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ABSTRACT

While people counting has been improved significantly over
the recent years, crowd scenes and perspective distortions
remain particularly challenging and could deeply affect the
count. To handle such problems, we propose a counting
system based on measurements of interest points, where a
perspective normalization and a crowd measure-informed
density estimation are introduced into a single feature. Then,
the correspondence between this feature and the number
of persons is learned by Gaussian Process regression. Our
approach has been experimentally validated showing more
accurate results compared to other features-based methods.

Index Terms— People counting, SIFT interest points,
crowd analysis, perspective, density, Gaussian Process.

1. INTRODUCTION

People counting is a crucial component in many domains,
from marketing to video surveillance. It is useful informa-
tion for safety, security and economic reasons. For instance,
the automatic monitoring of the number of persons flooding
public areas is extremely important for safety control mainly
when this number exceeds a certain level of crowd. Also, the
estimation of number of passengers is relevant to economic
applications such as optimizing the schedule of public trans-
portation systems.

In recent years, significant progress has been made in the
field of people counting. But, crowd scenes still remain chal-
lenging mainly by applying detection-based methods which
rely on detecting and separating individuals. Therefore, re-
cent works typically bypass the challenge of detecting people
and instead focus on learning a mapping between the number
of persons and a set of features. In this context, two trends
have been followed, either by augmenting the number of fea-
tures (it reaches 28 features in Chan’s method [1]) or by ap-
plying different regression functions to be able to select the
one that fits better the selected features (e.g. linear [2], ε-
SVR and ANFIS in [3], Bayesian Poisson [4] and Gaussian
Process regression [1]).

This extensive study varying the features or the trainable
function is caused by the fact that the features deviate from

the perfect case where the number of persons is simply pro-
portional to the features. Therefore, instead of training more
features and testing different regression functions, we are in-
terested in revealing the factors that affect the relationship be-
tween the features and the number of persons. In particular,
we intend to explore distance and density cues. The first cue
is employed to handle the problem of perspective distortions,
whereas, the second cue is density, it is used as crowd fea-
ture to detect and to measure the overlap between individuals.
To achieve this goal, we apply perspective map normaliza-
tion and to weight the feature by a crowd measure in order
to compensate the variations in distance and in density. Our
intuition behind this is to make our selected feature invariant
to the aforementioned factors, which could guarantee the lin-
earity of the trainable function in challenging situations.
The remainder of the paper is organized as follows: In Section
2, we briefly review relevant works to people counting. Then,
in Section 3, we introduce our counting system based on a
single feature regression. The proposed approach is evaluated
using PETS dataset and the experimental results are summa-
rized in Section 4. Finally, we conclude in Section 5.

2. RELATED WORKS

The taxonomy of people counting methods embodies two
paradigms: detection and features based methods. By using
detection-based methods, the number of persons and their
locations are provided simultaneously and the count is not
affected as long as people are correctly segmented. But, the
difficulty is that detecting people is a complex task by itself,
mainly in presence of crowds and occlusions. This problem
has been addressed by adopting part-based detectors, or by
detecting only heads or the Ω shape formed by heads and
shoulders. These attempts to mitigate occlusions are not ap-
plicable in very crowded scenes which are of primary interest
for people counting.

The second paradigm consists of estimating the number
of persons from various features. These methods are more
efficient since it is easier to detect features than to detect per-
sons. For this purpose, many features of foreground pixels
have been used such as: total area, textures and edge count
[1]. Other features based on interest points measurements



such as SURF features [5] and corners points [2] are also in-
troduced into counting methods. To perform the counting, a
regression function has to be applied. It is required to learn
the relationship between the features and the number of per-
sons.

Among features-based methods, Albiol’s method [2] has
shown good performance using PETS dataset. It uses Harris
corner points as features. Then, the count is performed by
assuming a direct proportional relation between the number
of moving corner points and the number of persons. Actually,
the application of this method is limited by the fact that it does
not consider the difference between the perceived size of per-
sons at different distances from the camera and with different
densities as well. These limitations were not revealed in the
PETS contest since only videos characterized by short depth
range and trivial occlusions were required for the tests. There-
fore, more tests under situations with serious perspective dis-
tortions and occlusions are needed to evaluate this method.

Differently from the previous work, some methods take
into account the effects of perspective distortions. To handle
this problem, different techniques have been investigated. In
[6], a geometric correction (GC) is proposed to bring all the
objects at different distances to the same scale. Also, a per-
spective map normalization is proposed in [1] to weight the
pixels according to their distance from the camera. Another
technique has been investigated in [5] to account the effect
of perspective. It is based on applying an Inverse Perspec-
tive Mapping (IPM) to compute the distance of each group
of persons from the camera. In [5], the problem of density
has also been addressed following these steps: first, a cluster-
ing algorithm is applied to partition different groups of per-
sons, then, the density of each cluster is obtained as the ra-
tio between the number of the detected points and the area
of the bounding box. Although this method [5] proposes to
deal with two major problems that usually affect the results of
feature-based methods, it still suffers from many limitations
and leaves rooms for improvements. One of the drawbacks is
that it requires three parameters (number of detected points,
distance, and density) for each cluster separately, which is a
heavy annotation task. More details about the limitations of
this method will be discussed through the development of our
proposed approach.

3. PROPOSED APPROACH

In this section, our proposed approach for people counting is
presented. It is basically inspired from [1] and [5] with sub-
stantial improvements.
To perform people counting, we follow the line of methods
based on measurements of interest points [5, 2]. One major
advantage using these methods is that they bypass intermedi-
ate steps like the segmentation of foreground pixels as used
in [1]. Then, to filter out the static detected points, motion
information has to be estimated. For this purpose, a block

matching is applied in [5, 2]. Given the difficulty of this
technique to deal with problems of occlusions and discontinu-
ities at boundaries, we propose in this paper a more efficient
solution based on computing the optical flow with reduced
weights near the borders since the expansion coefficients are
less reliable there, see Section 3.1. Moreover, in this study we
explore distance and density cues in order to compensate the
effects of perspective distortions and partial occlusions due
to the crowd. On the one side, these two factors were not
taken into account in [2]. Also in [1], the effects of peo-
ple density were not considered, however, 28 features from
foreground pixels were devoted to infer the contents of each
frame. On the other side, Conte’s method [5] is the only work
that dealt with the two aforementioned factors, but the pro-
posed approach is still problematic. More details about its
limitations are highlighted in next sections.

Compared to [5], we propose to process the perspective
normalization at pixel level which is more accurate than as-
signing one distance value to each group of persons, see Sec-
tion 3.2. In addition, for density estimation, we apply density-
based clustering which is better adapted for separating differ-
ent groups of persons than the graph-based clustering pro-
posed in [5]. Another problem is addressed in our study; it is
the calculation of the area of each cluster. We apply α-shape
technique which is more powerful than the bounding box pro-
posed in [5]. This latter fails to define boundaries of a set of
points by leaving large gaps which could amply deteriorate
the estimated density. Added to that, one major contribution
of our counting system consists of formulating a new weight
function based on density estimation for crowd normalization,
see Section 3.3. An overview of our counting system modules
and their interactions is shown in Figure 1. The remainder of
this section describes each of these system components.

3.1. Detection of moving interest points

To infer the contents of each frame under analysis, only inter-
est points have to be detected. In this context, we propose to
use SIFT (scale-invariant descriptor) [7] where interest point
locations are defined as maxima/minima of the difference of
Gaussians in scale-space. Under this respect our method is
nearby similar to [5, 2] which applied Harris corner detector
and SURF, respectively. Using corner detectors is not accu-
rate since they are somehow dependent on the perceived scale
of the considered object. Also for SURF detector, it is an ex-
tension of SIFT and according to [8], SIFT is more invariant
to scale, rotation, and affine transformations.

After that, motion information has to be associated to the
detected interest points to be able to distinguish between mov-
ing and static ones. By considering the same assumptions as
in [5], the detected interest points with non-null motion vec-
tor typically belong to persons. To handle this problem, we
compute the optical flow by the method proposed in [9]. It
uses quadratic polynomial model to approximate each neigh-
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Fig. 1. Flowchart of the proposed counting system

borhood of two consecutive frames. Then, the displacement
fields are estimated from the polynomial expansion coeffi-
cients. This method has the advantage of reducing the errors
near the borders by computing the polynomial expansions
with certainty set to zero off the border and with a reduced
weight for pixels close to the borders.

3.2. Perspective normalization

The objective here is to compensate for changes in number of
interest points because of perspective distortions. The effects
of perspective can be simply explained by the fact that ob-
jects far from the camera appear smaller than the closest ones.
This makes any extracted feature for farther away persons ac-
count for a smaller portion compared to closer persons. This
problem could be addressed by weighting each interest point
according to a perspective map with assigning larger weights
for farther points in the scene.

Similar to [1], we estimate the perspective map by lin-
early interpolating between the two extremes of the scene.
First, the ground plane is marked. Then, the distance d1 and
d2 of the two extreme lines are measured. After that, the
difference between the perceived height of persons in these
two lines can be derived by manually calibrating two frames,
where the center of a reference person belongs to the first line
in the first frame while belonging to the second extreme line
in the second frame. A weight of 1 is assigned to pixels on
the first line, and the pixels on the second line are weighted
by h1∗d1

h2∗d2
, where h1 and h2 denote the two heights of the ref-

erence person in the two frames. A linear interpolation is
applied to compute the remaining weights between the two
extreme lines. Finally, the weights Wp are assigned accord-
ing to the y-coordinate of each interest point.
After perspective normalization, the number of moving SIFT
points in each frame i under analysis is updated as follows:

FeatNi =

Y∑
y=1

Wp(y) ∗NT (y) (1)

Where NT (y) is the number of moving points in the yth row.

3.3. Density estimation for Crowd measurement

In addition to perspective distortions, the density of people
could also affect the number of detected points. When per-
sons are closer to each other, more partial occlusions occur.
Thus, we aim at estimating the density of people by measur-
ing how close the detected points are, in order to handle the
underestimation of the number of persons in high crowd sit-
uations. Therefore, a clustering algorithm has to be applied
in order to distinguish the different groups of persons. The
most appropriate solution for this problem is density-based
clustering, where clusters are identified according to the spa-
tial density of the points. It has also the advantage of being
flexible enough to discover clusters of arbitrary shape.

3.3.1. Density-based clustering

For density-based clustering, we apply DBSCAN (Density
Based Spatial Clustering of Applications with Noise) [10].
This algorithm does not require any prior knowledge about
the number and the shape of the clusters. Added to that, it
fits well our requirements by adopting the concept of density-
reachable to form the clusters with respect to MinPts and
Eps input parameters which denote a threshold of points
needed in a neighborhood and a neighborhood radius. More-
over, points which are not density-connected are labeled as
noise.

3.3.2. Density estimation

The density is measured by computing the ratio between the
number of moving interest points and the area covered by the
clusters. For the area computation, we propose to delineate
the boundaries of each cluster by α-shape [11] which is an
accurate technique to extract the shape of a set of points. α-
shape has not only the advantage of closely following varia-
tions in the outer-edge but it reveals also the inner gaps.
This technique is reliable to accurately estimate the density of
clusters mainly with the association of the selected density-
based clustering algorithm that picks out the clusters using
the density relevance and filters out the noise.



3.3.3. Crowd measurement

At this stage, we aim at formulating a weighting function by
using the density as a crowd measure. In particular, our goal
is to weight the proposed feature defined in (1) by inflating its
value in high crowd frames, while reducing it in low crowd
frames. Therefore, we use the estimated density values di,
i = 1...M , where M is the total number of frames for the
video sequences. Then, the weight function is defined as:

Wd(i) =
di − µ
σmax

+ 1 (2)

Where µ = 1
M

∑M
i=1 di and σmax is the maximum of stan-

dard deviation values σi.
This weight function ensures somehow kind of crowd nor-
malization. It is achieved by setting Wd = 1 if the crowd is
medium (di = µ), 1 < Wd ≤ 2 if the crowd is high, and
0 ≤Wd < 1 otherwise.
Consequently, to take into account the effects of the crowd on
the detected interest points, our proposed feature defined in
(1) is updated again:

FeatNi = Wd(i) ∗
Y∑

y=1

Wp(y) ∗NT (y) (3)

3.4. Gaussian Process regression

Our proposed feature defined in (3) has been formulated to be
invariant to perspective and to crowd variations. This could
involve the linearity of the trainable function mapping the
feature to the number of persons. But for more flexibility,
we suggest to take into account the possible errors that could
occur in the motion estimation or in any other step of our
counting system. Therefore, we propose to learn the train-
able function from a set of labeled examples by using Gaus-
sian Process (GP) regression which is well adopted for linear
features with local non-linearities (more details about GP are
available in [12]). Once the function is estimated, the num-
ber of the persons could be predicted from the value of the
proposed feature for each frame under analysis.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results on the
PETS 2009 dataset 1 to evaluate our counting system de-
scribed in Section 3. From this dataset, we are interested in
the section S1 used to assess Person count and Density esti-
mation algorithms. In our experiments, we employ not only
the 4 videos tested in people counting contest held in PETS
2009, but also other 4 videos from the second view. In fact,
videos referring to the second view are more challenging:
they are characterized by a large depth range with significant

1http://www.cvg.rdg.ac.uk/PETS2009/

variations in density compared to the first view. The main
characteristics of these videos are summarized in Table 1.

Number of people
Video Sequence View Length Min Max

S1.L1.13-57 1 221 5 34
S1.L1.13-59 1 241 3 26
S1.L2.14-06 1 201 0 43
S1.L3.14-17 1 91 6 41
S1.L1.13-57 2 221 8 46
S1.L2.14-06 2 201 3 46
S1.L2.14-31 2 131 10 43
S3.MF.12-43 2 108 1 7

Table 1. Characteristics of 8 sequences from the PETS 2009
dataset used for the counting experiments.

Apart from the testing set, the counting regression function
is learned from a training set built by 2 other videos from
S1 Section. The training frames have to guarantee different
cases in terms of number of persons, distance and density.

For the ground-truth of the count, it is obtained by an-
notating the number of persons by hand in every 5th frame.
The count for the remaining frames is obtained using linear
regression.
To compare the estimated number of persons to the ground
truth, we calculate the Mean Absolute Error (MAE) and the
Mean Relative Error (MRE) which are defined as:

MAE =
1

M
.

M∑
i=1

|E(i)−G(i)| (4)

MRE =
1

M
.

M∑
i=1

|E(i)−G(i)|
G(i)

(5)

Where M is the total number of frames in a video sequence.
E(i) and G(i) denote, respectively, the estimated and the
ground-truth number of persons in the i−th frame. The MAE
metric was used to compare the performance of the algo-
rithms submitted to the PETS contest. But, the same error
could be negligible if the number of persons is high. There-
fore, in [5], the authors propose to use also the MRE metric,
which relates the error to the number of the persons.

For the comparisons, unfortunately, we are not able to
compare our proposed method to Chan’s method [1]. In fact,
for their work [13] submitted to PETS 2009, only tests with
videos from the first view were provided. Since, we are in-
terested to test more challenging videos; our results are com-
pared to those of Albiol and Conte methods [2, 5] which are
reported in [5]. A summary of the counting results, with re-
spect to our hand-annotated ground-truth, are given in Table
2. From these results, we show clearly a big difference be-
tween the performance of Albiol’s method [2] between the
first and the second views. That could justify the inability of
this method to deal with challenging situations. For this rea-
son, similarly to [5], we proposed to deal with the problems of



Video Sequence
Albiol et al. [2] Conte et al. [5] Our approach

MAE MRE MAE MRE MAE MRE

View1

S1.L1.13-57 2.80 12.6% 1.92 8.7 % 1.38 7.10 %
S1.L1.13-59 3.86 24.9 % 2.24 17.3 % 2.25 15.02 %
S1.L2.14-06 5.14 26.1 % 4.66 20.5 % 4.58 21.75 %
S1.L3.14-17 2.64 14.0 % 1.75 9.2 % 1.54 8.99 %

View2

S1.L1.13-57 29.45 106.0 % 11.76 30.0 % 3.64 11.67 %
S1.L2.14-06 32.24 122.5 % 18.03 43.0 % 6.87 18.30 %
S1.L2.14-31 34.09 99.7 % 5.64 18.8 % 2.53 10.93 %
S3.MF.12-43 12.34 311.9 % 0.63 18.8 % 2.20 40.31 %

Table 2. Quantitative evaluation of our proposed approach compared to other methods

perspective distortions and crowd density. That could justify
as well the better results of our method and Conte’s method
compared to [2].

A comparison of our results with the results of [5] reveals
the effectiveness of our proposed modifications. In particular,
the tests with S1.L1.13-57(2) and S1.L2.14-06(2) show the
effects of the proposed crowd measure to compensate the un-
derestimation of number of persons because of dense crowd
occurring at the last frames of S1.L1.13-57(2) and at the first
frames S1.L2.14-06(2). We also note that Conte’s method
requires to compute the ground-truth inside each cluster sep-
arately, which is a burdensome task. It is also important to
mention that we obtained linear trainable function estimated
by Gaussian Process regression, which means that the non-
local linearities were not significant. That could justify the
success of our proposed feature to make the number of inter-
est points independent from distance and density variations.

5. CONCLUSION

In this paper, we propose an approach for people counting
based on regressing a single frame-wise feature independent
from variations of perspective and crowd density. Our contri-
bution regarding the related works in people counting is dis-
cussed through the details of the proposed approach. Experi-
ments on PETS dataset demonstrate that our approach is able
to maintain a linear relationship between the proposed feature
and the number of persons under situations with heavy oc-
clusions and serious perspective distortions. Also, by means
of comparisons with other existing features-based methods in
the literature, our approach has shown its ability to improve
significantly the accuracy of the count.
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