and the
multipath coefficients.

We are now ready to address the jitter issue. Plugging (2) in (1)
and sampling r(l)

n (t) at regular intervals of k , k T
M

+ δ(l) + t0, we
get r(l)

n,k , r
(l)
n (k T

M
+ δ(l) + t0) as:

r
(l)
n,k =

q∑
i=1

M−1∑
m=0

bme
j2π km

M ej2πmMf (δ(l)+t0−τi)γ
(l)
i an(θi) + n

(l)
n,k

(3)

Collecting M samples, we can apply an M -point DFT, so observing
the mth subcarrier at the nth antenna, and denoting δ

(l)
= t0 + δ(l)

we get:

R(l)
n,m =

M−1∑
k=0

r
(l)
n,ke

−j2πm k
M

= bme
j2πmMf δ

(l)
q∑
i=1

γ
(l)
i an(θi)e

−j2πmMf τi +N (l)
n,m

(4)

We claim that the transmitted OFDM symbol s(t) is a preamble
field of the Wi-Fi 802.11 frame, thus prior knowledge of the mod-
ulated symbols {bm}M−1

m=0 is a valid assupmtion, since this stream
of symbols (each at it’s corresponding sub-carrier) are repeated in
each OFDM symbol placed at the beginning of the Wi-Fi frame for
channel estimation and frequency offset purposes. Therefore, at each
OFDM symbol reception, we compensate for all such symbols (mul-
tiplying by b∗m

|bm|2
) and hence omit bm from (4). Re-writing (4) in a

compact matrix form, we have:

x̃(l) = C(l)Aγ(l) + n(l), l = 1 . . . L (5)

where x̃(l) and n(l) are MN × 1 vectors

x̃(l) = vec{R}, R〈m,n〉 = R(l)
n,m (6)

n(l) = vec{N}, N〈m,n〉 = N (l)
n,m (7)

A is an MN × q matrix given as

A = [a(θ1)⊗ c(τ1) . . .a(θq)⊗ c(τq)] (8)

where a(θ) and c(τ) are N × 1 and M × 1, respectively. The nth

entry of a(θ), denoted an(θ), is the response of the nth antenna to a
signal arriving at angle θ with respect to the antenna array. Similarly,
the mth entry of c(τ), denoted cm(τ) = e−j2πτ(m−1)Mf , is the
response of the mth subcarrier to a signal arriving with time delay
τ . The q × 1 vector γ(l) is composed of the multipath coefficients

γ(l) = [γ
(l)
1 . . . γ(l)

q ]T (9)

C(l) is an MN × MN diagonal matrix, which can be seen as a
function of the block jitter, i.e. δ(l) and is given by

C(l) = IN ⊗ diag{c(δ
(l)

)} (10)

where IN is the N ×N identity matrix.
We shall also assume a perfect model with no snapshot jitter effect

x(l) = C0Aγ(l) + n(l), l = 1 . . . L (11)

where C0 = IN ⊗ diag{c(t0)}.
(5) is referred to as the perturbed model with respect to the perfect
model (11). It is straightforward to see that in (11), the matrix C0

shifts all time delays by a constant value, t0, thus relative delays
of paths is still preserved. In the next section, we model δ(l) to be
a realisation of a prior known distribution, namely Gaussian, and
observe the impact of this jitter on the sample covariance matrix.

3. EFFECT OF JITTER ON THE SAMPLE COVARIANCE
MATRIX

In this section, we study the effect of the jitter which is modelled as a
Gaussian random variable on the sample covariance matrix. The co-
variance matrix of x̃(l) given in the perturbed model in (5) is referred
to as the perturbed covariance matrix and is given by

Rx̃x̃ = El{x̃(l)x̃(l)H} (12)

where El{.} is the expectation operator over (l). In what fol-
lows, we seek a relation between Rx̃x̃ and Rxx, where Rxx =

El{x(l)x(l)H}, and x(l) is given by (11).
Recall that the noise n(l) is of zero mean, covariance σ2IMN , and
independent from C(l), A, and γ(l), thus it is easy to show that

Rx̃x̃ = El{C(l)Aγ(l)γ(l)HAHC(l)H}+ σ2IMN (13)

which could also be written as

Rx̃x̃ = El{
q∑
i=1

q∑
j=1

C(l)A〈:,i〉γ
(l)
i γ∗

(l)

j A〈:,j〉
H

C(l)H}+ σ2IMN

(14)
where A〈:,i〉 = [a(θi) ⊗ c(τi)] is the ith column of A. Using the
linearity property of the expectation operator and assuming that the
jitter δ

(l)
is independent from multipath γ(l), the (m,n)th entry of

Rx̃x̃, i.e. Rx̃x̃
〈m,n〉, is given by

Rx̃x̃
〈m,n〉 = El{e−j2πMf (m1−n1)δ}.Rxx

〈m,n〉 (15)



where

Rxx
〈m,n〉 =

q∑
i=1

q∑
j=1

Rγγ
〈i,j〉cm1(τi + t0)c∗n1

(τj + t0)

am2(θi)a
∗
n2

(θj) + σ21(m,n)

(16)

and
Rγγ

〈i,j〉 = El{γ(l)
i γ∗

(l)

j } (17)

1(m,n) is the dirac-delta function which returns 1 if m = n and zero
otherwise. The indices m1, n1, m2, and n2 are given as

m1 = m− bm−1
M
cM

n1 = n− bn−1
M
cM

m2 = bm−1
M
c+ 1

n2 = bn−1
M
c+ 1

(18)

bxc denotes the floor operator of a real number x. Rewriting (17) is
a compact form, we have

Rx̃x̃ = Υ�Rxx (19)

Υ is an MN ×MN matrix given by Υ = JN ⊗ T, where JN is
the all-ones square matrix of size N and T is an M ×M Toeplitz
matrix given by T〈m,n〉 = El{e−j2πMf (m−n)δ(l)}. Now, we follow
the assumption that all jitter realisations {δ(l)}Ll=1 are drawn from a
Gaussian distribution of mean t0 and a variance σ2

δ , but since δ
(l)

=
δ(l) + t0 and t0 was explicitly included in the perfect covariance
matrix Rxx in (16), we shall base our work on the centered Gaussian
δ which has zero mean and variance σ2

δ , i.e.

δ ∼ N (0, σ2
δ ) (20)

For any real number α, we have the following

E{ejαδ} =
1√

2πσ2
δ

∫ +∞

−∞
ejαδe

− δ2

2σ2
δ dδ = e−

α2σ2δ
2 (21)

Equation (21) tells us that T is now a symmetric Toeplitz matrix.
Denoting αk = 2π Mf |k| for any integer k, we can now say that

T〈m,n〉 = H(α|m−n|) (22)

where

H(αk) = e−
α2
kσ

2
δ

2 (23)

The number of largest eigenvalues of the sample covariance matrix
is a good estimate of the number of multipath components in the case
of non-coherent multipath components and sufficiently high Signal-
to-Noise-Ratio (SNR), since rank(ARγγA

H) = q. In our case,
where jitter is present, the sample covariance matrix is element-wise
multiplied by Υ, thus the number of largest eigenvalues of Rx̃x̃ de-
pends on the rank of Υ�ARγγA

H . Using the fact that the rank of
a Hadamard product of two matrices is bounded above by the prod-
uct of their ranks [9] and that rank(Υ) = M , then unfortunately,
the rank of the Perturbed covariance matrix would be

rank(Υ�ARγγA
H) ≤ qM (24)

Equation (24) tells us that there is an ambiguity in detecting the num-
ber of sources, since the rank of Υ �ARγγA

H is upper bounded

by qM . Before we continue the analysis, since the matrices in-
volved are of size MN × MN , we shall denote B〈i,j〉, for B of
size MN ×MN , to be

B =

B〈1,1〉 · · · B〈1,N〉
...

. . .
...

B〈N,1〉 · · · B〈N,N〉

 (25)

where each B〈i,j〉 block matrix is of size M ×M , or in other words

B〈m,n〉 = B〈m1+m2M,n1+n2M〉 = B
〈m1,n1〉
〈m2,n2〉 (26)

Consider the following function

FB(k) =
1

2(M − k)N2

∑
|m1−n1|=k
m2=1...N
n2=1...N

|B〈m1,n1〉
〈m2,n2〉| (27)

where k = 1 . . .M −1. For a given k, the function FB(k) averages
up the magnitudes of the kth sub and super diagonals of the block
matrices B〈m2,n2〉. Note that the number of entries found in the
kth sub and super diagonals of any B〈m2,n2〉 block matrix of B is
2(M−k). Therefore, the total number of entries found in the kth sub
and super diagonals over the values of m2 and n2 is 2(M − k)N2,
which is the normalisation factor in (27). It is now easy to see that

FRx̃x̃(k) = H(αk)FRxx(k) (28)

4. JITTER ESTIMATION/COMPENSATION

4.1. Simple Least Squares Estimate

In this section, we estimateH(αk) in (28). Taking log on both sides,
we get:

log(FRx̃x̃(k)) = −α
2
kσ

2
δ

2
+ log(FRxx(k)) (29)

Again FRxx(k) is approximated to be almost invariant. It does fluc-
tuate over different values of k but for the sake of simplicity, we
assume it constant, i.e. FRxx(k) = FRxx . Under this assumption,
we re-write (29) as

f = Pg (30)

where f is an (M − 1)× 1 vector given by

f = [log(FRx̃x̃(1)), . . . , log(FRx̃x̃(M − 1))]T (31)

and P is an (M − 1)× 2 matrix

P〈:,1〉 = [−α
2
1

2
, . . . ,−

α2
M−1

2
]T (32a)

P〈:,2〉 = [1, . . . , 1]T (32b)

g is given by a 2× 1 vector

g = [σ2
δ , F

Rxx ]T (33)

We can now apply Least Squares (LS) to estimate g as

ĝ = arg min
g

‖f −Pg‖22 (34)

The solution of (34) is

ĝ = (PHP)−1PHf (35)
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So, the first entry of ĝ gives an estimate of σ2
δ , i.e. σ̂2

δ . In the
next section, we shall see, through simulations, that the function
FRxx(k) that processes the entries of the perfect covariance matrix
Rxx is somehow invariant over k, although it does fluctuate, and that

the function FRx̃x̃(k) follows the behavior of H(αk) = e−
α2
kσ

2
δ

2 ,
and thus we could estimate H(αk) by searching for the appropriate
value σ2

δ which best fits H(αk), or equivalently FRx̃x̃(k). So, we
do the following: (Algorithm 1)
Step 1. Compute the perturbed sample covariance matrix Rx̃x̃.
Step 2. Compute its corresponding function FRx̃x̃(k) using (27).
Step 3. Calculate σ̂2

δ using (31), (32a), (32b), (33), (35).
Step 4. Knowing σ̂2

δ , compute H(αk) by (23).
Step 5. Compensate Υ in (19) by multiplying every entry of Rx̃x̃

with its appropriate value H−1(αk), according to (22), and get an
estimate of Rxx, denoted hereby as R̂xx.
4.2. Jitter Estimation based on Negative Eigenvalues

Let σ̄2
δ denote the true value of σ2

δ . For the sake of notation, we
shall consider a single-antenna case, i.e. N = 1 (The following
argument could be extended to the multi-antenna case). Now given
Rx̃x̃, we shall try to retrieve Rxx by pre-Hadamard multiplication
of Rx̃x̃ in order to cancel out the matrix T (or Υ for N ≥ 1). In
other words, span σ̆2

δ ∈ [0, S] (where S is the upperbound of the
search and σ̄2

δ ∈ [0, S]) till the smallest eigenvalue of the sample
covariance matrix is negative, i.e.

R̆x̃x̃ = T̆�Rxx (36)

where T̆〈m,n〉 = e(m−n)2α2ε and ε =
σ̆2
δ−σ̄

2
δ

2
and α = 2πMf .

Let λ1 ≥ . . . ≥ λM and λ̆1 ≥ . . . ≥ λ̆M denote the eigenvalues
of Rxx and R̆x̃x̃, respectively. Also, let u1 . . .uM and ŭ1 . . . ŭM
denote their corresponding eigenvectors.
We will base our discussion on 3 cases:

Case 1: If ε ≤ 0, then T̆ is a symmetric Toeplitz with nega-
tive exponents, and thus a positive definite matrix. Rxx is a posi-
tive semi-definite matrix due to the fact that it is a covariance ma-
trix. It is well known that the Hadamard product of two positive
semi-definite matrices is also positive semi-definite [9]. Therefore

R̆x̃x̃ is positive semi-definite, i.e. λ̆M ≥ 0. Note that (24) tells
us that there is no need that λ̆1 . . . λ̆q are the only large eigenval-
ues as the rank is no more q but could be much more than that, but
trace{R̆x̃x̃} = trace{Rxx} which implies that the signal eigen-
values λ̆1 . . . λ̆q tend ”to leak” onto the noise ones λ̆q+1 . . . λ̆M .

Case 2: If ε is in the neighborhood of 0, we can expand the
entries of the matrix T̆ using Taylor series. Thus in the neighborhood
of 0, we have

R̆x̃x̃ = Rxx + εα2D�Rxx (37)

where D〈m,n〉 = (m − n)2. Now, with (37) in hand, and know-
ing that εα2 is small and Rxx and D � Rxx are Hermitian, then
following [10], we can approximate λ̆M as a linear equation of λM ,
namely

λ̆M = λM + εα2uHMD�RxxuM (38)

Knowing that D = (v � v)1H + 1(v � v)H − 2vvH where 1 is
the all-ones M × 1 vector and v = [1 . . .M ]T , we get

uHMD�RxxuM =

q∑
i=1

λiu
H
M{ui(ui � v � v)H

+ (ui � v � v)uHi − 2(ui � v)(ui � v)H}uM

= −2

q∑
i=1

λi|uHM (ui � v)|2 ≤ 0

(39)
where we used the fact that eigenvectors of a Hermitian matrix are
orthogonal, i.e. uHi uj = 1i,j . If we assume λq+1 = . . . = λM =

0, then λ̆M ≤ 0 (using (38) and (39)), otherwise when λq+1 =

. . . = λM = σ2, then λ̆M ≤ σ2. Note that λ̆M is also decreasing
with respect to increasing ε at the neighborhood of 0.

Case 3: Intuitively speaking, the entries of the first row of R̆x̃x̃

are the values of a correlation sequence, which should be bounded
above in magnitude by the first element R̆

〈1,1〉
x̃x̃ . This is not valid any-

more as ε grows large, because this growth amplifies the off-diagonal
elements too much that they are no longer bounded in magnitude by
the diagonal ones, and as a result R̆x̃x̃ looses definitness and there-
fore negative eigenvalues are always present.
So, we propose the following: (Algorithm 2)



Step 1: Discretize the interval [0, S] into uniform intervals of length
η, set σ̆2

δ (0) = 0 and i = 1.
Step 2: σ̆2

δ (i) = σ̆2
δ (i− 1) + η.

Step 3: Compensate to get R̆x̃x̃ in (36) and compute its’ smallest
eigenvalue λ̆min. Increment i← i+ 1

Step 4: If λ̆min ≥ υ (pre-defined threshold), go back to Step 2.

Step 5: If λ̆min < υ, choose σ̆2
δ (i) =

σ̆2
δ(i−1)+σ̆2

δ(i−2)

2
and do

Step 2 to get λ̆min. Increment i ← i + 1. If λ̆min < η, choose

σ̆2
δ (i) =

σ̆2
δ(i−1)+σ̆2

δ(i−3)

2
, else choose σ̆2

δ (i) =
σ̆2
δ(i−1)+σ̆2

δ(i−2)

2
.

Repeat Step 5 until |σ̆2
δ (i)− σ̆2

δ (i− 1)| < ζ (pre-defined threshold).

5. SIMULATION RESULTS

5.1. FRx̃x̃(k) vs FRxx(k) and Algorithm 1

We have devoted a special subsection just to show how the two func-
tions FRx̃x̃(k) and FRxx(k) behave with respect to k. First, we
shall set some simulation parameters in this sebsection to the fol-
lowing: SNR is fixed to 20dB, N = 3 antennas spaced at half a
wavelength. M = 52 subcarriers spaced by Mf= 0.3125 MHz.
We collect L = 102 snapshots, with q = 15 uncorrelated multipath
complex coefficients. The AoAs and ToAs are chosen randomly, and
the jitter δ ∼ N (0, (25nsec)2).
By observing figure 1, one could see that FRxx(k) does fluctu-
ate, but could be considered somehow relatively stable with respect
to FRx̃x̃(k), which itself follows the aysmptotics of H(αk) (Here
H(αk) is tuned to the true parameter σ2

δ = (25nsec)2. After steps
1 to 4 of Algorithm 1, we get an estimate σ̂2

δ = (27.2nsec)2, fol-
lowed by step 5 which is a compensation with σ̂2

δ , thus an estimate
R̂xx is now available. From R̂xx, we plot F R̂xx(k), which is close
to FRxx(k).
Note here that this is an over-compenstion (ε > 0) which corre-
sponds to case 2 or 3 in section 4.2. This could only mean that an
over-compensation leads to negative eigenvalues of the estimated co-
variance matrix, as shown in figure 2. On the other hand, the largest
eigenvalues corresponding to signal subspace are detected with the
over-compensated matrix R̂xx; whereas the 15 largest eigenvalues
of Rx̃x̃ attenuate and ”spill” onto the noise eigenvalues in a smooth
fashion. Thus, one can not directly estimate q using Rx̃x̃.
5.2. Algorithm 2

Figure 3 plots the evolution of the λ̆min of a sample covariance ma-
trix R̆x̃x̃, (with same simulation parameters as before but q = 3).
Indeed, there is a massive drop of λ̆min towards negative values just
after σ̆δ exceeds the true values σ̂δ . Figure 4 shows the evolution of
values of σ̆δ with iterations of Algorithm 2. Note here that the true
value was σ̄δ ' 95nsec, which was estimated to be σ̂δ = 99nsec.
This bias was due to setting a threshold υ = 0 in the presence of
noise. In other words, once σ̆δ exceeds σ̄δ , then λ̆M < σ2 and thus
more iterations are needed so that λ̆M falls below 0.
5.3. Estimating ToAs and AoAs by 2D-MUSIC

The previous simulation parameters are fixed but we change q to be
equal to 3 and (θi, τi) (of units degrees and nsec, respectively) are
fixed to (0,−40), (30, 0), and (95, 70). Figure 5 detects the correct
peaks by processing the perfect covariance matrix Rxx by applying
JADE, whereas in figure 6, the AoAs could be detected correctly
but their respective ToAs leave alot of ambiguity due to: (i) Wrong
estimation of q and (ii) ToAs are shifted differently at each snapshot
by the value δ. After applying steps 1 through 5, and computing

an estimate R̂xx, JADE is then applied to R̂xx, and therefore we
can now resolve the true ToAs/AoAs through their corresponding
peaks as depicted in figure 7 when compared to figure 6. The only
difference between figures 5 and 7 is that the peaks become a bit
broader in 7, due to the estimation errors of σ2

δ .
6. CONCLUSION

In short, we introduced a new model by including snapshot timing
jitter, that is missampling of the collected OFDM symbols. This jit-
ter leads to an over-estimation of the number of incoming signals,
which also leads to wrong estimation of AoAs/ToAs. The effect of
jitter was analysed through a function, which pre-processes entries
of the perturbed sample covariance matrix. We suggested two algo-
rithms that allow estimation/compensation of the jitter. These algo-
rithms are simple to implement and are not computationally proho-
bited. Simulations show promising results if the JADE-MUSIC al-
gorithm, or any other algorithm that requires second-order moments,
was used to estimate ToAs/AoAs of incoming signals.
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