
Locating Copies of Objects

Using the Domain Name System

Jussi Kangasharju, Keith W. Ross

Institut Eur�ecom

Sophia Antipolis, France

fkangasha,rossg@eurecom.fr

James W. Roberts

France T�el�ecom { CNET

Issy les Moulineaux, France

Abstract

In order to reduce average delay and band-

width usage in the Web, geographically dis-

persed servers often store copies of popular

objects. For example, with network caching,

the origin server stores a master copy of

the object and geographically dispersed cache

servers pull and store copies of the object.

With site replication, objects stored at mas-

ter are replicated into secondary sites. In this

paper we propose a new network application,

Location Data System (LDS), that allows an

arbitrary host to obtain the IP addresses of

the servers that store a speci�ed URL. Our

networking application is an extension to the

Domain Name System (DNS), requires only

small changes to the domain name servers,

and can be deployed incrementally. For the

case of network Web caching, we elaborate

on our proposal to allow a cache to (i) up-

date a distributed database when it stores or

evicts objects, and (ii) push objects to parent

caches in order to improve delay and band-

width usage. For the case of mirrored servers,

we show how a client can obtain a list of all

servers mirroring all or part of the desired

site. LDS applied to partially mirrored sites

generates substantially less DNS traÆc than

LDS applied to caching. Finally, we discuss

how a host can use the location data in order

to make intelligent decisions about where to

retrieve desired objects.

1 Introduction

Network caching of documents has become

a standard way of reducing network traÆc

and latency in the Web. Caches are cur-

rently employed in institutional, local, re-

gional and national ISPs. Cache hierar-

chies, created when caches in lower-level ISPs

point to caches in higher-level ISPs, are cur-

rently prevalent in the Internet [8, 9]. Today's

cache hierarchies use static, manually con-

�gured pointers to de�ne the hierarchy tree.

Cache hierarchies operate as follows. When

a browser requests a document, it sends a re-

quest to a leaf cache. This cache then either

serves the document (if it is cached) or for-

wards the document to its parent in the hier-

archy. The process is repeated along a static

chain of caches until the root of the hierarchy

is reached. If there is also a cache miss at the

root, the root forwards the request directly

to the origin server. A response is returned

along the cache chain in the reverse direction.

Cooperating caches in cache hierarchies often

use ICP (Internet Cache Protocol) to improve

and enlarge the scope of the search [15].

Caching hierarchies have several problems.

First, requests for less popular documents will

experience misses at all caches in the cache

chain. For deep hierarchies, these misses lead

to poor latency performance [13]; moreover,

ICP can further degrade performance, since

the cache must wait for a reply from all sib-

ling and parent caches or until a two second

timeout before proceeding up the hierarchy.



Second, today's caching hierarchies are static

| they do not permit a browser or a cache to

choose the subsequent cache according to cur-

rent topology or traÆc conditions. Manual

optimizations, such as sending requests for

certain top level domains to designated par-

ent caches, are possible, but even with these

optimizations, the hierarchy for a given URL

remains static. Third, caching hierarchies do

not allow the chain of caches to extend be-

yond the root cache; if there is a miss at the

root server, the request is forwarded directly

to the origin server, and never to a cache that

lies somewhere in between the root server and

the origin server. This is a problem because

a cache nearby the origin might be able to

serve an object much faster than the origin

server, especially when the origin server runs

on a slow machine or has a low bandwidth

connection.

In this paper we propose a new cooperative

caching scheme that has the following fea-

tures. (1) At most two servers (including the

origin server) are visited in the request chain;

(2) The chain of caches depends on the re-

quested URL and can change dynamically as

a function of current network topology and

traÆc conditions; (3) An arbitrary cache in

the Internet can be queried, including a cache

that is far from the browser but close to the

origin server. (4) The scheme can be in-

crementally deployed with minor changes to

DNS servers. Furthermore, although a thor-

ough performance study is still required, we

feel the scheme should lead to a substantial

reduction in delay and network traÆc as com-

pared to traditional hierarchical caching.

Our caching scheme makes use of a new

network application, the Location Data Sys-

tem (LDS), which we also de�ne in this paper.

The LDS, de�ned as an extension of DNS, al-

lows an arbitrary host to obtain the IP ad-

dresses of the servers that store a speci�ed

URL. The LDS is of independent interest, and

can be used for other applications, including

choosing the best mirrored site for a given

URL. For the case of network Web caching,

we specify how a cache updates the LDS dis-

tributed database when it stores and evicts

objects, and how a cache pushes objects to

parent caches in order to improve delay and

bandwidth usage.

We recognize that LDS applied to Web

caching signi�cantly increases the number of

DNS messages. In this paper we also show

how LDS can be applied to replicated and

partially replicated servers. In this case, the

amount of DNS messages does not increase.

This paper is organized as follows. In Sec-

tion 2 we de�ne the LDS. In particular, we

show how DNS can be extended to provide

the LDS service. In Section 3 we show how

network caches can exploit the LDS; in par-

ticular, we discuss how the caches update the

LDS distributed database, and how caches at

higher levels in the caching hierarchy can be

populated. In Section 4 we show how docu-

ment and site replication can exploit the LDS.

In Section 5 we discuss how a host can make

routing decisions based on the results of an

LDS query. In Section 6 we discuss related

research on cooperative caching. Section 7

presents directions for future work and Sec-

tion 8 concludes the paper.

2 Location Data System (LDS)

Copies of an object, with each object ref-

erenced by the same URL, are often avail-

able from di�erent servers in the Inter-

net. These servers include origin servers,

replicated servers (also called mirrored

sites) and cache servers (also called proxy

servers). The origin server for an object is

the server at which the object originates; it

always contains an up-to-date copy of the ob-

ject. A replicated server contains copies of

objects that have been placed into it (typi-

cally manually or by pulling); typically, ob-

jects in replicated servers are up-to-date. A

replicated server may replicate entire Web

sites or may replicate only portions of vari-

ous Web sites. Cache servers obtain copies of

objects by pulling them on demand. In par-

ticular, when a cache server receives a request

for an object, and if the object is not cached,

the cache server retrieves the object from an-

other server (which may be the object's origin

server, a replicated server, or another cache

server), stores a copy of the object, and for-

wards a copy to the requestor. A cached copy

of an object may not be fully up-to-date. In



this paper we refer to all three types of servers

as object servers.

It is highly desirable for a host in the Inter-

net to be able to determine the locations (i.e.,

the IP addresses) of all the object servers that

contain copies of a speci�ed URL. In particu-

lar, a host would like to be able to give a net-

work application a URL and receive from the

application a list of all the object servers that

contain the URL. In addition to receiving the

IP addresses of all the servers that contain the

object, it is desirable to receive information

about the freshness of each copy, e.g., when

each copy was last modi�ed or the \age" of

the object (as de�ned in the HTTP/1.1 [2]).

In this section we outline a new network-

ing application that provides the service of

mapping a URL to a list of object servers

that contain the URL, with each server on

the list having associated freshness informa-

tion. We refer to this system as the Loca-

tion Data System (LDS). We have taken

a rather pragmatic approach in designing the

LDS. Our principle goal has been to design

a system that can be rapidly deployed with

incremental changes to the existing Internet

infrastructure. A second goal is scalability,

i.e., a system that is decentralized and hier-

archical. A third goal is performance, that

is, a system that quickly returns the location

data while injecting a minimum of overhead

traÆc into the network.

Figure 1 shows the basic mapping service

provided by LDS. In the �gure, the client on

the left has a URL, it gives it to the LDS

system which returns a list of object servers

that contain the object. Instead of the whole

URL, the client can as well give only a pre�x

of the URL to the LDS black box which then

returns a list of object servers that contain

URLs matching the pre�x. In the simplest

case, the pre�x is only the hostname of the

URL; in this case, the LDS service is identical

to the Domain Name System, operational in

the Internet for over 20 years.

Given the similarities in the service pro-

vided by both DNS and LDS, we have de-

cided to base the design of LDS on DNS.

In fact, LDS can be implemented by mak-

ing minor extensions to BIND name servers

Black

LDS

Box
List of object
servers that
contain object

LDS

URL

Client

Figure 1: LDS service

and to the DNS protocol. Recall that DNS

provides a mapping of hostnames to IP ad-

dresses. (DNS can return more than one IP

address for a hostname for mirrored sites.)

DNS uses a hierarchy of name servers to im-

plement a distributed database of resource

records, whereby a resource record contains

a mapping.

We now present an overview of the LDS

design; we provide more details in the subse-

quent subsections. As does DNS, LDS uses

a hierarchy of servers to implement a dis-

tributed database of resource records. We re-

fer to the LDS servers as location servers.

Each LDS resource record maps a URL to an

object server, with associated freshness infor-

mation. Each URL has one (or more) author-

itative location servers (To convey the main

idea, we initially assume that each URL has

exactly one authoritative server.) The au-

thoritative location server contains a list of

resource records for the URL, that is, a list

of object servers that contain the URL (along

with the freshness information). Other loca-

tion servers may contain cached copies of the

list of resource records. In our basic design,

hosts query location servers in a manner that

is fully analogous to the DNS protocol. The

sequence of query and reply events is illus-

trated in Figure 2.

In Figure 2, C is the querying host (e.g.,

a browser), O0 is the origin server for the

queried object, machines O1{O4 are other ob-

ject servers (e.g., caches), and machines L1{

L4 are location servers.

The querying host sends a location query

to its local location server (L1). If L1 does

not have the location information cached, it



L2

C O0

L 1

O1
O3

O2

O4

L 3

L4

1 8

2

7

9

3

9

6

9

5

4

Figure 2: Sequence of Location Queries and

Replies

sends a query to a root location server

(L2). If L2 does not have the location in-

formation cached, it returns the address of

a location server responsible for the domain

of the origin server in the query (L3). L1

sends a new location query to L3 and if L3

does not have the location information, it re-

turns the address of the authoritative loca-

tion server (L4). Finally, L1 queries the au-

thoritative location server and receives the lo-

cation information. Location server L1 then

sends the information to the querying host

and also caches the information. (In this ex-

ample we assumed that all queries between

LDS servers are iterative; recursive and com-

binations of recursive and iterative can also

be used. Like DNS, LDS is not based on ei-

ther query type being used. We also assumed

that there is one intermediate location server

between the root and authoritative servers; in

practice there can more or less.)

Suppose that the reply indicated that ob-

ject servers O0, O1, and O3 contain copies

of the URL. The querying host then chooses

to retrieve the URL from one of these object

servers. Ideally, the host chooses the object

server that will deliver the object the fastest.

(We will discuss how this choice might be

made in Section 5.)

Given the similarities between our basic de-

sign of the LDS and the DNS, we now ad-

dress whether the LDS can implemented in

the existing DNS, or within a slightly ex-

tended DNS. A DNS implementation could

lead to rapid deployment of the LDS.

2.1 Resource Records, Query
Messages and Reply Messages

For location requests a new DNS resource

record type is needed. It is similar to the

standard A-type resource record, which maps

a hostname to an IP address. We now de-

scribe this new DNS resource record type.

Each resource record of this type must

contain an object identi�er. In order to

be compatible with standard DNS queries,

object identi�ers must be encoded in a

standardized way. Using this encoding,

the query appears like a normal DNS

A-query and can be resolved without

changing any parsing routines in DNS

servers. Figure 3 shows how the URL

http://www.eurecom.fr/~bob/index.html

would be encoded.

t p 3 w w w 7 u r e c o m 2 f r 0e

4 h t m l 5 i n d e x 4 b o~ b 4 h t

Figure 3: Representation of a URL

This encoding allows for eÆcient compres-

sion of identi�ers sharing a common part, just

as when querying the addresses of all of the

servers in a given domain. Since the identi�er

can be viewed as a generalized hostname, all

the normal facilities of DNS can be used.

We mention that there is a 255 character

limit on hostnames in DNS queries which im-

plies that URLs longer than 255 characters

will have to be truncated. Also, the length

of a single label (e.g., one component of host-

name or URL path) is limited to 63 charac-

ters. We do not expect these limits to be

a problem. We also mention that URLs are

case-sensitive but DNS does not guarantee

case-sensitive treatment. Nonetheless, we do

not expect this to be a major issue since most

URLs cannot be confused with other URLs

even if case is not preserved.

We studied the access log from one of

the NLANR top-level caches and out of the



1.1 million URLs in the �le, only 122 ex-

ceeded these limits. Even if these 122 URLs

were truncated to conform to DNS limita-

tions, we did not observe any collisions be-

tween two di�erent URLs. Neither did we

�nd any URLs where case-insensitivity would

have presented any problems. Therefore, we

do not propose any methods for handling such

URLs beyond simple truncation.

The reply will include several resource

records, one for each object server holding

a copy of the URL. Each of these resource

records has a time-to-live (TTL) �eld which

speci�es how long that resource record can

be cached at a DNS server. This TTL-

information can either be speci�ed by the au-

thoritative location server or, for a better es-

timate, by the object server. If the location

server sets this TTL-�eld, it will be the same

for all resource records from that server. If,

on the other hand, this �eld is set by the ob-

ject server, it allows the object server to com-

municate information on how long the object

is likely to be available at that server.

The actual data section of the resource

record (RDATA) contains the IP-address of

the object server and some freshness informa-

tion about the object. This information could

be for example the last modi�cation date of

the object, which provides an easy way of dis-

tinguishing between possible stale copies of

the object. In this case, the authoritative lo-

cation server would have to periodically query

the origin server to get an up-to-date modi�-

cation date for the original object.

Another possible piece of information that

could be included in the resource record, in-

stead of the last modi�cation date, is the

\age" of the object, as de�ned in HTTP/1.1.

An object server could determine this locally,

and a small age would refer to a relatively

fresh copy. This method would not, however,

o�er the same guarantees on object freshness

as would the last modi�cation date.

Yet another possibility is to include simple

TTL-information, but this would be redun-

dant, since the resource record by de�nition

includes a TTL-�eld. A TTL-estimate is use-

ful when the querying host decides which ob-

ject server to use. Object servers with short

expected TTLs can be discarded from the de-

cision making process.

Because all location servers are allowed

to cache LDS replies, some location servers

may have stale location information in their

caches. When the status of an object changes

at an object server, the object server noti�es

the authoritative location server. This up-

date is not, however, reected on the cached

copies of the location information. If stale,

cached location information is delivered to a

querying host, the querying host may decide

to forward the request to a Web cache that

has evicted the object.

One solution is to use the only-if-cached

directive of HTTP/1.1 when requesting ob-

jects from Web caches. If the distant cache

has the object cached, it will return the ob-

ject from the cache; otherwise it will return

an error to the querying host indicating that

the object is no longer cached. The querying

host will then choose another object server

from the list. We are currently looking into

ways of reducing the amount of stale location

information in LDS.

2.2 Updating the Location Servers

The object servers need to keep the infor-

mation at the authoritative location server

up-to-date. For this we need a new protocol

that is used to exchange information about

new copies of objects. For example, when a

cache caches a new object, it must send a

message to the authoritative location server

responsible for this object, indicating that

the object has been cached. This message

should also include the information which will

be present in the resource record (e.g., last

modi�cation date) as well as a TTL-estimate.

Similarly, when the cache removes an object,

it must send a message to the location server

indicating that the object is no longer cached.

Since the location data is managed over

DNS, the dynamic update facility of DNS [14]

can be used to dynamically update the lo-

cation information. With this method, it is

possible for a host to add or delete resource

records atomically in an authoritative server.



The host can specify update prerequisites if

desired.

Using the dynamic update facility of DNS,

an object server sends an update message ev-

ery time the status of the object changes. For

a Web cache this change of status could be

the caching of a new object, a removal of an

object or caching a new version of the object

after the object has been modi�ed at the ori-

gin server. In order to reduce the amount of

update traÆc, object servers can send their

reports in batches. This is especially bene�-

cial for Web caches that can send the infor-

mation about an HTML page and all inlined

images in one message, thereby reducing the

overhead considerably.

2.3 Implementation

Implementing the LDS is relatively

straight-forward and can be done incremen-

tally. Since the system is an extension to

DNS, no new servers need to be created and

introduced.

For a DNS server to be LDS-capable,

it needs to be able to interpret a new

query type code and the associated resource

records. DNS already handles numerous dif-

ferent query and resource record types, so

adding one more is simple. Furthermore, the

authoritative server has to be able to main-

tain the location information database and

construct resource records from this database

to include in replies to queries. Although this

URL database contains more data than a nor-

mal DNS database, it can be maintained in

a similar way. For a Web cache to be LDS-

capable, it simply has to be able to send the

update messages to the authoritative server.

The architecture allows for incremental de-

ployment, since if a content provider does not

operate a location server, no LDS resource

records will exist. If no LDS resource records

are available, the querying host would for-

ward all requests using a static policy, for ex-

ample, forwarding them directly to the origin

server or a parent in a cache hierarchy. If

LDS records exist, then LDS-enabled clients

could use them to provide a better service for

users. Non-LDS clients would again use the

normal, static methods for �nding objects.

In the early phases of deployment, the tradi-

tional hierarchy should be kept as a fallback

for clients and servers that do not implement

the new protocols.

3 Network Web Caching

In this section we propose a new cooper-

ative caching scheme that exploits the LDS.

We assume that browsers forward their re-

quests through a proxy cache in addition to

the browser cache. This method is currently

widely used by ISPs and other institutions,

such as companies and universities, to o�er a

better service to their clients as well as to re-

duce the out-going traÆc. Also, if a �rewall

is used, then all requests must go through a

proxy at the �rewall in any case, so adding

a cache there does not present a signi�cant

overhead.

We now describe our cooperative caching

scheme. A browser �rst sends an HTTP re-

quest for an object to its proxy cache. If the

proxy cache does not have the object, the

proxy cache invokes LDS to obtain a list of

all the object servers (i.e., origin server and

some other caches in the network) that con-

tain the object. The proxy cache then chooses

the \best" object server from the list and for-

wards the HTTP request to this object server

(see Section 5). The proxy receives the object

from the best object server and forwards the

object to the browser.

Our caching scheme has several appealing

features. First, at most two servers are visited

to retrieve an object. Standard hierarchical

caching schemes (such as NLANR [8] and Re-

nater [9]) can cause requests to pass through

a large number of object servers before a copy

of the object is found, which can severely in-

crease object retrieval time [13]. Second, the

scheme allows the proxy server to choose from

all the object servers that contain the object.

Let us look at a couple of scenarios:

� LDS returns a list of object servers, with

one cache server in a neighboring ISP of



the ISP that contains the proxy cache,

and all the other object servers on more

distant ISPs. In this case, the proxy

server would choose the cache in the

neighboring ISP.

� LDS returns a list of object servers, with

one cache server on the same continent as

the proxy server, and all the other object

servers on the other side of transoceanic

links. In this case, the proxy server

chooses the cache in its continent.

� LDS returns a list of object servers, with

all the object servers far from the proxy

and near or in the origin server's ISP.

In this case, the proxy may still prefer

to choose one of the caches over the ori-

gin server: The origin server may run on

a slow machine or have a slow network

connection.

It is important to note that traditional hierar-

chical caching does not permit the last option.

With hierarchical caching, if there is a miss at

the root cache, the root cache forwards the re-

quest directly to the origin server. Thus our

scheme enables the proxy to select from all

caches that are on the \route" between the

proxy and the origin server.

Our caching scheme does have an unusual

peculiarity. In the scheme just described, the

proxy server will always retrieve an object

either from the origin server or from some

other proxy server. Because all the proxy

servers are near the bottom of the Internet

hierarchy (in institutional ISPs or local resi-

dential ISPs), with the exception of the origin

server, all copies of an object are stored, es-

sentially, in the leaves of the Internet. There

are, however, several compelling reasons to

also store copies of objects higher up in the

Internet hierarchy, in particular in regional

and national ISP caches. First, the request-

ing proxy may be able to retrieve an object

more quickly if it is available from a common

parent (or grandparent) of some other proxy

cache that has the object. Second, hierar-

chical caching provides an asynchronous mul-

ticast infrastructure, which can signi�cantly

reduce bandwidth usage in the Internet [10].

Given that cache servers are present at re-

gional and national levels, and peering agree-

ments exist which organize the proxy, re-

gional and national caches into hierarchies,

we now modify our caching scheme to exploit

the higher-level caches.

3.1 Populating Caches

In order to exploit the higher-level caches,

we must make sure that the higher level

caches obtain copies of the objects cached

at lower levels. We propose that lower level

caches push objects to their higher level par-

ents. This way the objects are easily avail-

able for siblings under the same parent, and

requests from distant hosts can be satis�ed at

a higher level in the network.

The details of our pushing strategy are

as follows. A low level cache periodically

sends a list of new objects (with last modi-

�cation dates) to its parent. The parent de-

cides which of the objects in the list to cache

and retrieves these from the child cache. This

is done at every level in the hierarchy and,

in the end, the caches are �lled up as they

would have been using traditional hierarchi-

cal caching. Caches at the lowest level should

send information about every object, but at

higher levels a cache might use some locally

de�ned policy (e.g., objects that are cached in

multiple child caches) to decide which objects

to report to its parent.

3.2 Network TraÆc

Since LDS increases the number of mes-

sages sent over the network, it may overload

some links or servers and in fact degrade per-

formance. We are currently performing an

analysis of how much LDS increases current

network traÆc. The following are the key fac-

tors:

1. LDS queries and replies: Although

these are normal DNS messages, an LDS

query is sent every time a proxy needs

to retrieve a URL that it is doesn't have

cached. Caching LDS records at the lo-

cation servers will reduce some of this

traÆc; however, caching is not expected



to have the same impact that it has with

ordinary DNS, since a URL reference is

more speci�c than a hostname reference.

2. Update traÆc: When the status of an

object changes in a cache, the cache must

send an update message to the object's

authoritative location server. For popu-

lar, widely cached objects, this may re-

sult in too much traÆc directed at the

authoritative server.

In order to reduce the amount of LDS

lookup traÆc in the Internet, we propose a

variation to our basic LDS scheme. In this

variation, once we get the location informa-

tion for an HTML-page we assume that all

the inlined objects on the page are also avail-

able from the same set of object servers. One

advantage of this scheme is that it heavily

cuts down on the amount of LDS traÆc com-

pared to that basic scheme since we now only

send one LDS query for each HTML-page

instead of each URL. The disadvantage of

the variation is that there are no guarantees

that the inlined objects are available from the

same object servers. Origin servers and repli-

cated servers should have the objects but a

cache may have already purged some or all of

them. If the object server does not have the

requested object, we will do an LDS query

for that object to obtain up-to-date location

information.

In Section 4 we will show how the amount

of LDS traÆc can be signi�cantly reduced

when the LDS system is restricted to repli-

cated servers.

To address the issue of update traÆc, we

propose that any cache that has a parent re-

frain from sending update information. In-

stead, the update information is forwarded

to the parent during the pushing phase. The

highest parent that does not have a copy of

the object sends to the authoritative server

an update message that contains update in-

formation for itself and its updated children.

The bene�t is that there are signi�cantly less

higher level caches than low level caches, thus

much less update traÆc.

3.3 Practical Considerations

In the above scheme, the highest parent in

the hierarchy sends update messages for all

its children which are thus all included in the

database at the location server. As a result,

institutional caches would also be included

in the list returned by the location server,

which means that they could receive requests

for cached objects from hosts outside their

own network. It is desirable to keep the in-

stitutional caches o� the list of locations for

two reasons. First, institutions likely do not

want outside hosts using their bandwidth to

retrieve objects. Second, objects at institu-

tional caches are likely to be cached in the

parent caches and outside hosts can retrieve

objects faster from the parent cache.

Cache digests [11] are used in traditional

hierarchies to represent cache contents in a

compressed form. A cache fetches the digests

of its neighbor caches and when a request can-

not be satis�ed locally, the cache checks the

digests of the neighbor caches to see whether

any of them have the object cached. If so, the

object is retrieved from that cache; otherwise

the request is forwarded to the parent cache.

In LDS-based caching, having the digest of

the parent cache is useful because this way

we avoid the LDS-lookup for objects that are

cached at the parent and would in any case

be retrieved from there.

4 Replicated Servers

The LDS scheme is not limited to caching.

It can also be used to disseminate information

about replicated or mirrored objects. When

an object is replicated at another server,

this information is added into the location

database at the authoritative location server.

When a client requests this replicated object,

it does an LDS lookup and gets a list of all

servers holding a copy of the object. Because

the information is not dynamically replicated

as in caching, but rather placed at well-chosen

locations, there is rarely need to notify the lo-

cation servers of new copies. Likewise, there

is no need to push objects into other servers



since all replication decisions are made o�-

line.

With LDS, a user addresses a replicated

object by the object's unique URL, LDS re-

turns the list of servers that have the ob-

ject. The browser then transparently chooses

one of these (the best in some sense). The

user would not have to know about the ac-

tual physical location of the object.

4.1 Reducing LDS Query TraÆc

The scheme just described for replicated

servers still requires that clients send an LDS

lookup for each URL. In order to reduce the

number of LDS messages we propose the fol-

lowing method of replicating servers and stor-

ing information about the replicated URLs.

In this scheme, the LDS no longer keeps

track of cached objects. It only tracks repli-

cated and partially replicated servers. We re-

quire that replicated servers replicate either

whole sites or complete sub-trees of servers.

An example sub-tree of an origin server is

all the objects on the origin server below

a given URL pre�x, e.g., all objects under

http://cnn.com/sports/.

Suppose that a client wants to retrieve a

URL. Normally, a client would send a DNS

lookup to obtain the IP address of the origin

server and retrieve the object from there. Us-

ing LDS the client proceeds as follows. First,

the client sends an LDS query for the host-

name in the URL. The LDS system returns a

list of all servers that mirror either the whole

site or a complete sub-tree from the site. We

need to extend the resource record de�ned

in Section 2.1 to include a pre�x indicating

the sub-tree that is mirrored by that par-

ticular server. The client then chooses the

\best" server among those servers that mir-

ror the desired sub-tree and forwards the ac-

tual HTTP-request to this server. A server

may mirror multiple sub-trees from a single

origin server; in this case LDS would return

one resource record for each sub-tree.

Compared to the caching scheme discussed

in Sections 2 and 3, this scheme has sev-

eral advantages. First, and most impor-

tant, in this mirroring scheme the client sends

only one LDS lookup for each server; in the

caching scheme, the client must send an LDS

lookup for each URL. The caching scheme

drastically increases DNS traÆc in the net-

work while the mirroring scheme keeps DNS

traÆc at its current level. (Recall that a

client would in any case have to do a DNS

lookup to get the IP address of the ori-

gin server.) Second, objects at mirrored

servers tend to stay at the mirrored servers for

long periods of time while objects in caches

are cached and purged dynamically. Hence,

LDS information for a mirrored server can

be cached longer at location servers which

greatly reduces lookup traÆc. When the

authoritative LDS server sends information

about a mirrored site, it should �rst send

out information about mirrors that mirror the

most of the site. This is because DNS replies

are by default sent over UDP and the mes-

sage size is severely limited (512 bytes). By

sending information about mirrors that mir-

ror large subtrees, we maximize the likelihood

that the client has the necessary information

in the reply.

Compared to the standard DNS-way of ac-

cessing objects, our mirroring scheme does

not increase the number of DNS messages in

the network. The reply messages are slightly

larger, however, since we need to indicate the

pre�x in the resource record. We do not ex-

pect this increase in size to be signi�cant since

URL pre�xes can be eÆciently encoded using

the encoding speci�ed in Section 2.1 and DNS

resource record pointers.

5 Routing Decision

When the cache has received a reply to its

LDS-lookup containing several object servers

(caches and origin servers), the next question

is: \Which one of the possibilities to choose?"

Determining the best alternative is an impor-

tant topic of our ongoing research.

Possible solutions include:

� All querying hosts measure connection

qualities to object servers and keep a list



of servers with known good performance.

� Pass QoS information along in LDS up-

dates and replies.

� Use explicit routing information from

BGP.

We will now provide some details on how

these methods could be used.

In the �rst option, all querying hosts (e.g.

low level Web caches) measure the time it

takes to fetch objects from other servers (Web

servers or other caches). This download time

gives a crude estimate of the actual band-

width between the two hosts. The query-

ing host keeps a list of servers with which it

has had good connections and prefers those

servers to others when both types of servers

are present in the LDS reply. Of course, the

actual network conditions change all the time,

but the results presented in [7] on perfor-

mance characteristics of mirror servers indi-

cate, that from a large set of mirror servers,

only a small number need to be considered as

candidates for download. Although the study

in [7] uses a �xed number of mirror sites, we

believe that the results can be applied to sit-

uations where the number of servers changes

dynamically.

The second option is to pass some QoS in-

formation in the LDS replies along with the

age information about the object. For ex-

ample, a Web server can measure the con-

nection times of incoming connections, esti-

mate the connection bandwidth and take an

average of the estimated bandwidths over all

connections. This average bandwidth can be

seen as the bandwidth that a random client

somewhere in the network could expect to

get when requesting objects from this server.

Likewise, caches can measure the bandwidths

of all out-going connections and calculate the

average bandwidth.

The third option uses explicit routing in-

formation obtained over BGP by talking to

local routers. This information gives the host

a topological map of the network which can

be used to �nd out how far each of the servers

in the LDS reply are. Unfortunately, routing

information gives only reachability, not qual-

ity, so some quality measures, as in the �rst

two options, would be necessary. Grimm et

al. [4] have studied using routing information

in request routing and have decided against

using BGP information because of con�gura-

tion and security issues, amount of data and

diÆculty of obtaining it. Their approach is

based on using whois-services.

Regardless of the approach chosen, any

querying host can implement any local poli-

cies necessary when deciding where to for-

ward a request. For example, a cache oper-

ator may want to forward requests to other

caches based on the domain of the origin

server.

6 Related Research

In [3] Gadde et al. compare traditional hi-

erarchical caching with an architecture where

a single centralized server holds information

about where each document is cached. When

a low level cache wants to �nd out where

an object is cached, it sends a message to

this central mapping server which responds

by either redirecting the request to a peer

server or by forwarding it to the origin server.

This scheme results in all of the objects be-

ing cached at institutional caches. The au-

thors also perform simulations using a small

number of caches and �nd out that the per-

formance of the centralized solution is on av-

erage better than that of the traditional hi-

erarchy. The number of caches in the simu-

lations is low, only 8 and 32 cache con�gu-

rations are simulated. The authors express

their doubts about the scalability of their so-

lution, but present some ideas for replicating

and distributing the location information.

In our approach, the querying host gets a

list of all servers holding a copy of the object

instead of being redirected to one of them by a

mapping server. This puts the querying host

in control over where the request will be for-

warded. This decision might greatly depend

on local conditions and policies unknown to

a central server. Another di�erence in our

approach is that the location information is

distributed over DNS which is ubiquitous and

provides satisfactory service.



Tewari et al. [13] present an architecture

where data is cached near the browser and

location hints are passed through a meta-

data hierarchy. Their architecture arranges

the caches in virtual hierarchies, one for each

object, for distributing the metadata infor-

mation. In their architecture, when a cache

caches a copy of an object, it sends out a loca-

tion hint indicating the URL and its address.

This hint is propagated in the virtual meta-

data hierarchy and could eventually reach all

caches in the system. Caches keep track of

all the hints they have received and use them

to forward requests. If a cache receives a re-

quest for an object which is not cached locally

but the hints indicate another cache holding

the object, the request is forwarded to this

cache. The virtual metadata hierarchies are

constructed using IP-addresses and URLs in

a way which tries to minimize the distances

between parents and children. Also, the hier-

archy guarantees that a cache can receive only

one hint for any object. This hint is likely to

be from the nearest cache holding the object,

but this is not guaranteed.

One di�erence between their and our ap-

proaches is the way caches are placed. In

their architecture only institutional caches

hold objects and every request forwarded us-

ing a hint would be forwarded to another in-

stitutional cache. This behavior might be un-

acceptable to some people who do not want

more external traÆc on their networks. In

our approach, objects are pushed to higher

levels and this eliminates the need for going

to other institutional caches. Second impor-

tant di�erence is that using LDS for locating

objects, a querying host gets a list of all pos-

sible locations. It can then choose from the

list according to a local policy or by adapt-

ing to current network conditions. In [13] a

cache receives only one location hint. Since

the virtual metadata trees are based on IP-

addresses and URLs, there are no guarantees

that this hint indicates a good server. We are

currently performing a comparison of the two

schemes.

Amir et al. [1] study three di�erent meth-

ods for redirecting requests to mirrored sites {

HTTP redirection, DNS round trip time mea-

surements, and shared IP addresses. In their

DNS-based solution they use DNS round trip

time measurements to determine the best

replicated server for a client. They place

the replicated servers near an authoritative

DNS server which gives the address of the

replicated server when queried for the origin

server. This results in clients being eventually

redirected to their closest replicated server.

There are two major di�erences between their

approach and our replicated server approach

(Section 4.1). First, in their system replicated

servers must always replicate the entire site

while in our system a server may replicate

only sub-trees of the original site. Second, in

their system the replicated servers must be

placed in close proximity of the authoritative

DNS server. Our architecture places no con-

straints on the placement of the servers.

7 Future Work

We will continue our work on LDS by per-

forming quantitative comparisons of the dif-

ferent architectures presented in this paper.

In particular we will concentrate on evalu-

ating the amount of new traÆc in the net-

work caused by the lookup and update mes-

sages. We will also compare the traditional

caching hierarchy with our di�erent LDS ar-

chitectures to �nd out how much object ac-

cess latency can be reduced through LDS. We

will also closely study the request routing is-

sue in order to �nd out how much information

is needed to make good routing decisions.

8 Conclusion

In this paper we have presented the Loca-

tion Data System, a new network application

that can be used to locate where copies of

objects are stored on the Web. LDS provides

a service similar to DNS and can be imple-

mented as an extension to DNS and deployed

incrementally. We have presented two appli-

cations of LDS, locating objects in mirrored

servers and locating objects in Web caches.

We have also discussed how clients can de-

cide the best server to forward requests to

based on information on network conditions



and topology collected from the dynamically

from the network.

Acknowledgments

We would like to thank Neilze Dorta from

INRIA for the discussions we had on access-

ing mirrored sites and her input on the sub-

ject. The log�les used in Section 2.1 were pro-

vided by National Science Foundation (grants

NCR-9616602 and NCR-9521745), and the

National Laboratory for Applied Network Re-

search.

References

[1] Y. Amir, A. Peterson, and D. Shaw,

\Seamlessly Selecting the Best Copy

from Internet-Wide Replicated Web

Servers", in Proc. 12th International

Symposium on Distributed Computing

(DISC'98), Andros, Greece, September

1998.

[2] R. Fielding, J. Gettys, J. Mogul, H.

Frystyk, and T. Berners-Lee, \Hypertext

Transfer Protocol { HTTP/1.1", RFC

2068, January 1997.

[3] S. Gadde, J. Chase, and M. Rabinovich,

\Directory Structures for Scalable Inter-

net Caches", Technical Report CS-1997-

18, Department of Computer Science,

Duke University, 1997.

[4] C. Grimm, J.-S. V�ockler, H. Pralle,

\Request Routing in Cache Meshes",

in Proc. 3rd Web Caching Workshop,

Manchester, UK, June 1998.

[5] P. Mockapetris, \Domain Names { Con-

cepts and Facilities", RFC 1034, Novem-

ber 1987.

[6] P. Mockapetris, \Domain Names { Im-

plementation and Speci�cation", RFC

1035, November 1987.

[7] A. Myers, P. Dinda, and H. Zhang,

\Performance Characteristics of Mirror

Servers on the Internet", Technical Re-

port CMU-CS-98-157, School of Com-

puter Science, Carnegie Mellon Univer-

sity, 1997.

[8] A Distributed Testbed for Na-

tional Information Provisioning,

<URL:http://ircache.nlanr.net>.

[9] R�eseau National de t�el�ecommuncations

pour la Technologie,

l'Enseignement et la recherche,

<URL:http://www.renater.fr>.

[10] P. Rodriguez, K. W. Ross, E. W. Bier-

sack, \Improving the WWW: Caching or

Multicast?", in Proc. 3rd Web Caching

Workshop, Manchester, UK, June 1998.

[11] A. Rousskov, D. Wessels, \Cache Di-

gests", in Proc. 3rd Web Caching Work-

shop, Manchester, UK, June 1998.

[12] Squid Internet Object Cache,

<URL:http://squid.nlanr.net>.

[13] R. Tewari, M. Dahlin, H. M. Vin,

and J. S. Kay, \Beyond Hierarchies:

Design Considerations for Distributed

Caching on the Internet", Technical Re-

port TR98-04, Department of Computer

Sciences, University of Texas at Austin.

[14] P. Vixie, S. Thomson, Y. Rekhter, and

J. Bound, \Dynamic Updates in the Do-

main Name System (DNS UPDATE)",

RFC 2136, April 1997.

[15] D. Wessels, K. Cla�y, \Internet Cache

Protocol (ICP), version 2", RFC 2186,

September 1997.


