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Abstract

Using asymptotic analysis, we study the effect of frequency-flat fading on CDMA

systems with linear receivers and random spreading sequences. Specifically, we

let the number of users grow without bound while the ratio of number of users

to spreading sequence length is kept fixed to a value �. We treat separately the

cases of slow fading (nonergodic channel) and of fast fading (ergodic channel).

For the former channel we derive the outage probability, while for the latter we

compute the channel capacity. In both cases multiple classes of users with different

qualities of service are dealt with. As � ! 1 the system throughput tends to the

same limit of 1.44 bit/symbol as for the non-fading channel with both single-user

matched filter (SUMF) and linear minimum mean-square-error (MMSE) receivers.

The outage probability exibits a floor for all � with the SUMF receiver, while with

MMSE receiver the floor is present only for � � 1. We also address the tradeoffs

involved in the allocation of available bandwidth between spreading and coding.

Index terms—CDMA, fading channels, channel capacity, outage probability.
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1 Introduction

We examine a synchronous CDMA single-cell system with error-control coding, oper-

ating on a channel affected by frequency-flat fading. The receiver consists of a linear

front-end, viz., either a single-user matched filter (SUMF) or a linear minimum-mean-

square error filter (MMSE) [1], followed by single-user decoding. The key performance

measure here is the Signal-to-Interference plus Noise Ratio (SINR) at the output of the

linear filter: users’ quality of service can be expressed in terms of a target SINR [2].

We treat separately the cases of slow and fast fading, yielding non-ergodic and ergodic

channels, respectively.

Our study is asymptotic, in the sense that the number of users grows without

bound, while the ratio of number of users to spreading-sequence length is kept fixed

to a given value �. The spreading sequences are random. After the pioneering work

of [3, 4] (see also [5] and references therein), the asymptotic random-sequences ap-

proach emerged as a very powerful tool to characterize in many aspects the behavior

of large CDMA systems where the assignment of spreading sequences to the users is

pseudo-random (this is the case of the uplink of current CDMA systems like IS-95 or

UMTS/IMT2000 [6]). Beyond its theoretical beauty, this method is useful since the

performance of actual (finite dimensional) systems converges quickly to the infinite-

dimensional asymptotics, which depend only on fundamental system parameters such

as the system load (users per chip), the statistics of the received signal-to-noise ratio

(SNR) and the constraints on the transmit power, thus making analysis independent

on the system fine-tuning characteristics, like the assignment of spreading sequences.

Independent and parallel work on CDMA systems with fading can be found in [7,

8, 9]. In [7], the random-sequences asymptotic analysis is used to characterize the per-

formance of linear receivers with linear MMSE data-aided channel estimation, both in

flat and in multipath channels. The problem of optimal (centralized) power allocation

maximizing the system throughput for an optimal joint detector is solved in [8]. Fi-

nally, [9] presents system throughput and outage probability analysis for linear and
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optimal receivers, with and without power control, and derives independently the

same power control strategy of [8] for the optimal detector.

In this paper we apply the approach of [3] to the case of linear receivers without

power control. In the non-ergodic case, the SINR cumulative distribution function (cdf)

yields immediately the outage probability, i.e., the probability that the actual SINR is

below the SINR target. In the case of multiple classes of users, with different input

power constraints, target SINRs and outage probability requirements, we find system

capacity region, defined as the region of rates at which all user classes can meet their

quality of service requirements (this region has been defined and studied in [3] in the

case of non-fading AWGN channel, and should not be confused with the information

theoretic capacity region of the multiple access channel [10]). In the ergodic case, per-

formance is given in terms of system throughput. Assuming that all users transmit

“Gaussian codes,” the this is also determined by the SINR cdf [11]. In the case of mul-

tiple classes we find the ergodic system capacity region.

After a description of the system model (Section 2), we examine the outage proba-

bility of slow-fading channels (Section 3) and the capacity of fast-fading channels (Sec-

tion 4). The coding-vs.-spreading tradeoff is finally addressed.

2 System model

We consider the uplink of a single-cell, synchronous DS-CDMA system. Our model

involves K users and random spreading sequences of length L chips. As in [3, 4], we

assume a large number of users (K ! 1) and K=L ! � (a constant channel load as

the length of the spreading sequences increases to accommodate the K users). Since

the system is synchronous, sufficient statistics for (optimal) detection of all users is

provided by a chip-matched filter sampled at the chip rate (we assume that the chip

waveform satisfies the Nyquist criterion [12] for no inter-chip interference, so that the

sequence of noise samples at the chip matched-filer output is i.i.d.). The received signal

System model 3
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L-chip column vector corresponding to one symbol interval is given by

y =

KX
k=1

ckxksk + n (1)

where n is a complex circularly-symmetric AWGN vector � NC(0; N0I), xk is the com-

plex modulation symbol of user k, sk is the spreading sequence of user k, made of

binary antipodal chips �1=
p
L generated at random with uniform probability, and ck

is the frequency-flat complex fading gain, which includes the carrier phase shift of each

user and remains constant over the time necessary to transmit a symbol. We assume

that the base station receiver has perfect knowledge of all fading gains (the “channel-

state information”) and that the demodulation is coherent.

User k is received with an instantaneous SNR 
k = zk�k, where zk , jckj2 is the

fading channel “power gain”, �k = Ek=N0 is the transmit SNR and Ek is the user trans-

mit average energy per symbol. We assume that as K ! 1 the empirical cdf of the

received SNR’s, defined by

F
(K)


 (x) ,
1

K

KX
k=1

1f
k � xg

(1fAg the indicator function of the event A) converges almost everywhere to the cu-

mulative distribution function F
(x).

The receiver for user 1 (our reference user) is formed by a linear filter h1 producing

the output y1 = h
H
1
y followed by a single-user decoder operating on the sequence of

filter output samples y1. We shall consider either the single-user matched filter (SUMF)

h1 = s1 and the linear minimum mean-square error filter (MMSE)

h1 =

"
KX
k=1

zkEksks
H
k +N0I

#
�1

s1

The SINR at the filter output is defined as

�1 ,

1jhH1 s1j2

jh1j2 +
PK

k=2 
kjhH1 skj2

Under the above assumptions, we have the following results [3]:
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1. The SUMF output SINR converges in probability for large K to

�1 =

1

1 + �
R
1

0
x dF
(x)

(2)

2. The MMSE output SINR converges in probability for large K to the (unique) real

non-negative solution of the equation

�1 =

1

1 + �

Z
1

0

x
1


1 + x�1
dF
(x)

(3)

2.1 Distribution of the output SINR

From (2), it is immediately apparent that the SINR �1 is proportional to 
1. Similarly,

since equation (3) depends only on the ratio �1=
1, this turns out to be a deterministic

quantity. Thus, for both SUMF and MMSE receivers the SINR has, apart from a scale

factor, the same probability distribution as the fading power gain.

2.2 More than one class of users

We may assume, following [3], that the users are partitioned into J classes, each class

j being characterized by a transmit SNR �j. We can think of the �j’s as the transmit

SNRs determined by some power-control mechanism, and of the fading zk as some

channel attenuation that the power control is not able to compensate, either because it

is too fast (as for example with Rayleigh multipath) or because of inaccuracies in the

power control loop (as for example with residual shadowing [13]). Each class has pjK

users, where pj is the fraction of users belonging to class j (obviously,
PJ

j=1 pj = 1).

Moreover, we assume that the fading gains zk are i.i.d. (the fading statistics is the same

for all users) and normalized so that
R
1

0
x dFz(x) = 1. With these assumptions it is

immediate to see that

F
(x) =

JX
j=1

pjFz(x=�j)

where Fz(x) is the fading-gain cdf. Let user 1 belong to class i. Because of the un-

compensated fading, user-1 SINR is a random variable �i;1. However, as shown in the
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previous subsection, the ratio � = �i;1=(�iz1) is a non-random constant independent of

i. From (2), for the SUMF we obtain

�
(s) =

1

1 + �

JX
j=1

pj�j

(4)

From (3), for the MMSE we obtain � = �
(m) as the solution of the equation

� =
1

1 + �

JX
j=1

pj�j

Z
1

0

x

1 + x��j
dFz(x)

(5)

This solution is unique, real, and takes values in the interval [0; 1]. Moreover, if we

rewrite (5) in the form � = g(�), the iteration �n+1 = g(�n) converges to the solution for

any initial value �0 [3].

We conclude that any user k belonging to class i has (asymptotically) SINR �i;k =

zk�i� (where � = �
(s) or � = �

(m) depending on the receiver employed). Then, the SINR

cdf for all users is just given by the fading cdf after a scale change. For users of class i

it is given by

Fi(x) = P(�i;k � x) = P(zk � x=(�i�)) = Fz(x=(�i�)) (6)

Moreover, the SINRs of different users are (asymptotically as K ! 1) statistically

independent.

2.3 Methodological preamble

Here we list a number of points that describe the rationale behind the calculations

that follow. We shall analyze a flat, slow fading channel for which the channel gain

is constant for the whole duration of a code word, and a flat, fast fading channel for

which the channel gain varies considerably during the transmission of a code word.

The information-theoretic subtleties of dealing with fading channels are thoroughly

described in [11]. Roughly speaking, we can think of a slow fading channel as a com-

pound channel, i.e., as a collection of channels each of which is characterized by a fixed
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set of power gains. An internal channel state process, independent of the input signals

and of the noise, selects a particular channel in the compound and keeps this selec-

tion for the whole duration of a user codeword. The channel state is known at the

receiver and unknown at the transmitters. Each channel in the compound has a well-

defined capacity, but since the transmitters do not know the channel state realization,

they might transmit at a rate above the capacity of the actually selected channel. This

event is called information outage, and its probability is the information outage probability.

In this setting, the compound channel capacity is not larger than the minimum of the

capacities of the channels in the compound. If the infimum of the support of the fading

probability distribution is 0 (i.e., if there is a non-zero probability that the channel gain

is below any assigned positive threshold), the capacity of the slow fading channel is

zero. In the case of fast fading, the channel gain experienced during the transmission

of a code word varies sufficiently so that all fading realizations occurs with empirical

probabilities arbitrarily close to their statistical probabilities. This ergodic behavior of

fading makes channel capacity be equal to the channel mutual information averaged

with respect to the fading statistics (and maximized with respect to the input probabil-

ity distribution).

Flat, slow fading. The outage probability of the reference user is defined by

Pout , P(� < ��) (7)

The value of �� may be chosen as follows [14]. For example, if we use a nonideal code

with rate R bit/symbol achieving the target performance at a certain Eb=N0, we set

�� = REb=N0. If we consider instead an optimum code which operates at the Shannon

limit for a Gaussian channel and we want a rate R, then we set

�� = 2R � 1 (8)

Flat, fast fading. We assume that all users generate their code book according to

a complex circularly-symmetric Gaussian probability density function (pdf); hence,
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the single-user channel seen at the output of any user’s receiving filter is an additive

Gaussian noise channel, whose capacity is

C = E [log
2
(1 + �)] =

Z
1

0

log
2
(1 + x��) dFz(x) (9)

System throughput. The system throughput � is defined as the total number of bit/symbol

supported by the system. For large systems, it is possible to transmit close to one com-

plex symbol per second per Hz, and hence to express � in bit/s/Hz. If all K users

transmit at rate C, the system throughput is

� =
KC

L
= �C (10)

The value of the channel load that yields maximum throughput is defined as

�opt , argmax
�

�

3 Slow-fading channel

Outage probability for users of class i is defined as the probability that the SINR is

below some threshold value ��i that depends on the coding scheme of class i. We obtain

Pout;i = P(�i;k � ��i) = Fz

�
��i

��i

�
(11)

Assuming Gaussian codes and minimum distance decoding at the output of the re-

ceiving filter, each user can transmit with arbitrarily small error probability at rate

Ri;k = log
2
(1 + �i;k) [15], for sufficiently large code block lengths. Then, in the absence

of further specification of class i user codes, it make sense to define the coding rate Ri

bit/symbol for users in class i and choose the SINR threshold as ��i = 2Ri � 1.

3.1 System outage capacity

Let �� = (��1; : : : ;
��J) be a vector of input SNR constraints, � = (�1; : : : ; �J) a vector of

target outage probabilities, andR = (R1; : : : ; RJ) be a vector of coding rates. We would

Slow-fading channel 8
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like to find the set R � R
J
+

of rate vectors R that can be assigned to the J classes such

that, for all i = 1; : : : ; J

Pout;i � �i and �i � ��i (12)

We refer to the region R as the system outage capacity region for the input and outage

constraints specified by �� and �.

SUMF receiver. Define

�i ,
2Ri � 1

supfx 2 R+ : Fz(x) = �ig
(13)

(which reduces to �i , (2Ri � 1)=F�1z (�i) when Fz(�) is strictly monotonic and continu-

ous) and, by using (11) and (4), rewrite the outage constraint as

�i

1 + �
PJ

j=1 pj�j
� �i

The maximum Ri is achieved when the above inequalities are satisfied with equality.

The solution of the resulting system of equations has the form �i=�i = �, where � does

not depend on i. Solving for � we obtain

� =
1

1� �
PJ

j=1 pj�j

provided that

�

JX
j=1

pj�j � 1 (14)

The resulting transmit SNR assignment (power control) is obtained from �i = ��i in

the form

�i =
�i

1� �
PJ

j=1 pj�j

By imposing the input constraint �i � ��i for all i = 1; : : : ; J , we obtain the desired final

result

�

JX
j=1

pj�j � min
1�i�J

�
1� �i

��i

�
(15)

Slow-fading channel 9



E. Biglieri et al.: How fading affects CDMA

MMSE receiver. By using (11) and (13), rewrite the outage constraint as

�i�
(m) � �i

Since �(m) does not depend on i, the solution for the above system (taken with equality)

has the form �i=�i = �, where � = 1=�(m). By substituting in (5) and solving for � we

obtain

� =
1

1� �

JX
j=1

pj�
0

j

;

where

�
0

j ,

Z
1

0

x�j

1 + x�j
dFz(x);

provided that

�

JX
j=1

pj�
0

j � 1 (16)

The resulting transmit SNR assignment (power control) is obtained from �i = ��i in

the form

�i =
�i

1� �

JX
j=1

pj�
0

j

By imposing the input constraint �i � ��i for all i = 1; : : : ; J , we obtain the desired final

result

�

JX
j=1

pj�
0

j � min
1�i�J

�
1� �i

��i

�
(17)

Effective bandwidth. Equations (15) and (17) are the generalization to the case of

slow (non-ergodic) fading of the system capacity equations found in [3] in the case of

no fading. Interestingly, the outage constraint and the presence of fading yield formally

the same constraints for the fractions �pi of class i users per system degree of freedom.

In analogy with [3], we define the effective bandwidth Bi of class i users as the amount

of degrees of freedom consumed in order to support rate Ri with outage probability �i.

Slow-fading channel 10
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By rewriting (14) in the form
JX
j=1

(pjK)�j � L

for the SUMF receiver we have

B
(s)
i = �i

Similarly, by rewriting (16) in the form

JX
j=1

(pjK)�0j � L

for the MMSE receiver we have

B
(m)

i = �
0

j

Obviously, B(s)
i � B

(m)

i and B
(m)

i � 1. For very high quality of service (large rates

and/or small outage probabilities) �i becomes large. We observe that, with SUMF

receiver, class-i users may require an unbounded number of degrees of freedom, while

with MMSE receiver they will require at most 1 degree of freedom, as in the absence of

fading [3].

3.2 Outage probability floor and near-far resistance

Consider the case of a single class, and neglect for simplicity the class index. The

outage probability is given by Pout = Fz( ��=(��)). As �!1, for the SUMF receiver we

have

lim
�!1

�
(s)
� = 1=�

Therefore, the outage probability has a floor at Fz(� ��) for all � > 0. This is a conse-

quence of the fact that CDMA with SUMF reception is interference-limited, and be-

cause of fading, there is always a non-zero probability that some interferer is so strong

that drives the SINR below the target threshold.

With an MMSE receiver, if we let �!1 in (5) we obtain the equation

�
(m)

�(m) + �
= �

(m)

Slow-fading channel 11
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This has a positive solution for �(m) if and only if � < 1 (recall that 0 � �
(m) � 1),

otherwise �(m) = 0 is the only solution. We conclude that, if � < 1 then lim�!1 Pout = 0

(no outage probability floor), otherwise there is an error floor. This is a consequence

of the fact that the MMSE receiver is near-far resistant (i.e., not interference-limited) if

the user spreading sequences are linearly independent, and that with sufficiently long

random sequences linear independence is achieved with arbitrarily large probability if

� < 1 and with arbitrarily small probability if � > 1 [1].

Example 1. Assume for the fading gains a log-normal distribution with log-standard

deviation � dB (the “shadowing factor”) and mean value E [z] = 1. Letting �
(s) ,

1=(��1 + �), for the SUMF we get

P
s

out
= 1�Q

�
�
�1
�
�z + 10 log

10
[(2R � 1)=�(s)]

��
where Q(x) , P(N(0; 1) > x). For the MMSE we obtain the equation

z1=� = ��1 + �E z

�
z

z1=� + z

�
(z1=�) (18)

which can be solved iteratively through the recursion

�n = ��1 + �E

�
z

�n�1 + z

�
�n�1

= ��1 + �EX

�
10�X=10

�n�110
�z=10 + 10�X=10

�
�n�1

= ��1 +
�p
2�

�n�1

Z
1

�1

e
�x2=2

�n�110
(�z��x)=10 + 1

dx

whereX � N(0; 1), with the initial value �0 = 1. This iteration converges to limn!1 �n =

z1=�. The computation of the outage probability reduces to determining the cumula-

tive distributionfunction of a log-normal variates:

P
s

out
= 1�Q

�
�
�1
�
�z + 10 log

10
[(2R � 1)=�(m)

��
With the SUMF receiver, since lim�!1 �

(s) = �
�1, the outage probability floor is

1�Q
�
�
�1
�
�z + 10 log

10
[(2R � 1)�]

��
(19)

Slow-fading channel 12
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for any value of �.

The outage probability, as well as its floor, is illustrated in Fig. 1, obtained by plot-

ting Pout versus Eb=N0 with the MMSE and SUMF receivers, � = 0:2; 0:5; 0:8; 1; 1:2; 1:5,

�� = 2R� 1 with rates R = 1 and 2 bit/symbol, and log-normal fading with shadowing

factor [16] � = 2 and 8 dB. The outage probability degrades, as expected, by increas-

ing either R, �, or �, which represent the user rate, system load, and shadowing level,

respectively.

Fig. 2 shows the outage capacity region with SUMF and MMSE receiver in a system

with two user groups: the first one has 90% of the users transmitting with an outage

probability 0:1 and a signal-to-noise ratio of ��1 = 10 dB; the second one has 10% of

the users transmitting with an outage probability 0:01 and a signal-to-noise ratio of

��2 = 13 dB. The channel statistics are log-normal with log-standard deviation � = 2 dB,

and � = 0:2, 0:5, 1, and 2.

4 Ergodic fading

Consider again J classes of users. From (9), the rate at which a user in class i can

communicate reliably in an ergodic-fading regime is given by

Ri =

Z
1

0

log
2
(1 + x��i) dFz(x) (20)

where � = �
(s) or � = �

(m) depending on the linear receiver employed. We want to

determine the set of rates R = (R1; : : : ; RJ) achievable by the system with input con-

straint � � ��, load �, and fractions p1; : : : ; pJ of users belonging to classes 1; : : : ; J .

Let f(y) ,
R
1

0
log

2
(1 + xy) dFz(x). This function is monotonically increasing for

y � 0. Next, for all i = 1; : : : ; J; define

�i , f
�1(Ri)

The solution of the rate equations (20) with respect to the �i’s has the form

��i = �i

Ergodic fading 13
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i.e., �i=�i = 1=�, a constant independent of i.

We can now see that the problem we are dealing with here is formally identical to

that solved in previous Section and leading to the outage capacity region: thus, power

control, capacity, and effective bandwidth formulas in the ergodic case can be obtained

simply by replacing �j for �j in the results for the outage capacity. Explicitly, for the

SUMF receiver we have

� = 1� �

JX
j=1

pj�j

provided that

�

JX
j=1

pj�j � 1

The power-control equation is

�i =
�i

1� �

JX
j=1

pj�j

and, by imposing the input constraint �i � ��i for all i = 1; : : : ; J , we obtain the capacity

inequality

�

JX
j=1

pj�j � min
1�i�J

�
1� �i

��i

�
(21)

For the MMSE receiver we obtain

� = 1� �

JX
j=1

pj�
0

j;

where

�
0

j ,

Z
1

0

x�j

1 + x�j
dFz(x);

provided that

�

JX
j=1

pj�
0

j � 1

The resulting power-control equation is

�i =
�i

1� �

JX
j=1

pj�
0

j

Ergodic fading 14
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By imposing the input constraint �i � ��i for all i = 1; : : : ; J , we obtain the capacity

inequality

�

JX
j=1

pj�
0

j � min
1�i�J

�
1� �i

��i

�
(22)

The effective bandwidth is given by

B
(s)
i = �i

for the SUMF and by

B
(m)

i = �
0

j

for the MMSE.

Example 2. Assume Rayleigh fading, i.e., Fz(x) = (1 � exp(�x))u(x). From (9) we

have

C = e
1=(��) Ei(1; 1=(��)) log

2
e (23)

where

Ei(1; x) ,

Z
1

1

e
�xt

t
dt

and � = �
(s) or � = �

(m), depending on the receiver used.

Fig. 3 shows the capacity curves for SUMF and MMSE as a function of Eb=N0 for

different values of � with Rayleigh fading. With the SUMF the capacity is bounded

for all �, while with the MMSE it is bounded only for � � 1 (interference-limited

condition). Fig. 4 shows the system capacity regions with SUMF and MMSE receiver

in a system with two user groups: the first one has 90% of the users transmitting with

a signal-to-noise ratio 10 dB, and the second has the remaining users with a signal-to-

noise ratio 13 dB.

4.1 System throughput

Let e� = �1=z1 and � = REb=N0. Then, (2) and (3) can be rewritten in the form

e� =
R(e�)Eb

N0

1 + �
Eb

N0

�(e�) (24)

Ergodic fading 15
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where R(e�) = E[log
2
(1 + e�z)] and where

�(e�) =
8<: E[z] SUMF

E

h
z

1+ze�

i
MMSE

By rearranging the terms in (24), we can express directly the throughput � as a function

of e�, namely

� =
1

�(e�)
"
R(e�)e� � 1

Eb=N0

#
+

(25)

Assuming E[z] = 1, we have that

lim
e�!0

� =

�
log

2
e� 1

Eb=N0

�
+

(26)

which is positive for Eb=N0 > log 2 = �1:59 dB. Moreover, from (24) and from the fact

that � = �R(e�) it is immediate to see that e� vanishes as � ! 1. Then, for both the

SUMF and the MMSE receivers we have that (26) is also the limit of � for large channel

load � (this limit is the same as for a non-fading channel [4]).

The function �(e�) defined by (25) is non-increasing for all Eb=N0 for the SUMF.

This implies that the maximum � with SUMF reception is obtained for � ! 1 and

vanishing per-user rate R(e�) ! 0. With MMSE reception �(e�) is non-increasing for

Eb=N0 � (Eb=N0)th, while it has a maximum for positive e� for Eb=N0 > (Eb=N0)th

where (Eb=N0)th is a threshold value (the same behavior is noticed in a non-fading

channel [4, 14]). Remarkably, for Eb=N0 � (Eb=N0)th the system throughput is maxi-

mized by �!1. Therefore, there is no point in using a MMSE detector since the same

maximum throguhput is achieved by the SUMF detector. We can calculate explicitly

the value of (Eb=N0)th by solving the inequality

@�(e�)
@e�

�����
e�=0

� 0

For all fading distributions with E[z] = 1 we obtain (Eb=N0)th = 2 log 2 = 1:41 dB (the

same value as for a non-fading channel [14]). Fig. 5 shows the qualitative behavior of

� as a function of e� for Eb=N0 below and above the threshold, for SUMF and MMSE.
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Figs. 6 and 7 show both C and � vs. � at Eb=N0 = 1 dB and 6 dB, respectively, for

Rayleigh fading and a channel with no fading. The presence of a maximum throughput

for finite � when Eb=N0 > (Eb=N0)th for the MMSE receiver is clearly visible.

Fig. 8 shows the system throughput optimized with respect to � as a function of

Eb=N0, for the SUMF and MMSE receivers, for Rayleigh fading and no fading (anal-

ogous results are shown in [9] also for other types of receivers with different power

control strategies).

Finally, Fig. 9 shows the behavior of �opt as a function of Eb=N0 for the MMSE re-

ceiver with and without Rayleigh fading. As Eb=N0 ! (Eb=N0)th from the right, �opt

diverges. In the range log 2 � Eb=N0 � 2 log 2, �opt !1 and MMSE reception is useless

for the sake of maximizing the throughput. Notice that �opt exhibits a minimum (this

occurs at at Eb=N0 � 10 and � 18 dB for no fading and Rayleigh fading, respectively).

This behavior can be explained by noting that for low Eb=N0, the MMSE receiver ap-

proaches the SUMF (noise dominates multiple-access interference in this case), and the

system throughput is maximum when � is large. For high Eb=N0, the MMSE receiver

approaches the decorrelating detector [1] (this is the optimal linear receiver in the ab-

sence of noise), and system throughput is maximum for �! 1. Moreover, � must tend

to 1 from below, since for large � we get � ' 1��(m) with �
(m) � 1. Then, by continuity,

� must have a minimum for some Eb=N0 > 2 log 2.

As far as the effect fo fading on the system throguhput is concerned, Rayleigh fad-

ing always decreases throughput with the SUMF while for large � and MMSE detection

it provides a modest throughput increase. This can be interpreted as a sort of implicit

“load control” operated by fading (see [9]): the fraction of relevant interferers per chip

is actually smaller than � because some users experience deep fading. The dimensional

crowding problem of the linear MMSE receiver is alleviated by fading, and for large �

the benefit of this effect is larger than the degradation due to the fading of the useful

signal component.

Ergodic fading 17



E. Biglieri et al.: How fading affects CDMA

4.2 Spreading-coding tradeoff

We use the above analysis to dimension a non-asymptotic CDMA system with total

bandwidth W , user information bit-rate Rb and transmit power P . The energy per bit

is given by Eb = P=Rb and the bandwidth expansion is given by W=Rb. Since P;W and

Rb are system constraints and we assume N0 given, both Eb=N0 and W=Rb are fixed.

The bandwidth expansion should be apportioned between spreading and coding, so

that L=R = W=Rb, where R is the user coding rate, expressed in information bits per

symbol, and L is the spreading factor, expressed in dimensions per symbol. By optimal

spreading-coding trade-off we mean to dimension the system so that � is maximum,

i.e., select � = �opt andR = C(�opt). As a consequence, the optimized spreading gain is

obtained as L = (W=Rb)C(�opt). For a system based on SUMF, the system throughput

is maximized for � ! 1. This implies a very large number of users, each of which

transmitting at a low coding rate. In this case, as it is well-known, the whole bandwidth

expansion should be devoted to (low-rate) coding, while devoting a minimum amount

of spreading to acquisition and synchronization [13]. On the contrary, for a system

equipped with an MMSE receiver, we observe that for Eb=N0 > (Eb=N0)th there is a

finite �opt, otherwise �opt is infinite and SUMF is good enough.

Example 3. Consider a system with parameters W = 4 MHz, Rb = 16 kb/s and

Eb=N0 = 6 dB (these figures are inspired by UMTS [6]). From Fig. 7 we see that with

MMSE �opt � 1:3 and C(�opt) � 1:2. This yields L = 300 and K = 390. A coding rate

of 1.2 bit/symbol can be approximated, for example, by binary turbo coding of rate

4/7 concatenated with QPSK, or binary coding of rate 3/7 concatenated with 8PSK,

where efficient implementations for binary coding rates 4=7 and 3=7 can be obtained

by suitably puncturing mother codes of rate 1=n [17]. Practical system values with

conventional techniques are L = 256 and K � 100 [6]. Therefore, numbers provided

by asymptotic analysis appear quite realistic and, in passing, show the potential benefit

of linear interference rejection techniques and powerful channel coding, at least in the

case of an isolated cell.
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5 Conclusions

We have examined a CDMA system operating on a channel affected by frequency-flat

fading. The receiver consists of either a SUMF or an MMSE filter. We have treated sep-

arately the cases of slow and fast fading, yielding non-ergodic and ergodic channels,

respectively. In the non-ergodic case, we have studied the outage probability and the

system outage capacity. In the ergodic case, performance was expressed in terms of

system throughput and system capacity. Among our findings, we have proved that

in a slow-fading regime the outage probability of the SUMF receiver exhibits an error

floor for large SNR and all channel loads, while the MMSE receiver does not when-

ever � < 1. Also, we showed that in a fast-fading regime as � ! 1 the system

throughput with SUMF and MMSE tends to the same limit as for the non-fading chan-

nel with the same average SNR. We have also shown that there exists a threshold of

Eb=N0 above which the MMSE receiver does not provide any benefit over the SUMF

in terms of throughput maximization. Finally, we have addressed the tradeoffs in-

volved in the allocation of available bandwidth between spreading and coding, and

we showed that the asymptotic analysis based on random spreading sequences gives

actually meaningful and easy-to-compute results and may serve as a tool to dimension

practical finite-size systems.
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Figure 1: Outage probability with MMSE (dashed) and SUMF (solid) for rates R = 1 and 2

bit/symbol, � = 2 and 8 dB, and � = 0:2; 0:5; 0:8; 1; 1:2; 1:5.
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Figure 2: System outage capacity regions with two user groups. The first one has 90% of the

users transmitting with an outage probability Pout;1 = 0:1 and a signal-to-noise ratio ��1 =

10 dB; the second one has 10% of the users transmitting with an outage probability Pout;2 =

0:01 and a signal-to-noise ratio ��2 = 13 dB. The channel statistics are log-normal with log-

standard deviation � = 2 dB, and � = 0:2, 0:5, 1, and 2.
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Figure 3: Capacity of MMSE (dashed) and SUMF (solid) (bit/symbol), � = 0:5; 1; 1:5.
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Figure 4: System capacity regions with two user groups. The first one has 90% of the users

transmitting with a signal-to-noise ratio 10 dB; the second one has 10% of the users transmit-

ting with a signal-to-noise ratio 13 dB. The channel statistics are Rayleigh, and � = 0:2, 0:5,

1, and 2.
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Figure 6: Plot of C(�) — monotonically decreasing curves — and �(�) vs. � for the MMSE

(dashed) and SUMF (solid) receiver for Eb=N0 = 1 dB.
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Figure 7: Plot of C(�) — monotonically decreasing curves — and �(�) vs. � for the MMSE

(dashed) and SUMF (solid) receiver for Eb=N0 = 6 dB.
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Figure 8: Optimal system throughput �opt versus Eb=N0 for SUMF and MMSE receivers:

AWGN and Rayleigh fading channel.
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Figure 9: �opt versus Eb=N0 for the MMSE receiver: AWGN and Rayleigh fading channel.
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