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ABSTRACT | In this paper, we report on
a study on still image coding using I.F.S. In
particular, we focus on two aspects of the al-
gorithm. The �rst one concerns the de�nition
of the contractive constraint during the cod-
ing stage, in order to ensure the convergence
of the iterative decoding process. The second
one concerns the choice of the initial image for
starting the decoding stage.

1 Introduction

The I.F.S. (Iterated Functions Systems) tech-
nique was invented by the mathematician J.
Hutchinson in early eighties [1]. It de�nes it-
erative processes which converge towards a �xed
point independent of their starting point. This
�xed point is called the attractor of the I.F.S..
The notion of I.F.S. is part of a more general the-
ory developed by the mathematician B. Mandel-
brot known as fractal theory. The I.F.S. tech-
nique is not covered in this paper, we only deal
with image compression based on iterated trans-
forms.
The basic theorem called the "Collage Theo-

rem" and the algorithm due to A. Jacquin are
reviewed in section 2.
In section 3, we focus on the algorithm con-

vergence and discuss the link between geometric
and photometric transformations playing a role
in the de�nition of the contractivity constraint.
This aspect is important in the estimation of the
optimum I.F.S. code of an image.
In section 4, the optimal choice for the initial

image in the decoding process is considered in
order to increase decoding speed.

2 A review of fractal image coding

2.1 Notations

� x; y designate two generic images.

� xc designates the image to be encoded.

� x0 designates the initial image of the itera-
tive process.

� W designates the image transform.

� xa designates the attractor of W .

� d designates a metric de�ned on the image
space.

2.2 Collage theorem

This theorem says the following [2, 3]:

if 9W = d(xc;W(xc)) � �
and d(W(x);W(y))� �:d(x; y)
where 0 < � < 1 (W contractive)

then d(xc; xa) �
�

1��
with xa = limn!1W0;n(x0)
andW0;n(x0) =W(W(: : :(W(x0)) : : :))| {z }

nterms

The proof is based by repeated application of tri-
angular inequality.

2.3 Jacquin's algorithm

The basic algorithm for still image coding using
I.F.S. was proposed by A. Jacquin, who intro-
duced the idea of Local-IFS [4, 5]:
xc is partitioned twice at two levels of resolution.
For instance, this may be into squared-blocks of
size B�B and 2B�2B (typically, B is �xed at 8).
The former are called range blocks and the latter
are called domain blocks. For each range block,
the algorithm searches for the best matching do-
main block according to the local quadratic cri-
terion.

errk =
X

(i;j)2Rk

fWk(D)(i; j)�Rk(i; j)g
2 (1)

where

� Rk(i; j) designates the grey-value at pixel
(i,j) in the range block k.



� Wk(D)(i; j), designates the grey-value at
pixel (i,j) in the transformed domain block
associated with Rk.

Before the matching stage, domain blocks are
transformed as follows

� sub-sampling by a factor two |in each
direction|;

� geometric transformations|eight isometries
are considered|;

� scale and shift of luminance value.
Di�erent strategies exist for computing these
values. In this study, they are computed ac-
cording to a minimum mean squared error
criterion, as described in [6].

Finally, each area of the image |i.e. each range
block| has an associated a�ne transformation
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Where ak; bk; ck; dk; ek; fk represent the geometric
transformation and sk ; ok the grey level transfor-
mation. u; v are the pixel coordinates and z the
grey level.
For decoding image xc from its I.F.S. code and

image x0, the algorithm proceeds as follows: Im-
age x0 is partitioned into set of square-blocks.
Each area of the image is computed by taking the
associated block in image x0 and applying an as-
sociated contractive transformation de�ned dur-
ing the coding stage. Then, image x1 is obtained.
The algorithm iterates this process to obtain x2
from x1 ..., until it reaches xa. In practice, less
than ten iterations are needed.

3 Contractivity constraint and error
reconstruction

3.1 Contractivity constraint

According to the Collage theorem, the contrac-
tion condition � < 1 on W is necessary and
su�cient to provide the attractor existence xa.
In Jacquin's algorithm, the contractive condition
appears locally at two di�erent levels. One is ge-
ometric (i.e. subsampling equal to 0:5) and the
other is photometric (i.e. each local scale lumi-
nance factors sk less than 1).
These local contraction conditions are su�cient
but not necessary. As a result, the reconstruction
error is not optimal because the set of possibili-
ties for Wk is more restricted than necessary.

In order to solve this problem, a global condition
which links the two components of the contrac-
tion condition could be used. For this, we intro-
duce a matrix form to represent the overall trans-
formation W applied on the entire image. So, if
each image is written as a column vector,

W(x) = [A] : [x] + [b] (3)

where

� Column vector b contains the brightness
shifts ok.

� Matrix A contains the contrast scaling fac-
tors sk and zeros. The distribution of sk
among the zeros represents the geometric
transformation. Note that matrix A is a
sparse matrix (see �gures 1 and 2 on next
page). Furthermore, the possibilities of lo-
calization of sk can be limited, for each range
block, by restricting the research space of
domain blocks (e.g.: the search of domain
block can be limited in a neighbourhood of
the range block).

Let �A be the spectral radius of matrix A (i.e.
the largest eigenvalue of A) [7, 8] .
if

�A < 1 (4)

then

lim
n!1

[A]n = [0]and
nX

k=0

[A]k = (I �A)�1 (5)

therefore

xa = lim
n!1

([A]n : [x0] + (
nX

k=0

[A]k): [b]): (6)

Note that this necessary and su�cient condition
can be respected although several local scale lu-
minance factors should be greater than one [9], or
no geometric contraction applied [10]. The main
problem of this criterion is that �A can only be
computed a posteriori . Nevertheless, a way to
overcome this problem can be proposed by in-
dexing the obtained matrix A with Jacquin's al-
gorithm A1 in order to access, by the construction
of a series Ak, to the matrix Aopt (i.e. : which
respects the necessary and su�cient constraint).
At each iteration k, one or severals range blocks
are selected. The selection criterion is based on
a large reconstruction error due to the restriction
on the luminance scale factor to be less than one.
They are then recomputed (see next subsection).



Figure 1: The size of the considered image, in
this example, is 16x16 in which 16 range blocks
of size 4x4 and 9 domain blocks of size 8x8 are
de�ned. Zeros are represented in black and scale
values in white. Each isometry has an associated
motif. This structure can be permuted without
modi�cation of the spectral radius of A (see �gure
2).

3.2 Error reconstruction

According to the Collage Theorem, and with the
condition of contractivity de�ned in the previous
subsection, the upper bound on the reconstruc-
tion error (i.e. the maximum of d(xc; xa)) de-
pends on two parameters, � and �A.

er �
�

1� �A
: (7)

Yet, the basic algorithm which computes the
transformationW is based only on the minimiza-
tion of local errors errk, and then � (i.e. error
obtained during the coding stage).
To design the iterative algorithm to determine
the optimal matrix [Aopt] , we propose to take
into account the duality between � and 1

1��A
in

order to minimize �
1��A

during the coding stage.

Such an algorithm would consist in:

� Selecting one or several range blocks accord-
ing to criterion de�ned in the previous para-
graph, and computing new I.F.S. code for
them without a constraint on grey scale value
or without subsampling.

� Computing �� = �n� �n�1 , the improvement
of the coding stage error between two iter-

Figure 2: This matrix is obtained from the previ-
ous one by line permutations. It is now composed
of horizontal bands which corresponds to range
block (from R0 to R15)
.

ation denoted n and n � 1. Note that ��
satis�es �� � 0.

� Computing ��A = �An � �An�1 ,

� if (��A � 0) or
( 1
1��An

� 1
1��An�1

< j��j, with �An < 1)

then iteration is accepted,
else iteration is rejected.

� Selecting other local modi�cations to de-
crease �n if possible (step one) else stop iter-
ation.

4 Initial image

According to the Collage Theorem, the attrac-
tor xa is independent of x0 so that the discussion
about the choice of an initial image for the de-
coding stage could seem inappropriate. Actually,
this conclusion is absolutely correct only if the
number of interations is in�nite. In pratice, this
is not the case because algorithms try to mini-
mize the number of iterations in order to mini-
mize computing time. So only an approximate
attractor is computed. The optimal initial image
must lead to a better reconstruction image with a
minimum of iterations. Furthermore, the require-
ment of this initial image must not decrease the
compression ratio. To solve this problem, let the
attractor approximation at iteration k be de�ned
by

xk = [A]k x0 + (
k�1X
n=0

[A]n)b: (8)



The choice x0 = b is appropriate because if we
consider now the attractor approximation at it-
eration k + 1

xk+1 = [A]k+1 x0 + [A]k b+ (
k�1X
n=0

[A]n)b; (9)

it is clear that only [A]k b + (
Pk�1

n=0 [A]
n)b con-

tains useful information which can be identi�ed
in expression (9) of xk, with x0 = b. [A]k+1 x0
represents an negligible term.
We notice that the choice x0 = b does not require
the transmission of more information. Further-
more, in this case, it is then possible to reorganize
the order of the summation operations included
in the decoding stage.

5 Conclusion and Perspectives

5.1 Conclusion

In this paper, an optimal condition is de�ned for
the contractivity constrainst in using I.F.S. for
still image coding. This constraint, which is less
restrictive than Jacquin's constraint, could lead
to better results. Nevertheless, its use in practice
is not immediate and we are continuing research
in this direction.
The use of shift values as initial image for the
decoding stage is an optimal choice because one
iteration is gained and no additional information
need be transmitted.

5.2 Perspectives

Coding using I.F.S. is based on geometric and
photometric similarities in an image itself. This
technique could be used, in addition to compres-
sion for some image processing, such as zoom:
I.F.S. allows for possibility of de�nition or reso-
lution manipulation on images. This is due to
the property of invariance by change of scale in-
cluded in fractals. Other applications could also
be de�ned from I.F.S. code of an image such as
grey scale to half-tone conversion.
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