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Abstract—The work identifies the first lattice decoding solution
that achieves, in the general outage-limited MIMO setting ad
in the high-rate and high-SNR limit, both a vanishing gap
to the error-performance of the (DMT optimal) exact solution

of preprocessed lattice decoding, as well as a computationa

complexity that is subexponential in the number of codeword
bits. The proposed solution employs lattice reduction (LRJjaided
regularized (lattice) sphere decoding and proper timeout plicies.
These performance and complexity guarantees hold for most
MIMO scenarios, all reasonable fading statistics, all chanel
dimensions and all full-rate lattice codes.

In sharp contrast to the above very manageable complexity,
the complexity of other standard preprocessed lattice deabng
solutions is revealed here to be extremely high. Specificgll
the work is first to quantify the complexity of these lattice
(sphere) decoding solutions and to prove the surprising rest
that the complexity required to achieve a certain rate-relability
performance, is exponential in the lattice dimensionalityand in
the number of codeword bits, and it in fact matches, in common
scenarios, the complexity of ML-based solutions. Through his
sharp contrast, the work was able to, for the first time, rigorously
demonstrate and quantify the pivotal role of lattice reducion as
a special complexity reducing ingredient.

Finally the work analytically refines transceiver DMT analysis
which generally fails to address potentially massive gapsdiween
theory and practice. Instead the adopted vanishing gap corition
guarantees that the decoder’s error curve is arbitrarily close,
given a sufficiently high SNR, to the optimal error curve
of exact solutions, which is a much stronger condition than
DMT optimality which only guarantees an error gap that is
subpolynomial in SNR, and can thus be unbounded and generall
unacceptable for practical implementations.

|. INTRODUCTION

The work applies to the general setting of outage-limit
MIMO communications, where MIMO techniques offer sig

Specifically in terms of ML-based decoding, the use of the
brute-force ML decoder, introduces a complexity that scale
exponentially with the number of codeword bits. If on theasth
hand, a small gap to the exact ML performance is acceptable,
then different branch-and-bound algorithms such as thersph
decoder (SD) have been known to accept reduced computa-
tional resources. Despite the reduced complexity of sphere
decoding, recent work in [1] has revealed that, to achieve
a vanishing error-gap to optimal ML solutions, even such
branch-and-bound algorithms generally require computati
resources that, albeit significantly smaller than thoseiired
by a brute-force ML decoder, again grow exponentially in the
rate and the dimensionality, and remain prohibitive foresal/
MIMO scenarios.

This high complexity required by ML-based decoding solu-
tions, serves as further motivation for exploring other ifees
of decoding methods. A natural alternative is lattice déugpd
obtained by simply removing the constellation boundaries o
the ML-based search, an action that loosely speaking gzgploi
a certain symmetry which in turn may yield faster implemen-
tations. It is the case though that even with lattice deapdin
the computational complexity can be prohibitive: finding th
exact solution to the lattice decoding problem is generatly
NP hard problem (cf. [2]). At the same time though, the other
extreme of very early terminations of lattice decoding,hsuc
as linear solutions, have been known to achieve computdtion
efficiency at the expense though of a very sizable, and often
unbounded, gap to the exact solution of the lattice decoding
problem.

In this work we explore lattice decoding solutions that, in

e(aonjunction with terminating policies, strike the propatdnce

between this exponential complexity and exponential gap.

nificant advantages in terms of increased throughput and
reliability, although at a cost of a potentially much higheA. System model

computational complexity for decoding at the receiversisTh  \va consider the general x n point-to-point multiple-input
high complexity brings to the fore the need for eﬁidenﬁultiple—output model given by

decoders that tradeoff error-performance with complekity

a better manner than computationally expensive decodexs li

the strictly optimal maximum-likelihood (ML) decoder.
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y =vpHx+w ()

wherex € R™, y € R"” andw € R” respectively denote
the transmitted codewords, the received signal vectord, an
the additive white Gaussian noise with unit variance, where
the parametep takes the role of the signal to noise ratio
(SNR), and where the fading matrPll € R"*™ is assumed

to be random, with elements drawn from arbitrary statistica
distributions. We consider that one use of (1) correspoads t
T uses of some underlying “physical” channel. We further as-
sume the transmitted codeworgldo be uniformly distributed



over some codebook’ € R™, to be statistically independentuninterrupted ML decodéin the presence of a canonical code
of the channeH, and to satisfy the power constraint with multiplexing gainr, i.e., with |X,.| = 28T = prT,

@) If this canonical code though is linear, searching the entir
codebook can be avoided by algorithmic solutions like the
sphere decoder (SD) which can provide substantial contglexi

B. Rate, reliability and complexity in outage-limited MIMO reductions at a potential small loss in error performancehS

communications solutions take advantage of the linear nature of the cogte tha

is defined by agenerator matrix G and ashaping region R .
In terms of error performance, we €t denote the proba- Specifically forr > 0, a (sequence of) full-rate linear (lattice)

E{|x|*} <T.

bility of codeword error, and we consider the rate, code(s)Y, is given byX, = A, NR" whereA, 2 p=+ A and
1 A £ {Gs | s € Z*}, whereZ" denotes the; = min{m,n}
R= Tlongl, (3) dimensional integer lattice, wherR is a compact convex

subset ofR” that is independent gf, and whereG € R™**

in bits per channel use (bpcu), wherE| denotes the cardi- is full rank and independent gf For the class of lattice codes
nality of X. considered here, the codewords take the form

Regarding complexity, we leiV,,,, describe the compu- —rT v A o IT
tational resources, in floating point operations (flops) per x=p=Gs, s€5SZNp~R, ©)
channel uses, that the transceiver is endowed with, in thgesewhere R — R* is a natural bijection of the shaping region
that after Nmax flops, the transceiver must simply terminater” that preserves the code, and wh@eontains the all zero
potentially prematurely and before completion of its tadle  vectoro.
note that naturallyNmax is intimately intertwined with the  As noted before, despite the reduced complexity of sphere
desiredP. and R, and that any attempt to significantly reducgecoding of such lattice codes (as compared to brute-force
Nmax may be at the expense of a substantial degradationpf. decoding), recent work in [1] has revealed that even such
error-performance. branch-and-bound algorithms generally require computati

In the high SNR regime, a given encod&r and decoder resources that grow exponentially in the number of codeword
D, are said to achieve anltiplexing gain » (cf. [3]) and bits and the dimensionality. As an indicative example 0§ thi

diversity gain d(r) if high complexity, we note that the work in [1] showed that
R log P such SD algorithms, when applied for decoding a large family
lim ﬂ =r, and ~ im 28fe _ d(r). (4) of high-performing codes including all known full-rate DMT
p—oc logp p=oo logp optimal codes, over thet x ng quasi-static MIMO channel

In the same high SNR regime, the complexity is here chos}é’Hh Rayleigh fading anchg > nr, introduce a complexity
exponent of the form

to take the form
T

c(r) ;= lim Nimax (5) er) = H(T(HT —lrl =1+ o lr] —r(nr - 1))+)'

p—oo log p @)

which is henceforth denoted as tr@mplexity exponent. |, the apove,r| denotes the largest integer not greater than
T

Noting that R = rlogp, we observe that(r) > 0 implies . The exponent, which simplifies ta(r) = L r(ny — r)
) . o prpe

a complexity that is exponential in the rate. for integer values ofr, reaches at- = ny/2 (for even

Remark 1: A reasonable question at this point would pefyg|es ofnr) an overall maximum value ofir7/4 which,

tain as to why the computational resourcés.. scale withp  for the aforementioned codes is equalxt¢g, corresponding
and are dependent on to which we note that the complexityty complexity in the order oRi<losr — po/8 —  /[X].

of decoding is generally dependent on the density of thg any fixed multiplexing gain, these required computationa
codebook, which in turn depends gnand R. Furthermore . (nr=r
resources can be seen to be in the orde2’8f 't

: . - flops
this dependence of the complexity exponent (and by eXtBnSIv(\)/hich reveals a complexity that is exponential in the number

Of Nimax) ON r, reflects a potential ability to regulate the f codeword bits, and a corresponding exponential slope of
computational resources depending on the rate. Finally t%g,,‘ '

fact that bothP, and N,,., are represented as polynomial 7t °

functions Ofp, S|mply stems from the fact that boift. and 1We here note that strictly speaking;., D,» may potentially introduce a

|X'| naturally scale as polynomial functions pf Specifically complexity exponent larger thar". In such a case though¥,, D, may
we quickly note that;(r) captures the entire complexity rangé)e substituted by a lookup table implementationXf and an unrestricted
ML decoder. This encoder-decoder will jointly require nesms that are a
constant multiple of X.| = p"7 as it has to construct and visit all possible
|X)-| codewords, at a computational cost of a bounded number of fep
codeword visit. It is noted that the number of flops per visimdeword is
of all reasonable transceivers, witlir) = 0 corresponding naturally independent .

to the fastest possible transceiver (requiring a subexm'nie 2Although premature at this point, we hasten to note for theeexreader
that this complexity indeed holds irrespective of the radiydating policy,

number of _fIOpS petl’ Channel uses), and with(r) = rT' irrespective of the decoding ordering, and as we will seer lah, holds even
corresponding to the optimal but arguably slowest, fullfsh in the presence of MMSE preprocessing.

0<c(r)<rT



C. Transition to lattice decoding for reducing complexity MMSE-preprocessed lattice decoder, the above task can be

As mentioned, this high complexity of ML based (Conplescribed, in the high SNR regime, as trying to minimize
strained) decoders, motivates consideration of other adkrco . log Nmax(9)
families, with a natural alternative being the unconsedin pli{{olo logp
(naive) lattice decoder which takes the general form This will be achieved later on.
%;, = arg min [ly — /pHX|. ®)

" D. Contributions

Naturally whenx, ¢ X, the decoder declares an error. We first show that the computational complexity required

The use of lattice decoding, and specifically of preproassgy the MMSE-preprocessed (unconstrained) lattice sphere
lattice decoding in MIMO communications has received subecoder, asymptotically matches the complexity of the {con
stantial attention from works like [4], [5] and [6], whereeth strained) ML-based (MMSE-preprocessed or not) sphere de-
latter proved that lattice decoding in the presence of MMSfpders, and is commonly exponential in the dimensionality
preprocessing achieves the optimal DMT for specific MIM@nd the number of codeword bits. This is established for a
channels and statistics, and for DMT-optimal random cod&grge class of codes of arbitrary error-performance, aelarg
The use of lattice decoding as an alternative to computallion class of fading statistics, and specifically for the quéaiis
eXpenSive ML based SOlUtionS, was recently further VmatM|Mo channel — for examp|e the Comp]exity required for
on the one hand by the aforementioned work in [1], [7] whichMT optimal lattice sphere decoding, in the presence of a
revealed the large computational disadvantages of ML basgee family of DMT optimal codes, takes the previously
solutions, and on the other hand by the work in [8] whicBeen simple piecewise linear form in (7). In a parenthetical
further confirmed the performance advantages of latticediec note, and deviating slightly from the spirit of this papee w
ing by showing that regularized (MMSE-preproces$éatiice also provide a universal upper bound on the complexity of
decoding achieves the optimal DMT performance, for aimogdgularized lattice sphere decoding, which holds irretipeof
all MIMO scenarios and fading statistics, and all non-randothe |attice code applied and irrespective of the fadingsties.
lattice codes, irrespective of the codes’” ML performance. This upper bound again takes the form in (7), matching that

It is the case though that the aforementioned extrem the case of constrained ML-based sphere decoding, thus
complexity of exact lattice decoding solutions, in conjime  revealing the surprising fact that there exists no statibti
with the potentially unbounded error-performance degtada channel behavior that will allow the removal of the bounding
(gap) of very early terminations (as opposed to exact implggion to cause unbounded increases in the complexity of the
mentations) of lattice decoding, bring to the fore the newd fdecodet.
balanced approximations of lattice decoding solutionstieé With provable evidence of the very high complexity of
ter balance the very sizable complexity and gap. Spec¥icallegularized lattice decoding, we turn to the powerful tool
for any simplified varian®,. of the baseline (exact) MMSE- of |attice reduction and seek to understand its effects on
preprocessed lattice decoder, this gap can, in the high Si¥&nputational complexity. While there has existed a gdnera

regime, be quantified as agreement in the community that lattice reduction doesaedu
P complexity, cf. [10], this has not yet been supported airalyt
gr(c) £ lim - (9) cally in any relevant communication settings. In fact, andeg

P (x : . .
poo P (% # x) opposite to common wisdom, it was recently shown that for

whereP (X # x) describes the probability of error of tiegact a fixed-radiu® sphere decoding implementation of the naive
MMSE-preprocessed lattice decoder, whe?e denotes the lattice decoder [11], LR does not improve the sphere decoder
probability of error of D,., and wherec (i.e., c¢(r)) is the complexity tail exponent.

complexity exponent that describes the (asymptotic rate ofWhat our present work shows is that lattice reduction
increase of the) computational resources required to wehigeduces an ML-like exponentially increasing complexity, t
this performance gap. Generally a smaller computationalcovery manageable subexponential values. We specifically pro
plexity exponentc implies a larger gapgs(c). The clear ceed to prove that the LR-aided regularized lattice decoder
task has remained for some time to construct decoders thmaplemented by a fixed-radius sphere decoder and timeout
optimally traverse this tradeoff betwegnand c, i.e., that policies that occasionally abort decoding and declare eor,er
reduce the performance gap to the exact lattice decoding sachieves

tion, with reasonable computational complexity. Equindie _ log Niax(9)
for Nmax(g) denoting the computational resources in flops gr(e) =1,  lim ————=—=

. : : . p—oo  logp
required to achieve a certain gapto the baseline exact. ) o )
i.e., achieves a vanishing gap to the exact implementation o

regularized lattice decoding and does so with a complexity

=0 Ve>0,9>1,

3We will interchangeably usBIMSE-preprocessed decoder andregularized
decoder, with the first term being more commonly used, and with thesdc
implying a more general family of decoders (cf. [8] where tivalence 4In other words, this complexity bound holds even if the clerstatistics
between the two decoders is discussed.). Even though in dimpiotic are such that the channel realizations cause the decoddwagsahave to
setting of interest, the two accept the same results thautghe paper, some solve the hardest possible lattice search problem.
extra error-performance gains can be achieved by propéniaption of the 5The radius here is considered fixed in the sense that it ddesanpwith
regularized decoder (cf. [9]). respect to the channel realization and rate.



exponent that vanishes to zero, which in turn implies subexherex, = p%T and whereR . is an upper-triangular matrix
ponential complexity in the sense that the complexity scalémore details can be found in Appendix D). Fo# Fy, the
slower than any conceivable exponential function. It islfjna model transitions from (10) to

noted that this vanishing gap approach serves the practical CHwrH HwrH

purpose of an analytical refinement over basic diversity-ana = R"M"Ms+R“M"w

ysis which generally fails to address potentially massiapsy = R7R"R-a)s+R "M"w
between theory and practice. = Rs—o,’ R s+ R IMiw
Rs+w’ (15)
E. Notation
. . o .. where
We use= to denote thexponential equality, i.e., we write
1 o N T —HN\fH
f(p) = pP to denote lim %(p) = B, and <, > are w =-—aR™ s+ R™"M"w (16)
p—00 p

similarly defined. With this notation, we can wrife = p—d(") is the equivalent noise that includes self-interferencest(fi

(cf. (4)). In this paper we uses ™ to denote the smallest integersummand) and colored Gaussian noise. Consequently the
not smaller than the argumens,_ to denote the largest integercorresponding regularized lattice decoder takes the form

not larger than the argumente)’’ to denote the conjugate
transpose ofe), (e)* to denotemax{0, (o)} andvec(e) to

denote the operation whereby the columns of the argufegnt \which is then solved by the sphere decoder which recursively
are stacked to form a vector. enumerates all lattice vectogs= Z* within a given sphere of

radius¢ > 0, i.e., which identifies as candidates the vectors
Il. MMSE-PREPROCESSEDLATTICE SPHEREDECODING  that satisfy

COMPLEXITY

We proceed to describe the preprocessed lattice decoder,
its sphere decoding implementation, and for a practical sqthe algorithm specifically uses the upper-triangular reatur

ting of interest that includes the quasi-static MIMO chdnnef R to recursively identify partial symbol vectois,, k =
and common codes, to establish the decoder’'s computational. .- | x, for which

84 = arg min [|lr — Rs|?, (17)

lr — Rs||* < £*. (18)

complexity. lex— Rudal? < €. (19)
A. Lattice sphere decoding wheres;, andr respectively denote the lastcomponents of
Combining (1) and (6) yields the equivalent model § andr, and whereR;, denotes thé& x k& lower-right submatrix
of R. Clearly any set of vectors € Z*, with common last
y=M,s+w (10) & components that fail to satisfy (19), may be excluded from
where the set of candidate vectors that satisfy (18).
R The enumeration of partial symbol vectds is equivalent
M, =p2~ ~ HG € R"*" (11) to the traversal of a regular tree withlayers — one layer per
is a function of the multiplexing gafnr-. symbol component of the symbol vectors, such that ldyer
Consequently the corresponding naive lattice decoder)in @'Tesponds to théth component of the transmitted symbol
takes the form (see for example [8], also [10]) vector s. There is a one—to-ong correspondence between the
R . " nodes at layerk and the partial vector§,. We say that
Sp = arg i ly —Ms|[|”. (12) a node is visited by the sphere decoder if and only if the

corresponding partial vectdy, satisfies (19), i.e., there is a

As a result though of negle_gting the bo.undary regi‘?”* trEﬁjection between the visited nodes at layeand the set
above decoder declares additional errorg;jf¢ S%, resulting

in possible performance costs. These costs motivated the Ni 2 {8, € Z% | |Ir, — Ridp)® < €2} (20)
use of MMSE preprocessing which essentially regularizes

the decision metric to penalize vectors outside the boyndgs Complexity of MMSE-preprocessed |attice sphere decoding
constraintS% (cf. [8]). Specifically the MMSE-preprocessed
lattice decoder is obtained by implementing an unconstrhin o
search over the MMSE-preprocessed lattice, and takes m&he tree) is given by

Consequently the total number of visited nodes (in all layer

form r
. . 2 Nsp = ZNk, (21)
Sr—1a = arg min [|Fy — R3|", (13) =1
where F and R are respectively the MMSE forward andwhereN;, £ || is the number of visited nodes at layeof
feedback filters such th& = R~ “M¥, where the search tree. The total number of visited nodes is comynonl
R’R = MM + osz, (14) "We will henceforth refer to the symbol vectere S;¢ corresponding to

the transmitted codeworg = pflT Gs (cf. (6)) , simply as theransmitted

SFor simplicity of notation we will, in most cases, dend@, with M. symbol vector.




taken as a measure of the sphere decoder complexity. Itaiset of fade statistics, that always generate diagonalnehan
easy to show that in the scale of interest the SD complexityatrices. Another example would be having codes drawn from
exponent:(r) would not change if instead of considering th@rthogonal designs which introduce very small decoding-com
number of visited nodes, we considered the number of flopkexity, but which are provably shown to be highly suboptima
spent by the decoder except for very few unique cases like thg = 2,ng = 1

Naturally the total number of visited nodes is a functioguasi-static case [12]. In light of this, in this sectionygme
of the search radiug. We here use a fixed radius, whichmainly focus on the widely considered, x ng (ng > nr)
may result in a non-zero probability that the transmitteid.d. and quasi-static MIMO setting and on the large but
symbol vectors is not in\,,. Consequently we must choose apecific family of full-rate £ = 2min{nr,ng}T = 2nrT)
radius that strikes the proper balance between decredsingthreaded codes (cf. [13]-[16]), which includes all known DM
aforementioned probability and at the same time suffigientbptimal codes as well as uncoded transmission (V-BLAST).
decreasing the size df/,. Towards this we note that for the We proceed with the main Theorem of the section, which
transmitted symbol vectay, the metric in (17) satisfies applies under natural detection ordering (cf. [1], [5]),dan

Rsll? — Il (12 under the assumption of i.i.d. regular fading statisfics
Il = Res|” = flw [, Theorem 1. The complexity exponent for MMSE-

which means that ifjw’|| > ¢, then the transmitted symbolpreprocessed lattice sphere decoding any full-rate tledkad
vector is excluded from the search, resulting in a decodiegde over the quasi-static MIMO channel with i.i.d. regular
error. As Lemma 2 will later argue taking into consideratiofading statistics, is equal to the complexity exponent of
the self-interference and non-Gaussianityvef, we can set ML-based SD with or without MMSE preprocessing.

§ = +/zlogp, for somez > d(r) such that Proof: See Appendix A. u

p (HW,HQ > 52) & pmdtn), We clarify that even though all three decoders are DMT
optimal, the above result incorporates more than just DMT
which implies a vanishing probability of excluding the tsan optimal decoding, in the sense that any timeout policy will
mitted information vector from the search, and a vanishingadeoffd(r) with ¢(r) identically for ML-based and lattice-
degradation of error performance. based sphere decoding. In other words the three decodees sha
We here note that the MMSE-preprocessed lattice sphefie samei(r) andc(r) capabilities, irrespective of the timeout
decoder differs from its ML-based equivalent in two aspectgolicy.
the presence of MMSE preprocessing and the absence of &urthermore, considering different SD detection ordesing
bounding region to constrain the search. These two aspe@s [5]), the following extends the range of codes for which
are generally perceived to have an opposite effect on thg ML-based and lattice-based SD share a similar complexit
complexity. On the one hand, MMSE preprocessing, whicthe proof follows from the proof of Theorem 1 in Appendix A,
we recall from (20) to introduce unpruned sets and from Theorem 4 in [1].
Ne2 {8 €ZF | rp — RuSi|2 <€), k=1,---,r, Corollary 1a: Give_n any full-rate code of arbitrary DMT
performance, there is always at least one non-random fixed
is associated to reduced complexity in lattice-based SD-sopermutation of the columns af, for which the complexity
tions (cf. [11]) due to the resulting penalization of fargwaexponent of the MMSE-preprocessed lattice sphere decoder
lattice points (cf. [8]). On the other hand, the absence @fatches that of the ML based sphere decoder.
boundary constraints can be associated to increased comple 1o following focuses on a specific example of practical
ity as it introduces an unbounded number of candidate VeCtqf;arest.

We proceed to show that in terms of the complexity eXponent’Corollary 1b: The complexity exponent for DMT optimal

under common MIMO scenarios and codes, these two aspeGigse preprocessed lattice sphere decoding of minimum de-

exactly cancel ea_ch other out, and.tha_t consequently .MM%EIS/ (T = nr) DMT optimal threaded codes over the quasi-
preprocessed lattice sphere decoding introduces a Conypleétatic MIMO channel with i.i.d. regular fading statistitakes
exponent that matches that of ML-based sphere decodmg following form

(cf. [1]), which it self is shown here to also match the

complexity exponent of ML-based SD in the presence of c,_j4(r) = r(nr — |r] — 1)+ (nr [v] — r(ny — 1)) T,

MMSE preprocessirty (22)
Before proceeding we note that this analysis is specific t%

sphere decoding, and that it does not account for any other

ML based solutions that could, under some (arguably rare) cr_1a(r) = r(np — 1) (23)

circumstances, be more efficient. A classical example ofi suc

rare circumstances would be a MIMO scenario, or equivaglenfPor integer values of.

ich simplifies to

8To see this, we consider that the cost of visiting a node, dependent 10The j.i.d. regular fading statistics satisfy the generala§econditions as
of p. Once at a visited node, this same bounded cost includesasteof described in [17], where a) the near-zero behavior of thinfpdoefficientsh
establishing which children-nodes not to visit in the netelr. is bounded in probability as;|k|t < p(h) < cz|h|t for some positive and

SWe clarify that ML-based SD in the presence of MMSE preprsices finite ¢1, c2 andt, where b) the tail behavior di is bounded in probability
corresponds to unpruned set§, N S¥ where SF is the k-dimensional set asp(h) < ch*”Wﬂ for some positive and finitez, b and 3, and where c)
resulting from the natural reduction 8f° from (6). p(h) is upper bounded by a constait.



Proof: See Appendix B. B RT is (loosely speaking) more orthogonal th& As a

Further evidence that connects the complexity behavior &sult of this unimodularity, we have thak~'7Z* = Z*,
MMSE-preprocessed lattice-based SD, with that of its ML@nd consequently the new search in (26) corresponds to yet
based counterpart, now comes in the form of a non-trivi@notherlattice decoder, referred to as the LR-aided MMSE-
universal bound that is shared by the two methods. This is pRFeProcessed lattice decoder, which operates over a dignera
ticularly relevant because unconstrained lattice degpdauld Petter conditioned channel matrRT. _
conceivably require unbounded computational resoursengi  Finally with sphere decoding in mind, the LR algorithm
the unbounded number of candidate lattice points. Speltyficas followed by the QR decompositidhof the new lattice-
the following universal upper bound on the complexity oféduced MMSE-preprocessed matii', resulting in a new
regularized lattice-based SD, matches the upper bound]in PPer-triangular model
for_the ML case, and it .holds irr_espective of _the fuII—.rate F - Rsiw’ 27)
lattice code applied and irrespective of the fading siafist
The generality with respect to the fading statistics is ingoat  and in the new LR-aided MMSE-preprocessed lattice search,
because it guarantees that no set of fading statistics,teese Which accepts the application of the sphere decoder, anchwhi
that always generate infinitely dense lattices, can cause takes the form
unbounded increase in the complexity due to removal of the
boundary constraints.

Corollary 1c: Irrespective of the fading statistics and of -~ .
the full-rate lattice code applied, the complexity expasen/here QR = RT corresponds to the QR-decomposition of

. : > - decompost
of MMSE-preprocessed lattice SD and of ML-based SD, afeL: whereR”|s ugger-:trlangular, whee= Q"r,§ =T s,
upper bounded by and wherew” = QY w’.

At the very end,

F— f{sHQ, (28)

Sir—rid = arg min
ez~

T
(r) = . (r(ne = |r] = 1) + (ng |r] = r(ng —1))7) Sir—v1d = TS r1d, (29)
(24) allows for calculation of the estimate of the transmittechbpl
which simplifies to vectors in (10).
B T We note here that this (exact) solution of the LR-aided
c(r) = E”(”T —r) (25) MMSE-preprocessed lattice decoder defined by (28), (29),
. is identical to the exact solution of the MMSE-preprocessed
for integerr. latii :
attice decoder given by (17), because
Proof: See Appendix B. | . . . a2
The above results revealed the very high, ML-like complex- am lr - R3|" = o [r — RTT '3
ity of MMSE-preprocessed lattice decoding. Coming back to (a) ) <=2
the main focus of the paper, and after reverting to the most = ohr- QRT s
general setting of MIMO scenarios, statistics and fulerat ®) R R E:
lattice codes, we proceed to show how proper utilization of = ahr- RT™°8
lattice sphere decoding and LR techniques can indeed reduce T
the complexity exponent to zero, at an error-performansg co = éell{li?ZN r— RS ’
that vanishes in the high SNR limit. © 2
= énenzrl r —Rs| , (30)

I1l. LR-AIDED REGULARIZED LATTICE SPHERE .
DECODING COMPLEXITY where(a) follows from the fact thaQR = RT, (b) follows

tffom the rotational invariance of the Euclidean norm, and
Jpllows from the fact thafl'~'Z" = Z*~.

While though the two lattice decoding solutions (with and
ithout LR) provide identical error performance in the sejt

8{1 exact implementations, we proceed to show that, in terms
of complexity, lattice reduction techniques, and spedifica

a proper utilization of the LLL algorithm [22], can provide
Sria = arg Snenzg |r — R§|? dramatic improvements.

Lattice reduction techniques have been typically usedeén
MIMO setting to improve the error performance of suboptim
decoders (cf. [18], [19], see also [20], [21]). In the cutren
setting the LR algorithm, which is employed at the receiv
after the action of MMSE preprocessing, modifies the sear
of the MMSE-preprocessed lattice decoder, from

cf. (17)), to the ne . . . .
(cf. (A7) W A. Complexity of the LR-aided regularized lattice sphere de-

Sir—ria = arg min [r RT3, (26) coder
scn
We are here interested in establishing the complexity of

by accepting as input the MMSE-preprocessed lattice genefa X : . .
tor matrix R, and producing as output the matfix & Z~** the LR-aided regularized lattice sphere decoder. Givenh tha

which i§ unimodular meaning that it .has. integgr coefficientsiip more proper statement would be that the QR decomposition is
and unit-norm determinant, and which is designed so thaiformed by the LR algorithm it self.



the costs of implementing MMSE preprocessing and of imwvhich guarantees that the total number of visited latticetso
plementing the linear transformation in (29) are negligiblis upper bounded as
in the scale of intereXt, we limit our focus on establishing

the cost of lattice reduction, and then the cost of the SD = DN~ e .
implementation of the search in (28). Starting with the SD Nsp = ZNk = Zp TP (36)
complexity, as in (20), we identify the corresponding unmad =l =t
set at layerk to be Consequently, directly from Lemma 1, we have that

Ny & {8 € ZF | ||Fr — Ral|® < €73, (31) P (Nsp 3 pT) < pdetr=o), 37)

and in bounding the size of the above, we first focus on ) _

understanding the statistical behavior of thex k lower- A Similar approach deals with the complexity of the LLL algo-
right submatricesR;, of matrix R (k = 1,---,x), where nthmz WhICh is kr_wown (cf. [23]) to be generally unbounded.
we recall thatR is the upper triangular code-channel matrix>oPecifically drawing from [8, Lemma 2], under the natural
after MMSE preprocessing and LLL lattice reduction. TovgardfSsumption of power-limited chann#ls(cf. [8]), under the
this, and ford,(r — ¢) denoting the diversity gain of the Natural assumption that; (r — ¢) > dr(r) for all ¢ > 0,
exact implementation of the regularized lattice decoder @&@d for Nz denoting the number of flops spent by the LLL
multiplexing gainr — ¢, we have the following lemma on @lgorithm, one can readily conclude that

the smallest singular value dR;. The proof appears in

Appendix C. P(Npr > ylogp) < p @09, (38)
Lemma 1. The smallest singular valuemin(f{k) of sub- )
matrix Ry, k= 1,-- - , , satisfies for anyy > 2(d.(r—e)). Consequently the overall complexity
P (Umm(f{k) < p;'iT) < p~ =9 forallr>e>0. N = Ngp + NiR,

(32)

in flops, for the LR-aided MMSE preprocessed lattice sphere

To bound the cardinalityV,, of A;, (cf. (31)), and eventually decoder, satisfies the following
the total numberNgp = 22:1 Ny, of lattice points visited

by the SD, we proceed along the lines of the work in P (N2p7) = P({Nsp2p™}U{Nrr2pT})
[1], making the proper modifications to account for MMSE < pdlr=e), (39)
preprocessing, for the removal of the bounding region, and
for lattice reduction. Now going back to (5), and having in mind appropriate timeout
Towards this we see that, after removing the boundapylicies that boundV,,.. while at the same time specifically
constraint, Lemma 1 in [1] tells us that guarantee avanishing error performance gap to the exact
i solution of regularized lattice decoding, we can see that th
Ny 2 NG| < H [\/E—i— 2§ } : _complexny exponent(r) takes_ the equivalent form recently
pale} oi(Rg) introduced (for the ML case) in [1]
where o) = infle | — tim BPE 2P0 o0 (o)

Omin(Ri) = 01(Ry) < --- < o1 (Ry) p—ro00 log p

are the singular values @t;. Consequently we have that To see this we quickly note that faV,,., = p* where
x = ¢(r) — ¢ forany § > 0, it is the case that (cf. (9))

k z

N < [@ + L} . iy o0 Brpsig — OO

Omin (g Finally applying (39) we see that for any positive < e,
(33) itis the case that
As a result, for anyR,, such that loo P (N > peT+e

§ e(r) = inf{e | — lim —2 ( — ) dr(r)} (41)

~ = — 00

Tmin(Ri) > p (34) ’ &P

which vanishes arbitrarily close to zero, resulting in aozer
complexity exponent.

k - . . .
What remains is to consider the error-performance gap in
- 2 1 €
N < <\/E  2VEDEP VZng) = o (35)

and given that = /zlog p for some finitez, then

the presence the LR-aided regularized lattice SD with a-time
out policy that interrupts atVy,., = p® for any vanishingly
smallz > 0.

I
A
.

p K

12Even though the work here focuses on decoding, we can alsklysiate
the obvious fact that the cost of constructing the codewr@dso negligible )
in the scale of interest because it again only involves aefiditnensional 13This is a moderate assumption that asks gt H||%} < p. We note
linear transformation (cf. (6)). that this holds true for any telecommunications setting.



B. Gap to the exact solution of MMSE-preprocessed lattice Theorem 2: LR-aided MMSE-preprocessed lattice sphere
decoding decoding with a computational constraint activategd®atiops,

We here prove that the LR-aided regularized lattice sphetdows for a vanishing gap to the exact solution of MMSE-
decoder and the associated time-out policies that guarantePreprocessed lattice decoding, for any- 0. Equivalently the
vanishing complexity exponent, also guarantee a vanigjipg Same LR-aided decoder guarantees that
to the error performance of the exact lattice decoding imple _ log Niax(9)
mentation. This result is motivated by potentially expadian gr(e) =1 and pli{{}o W
gaps in the performance of other DMT optimal decoders (cf. ) . _
[8]), where these gaps may grow exponentially up fo (cf. for_all fading statistics, all MIMO scenarios, and all fuldte
[24]) or may potentially be unbounded [25]. lattice codes.

Towards establishing this gap, we recall that the exact
MMSE-preprocessed lattice decoder in (13) makes errors IV. CONCLUSIONS
whens,_;q # s. On the other hand the LLL-reduced MMSE-  The work identified the first lattice decoding solution that
preprocessed lattice sphere decoder with run-time conitya achieves, in the most general outage-limited MIMO setting
in addition to making the same error8. (i, i1 7 s), also and the high rate and high SNR limit, both a vanishing gap
makes errors when the run-time limit of flops becomes tg the error-performance of the (DMT optimal) exact solntio
active, i.e., whenV > p*, as well as when a small searchyt preprocessed lattice decoding, as well as a computétiona

=0 Ve>0,g>1,

radius causesV, = (. Consequently the correspondingomplexity that is subexponential in the number of codeword
performance gap to the exact regularized decoder, takes §8. The proposed solution employs lattice reduction (LR)
form aided regularized lattice sphere decoding and proper tineo
. P{Sr—pr—ia#sTU{N >p*} U{N, =0}) policies. As it turns out, lattice reduction is a specialring
g1(z) = plggo P (8 —1a #s) " dient that allows for complexity reductions; a role that was
To bound the above gap, we apply the union bound and tﬂ oroqsly demqnstrated here for the first time, by proving
fact that that W|th_0ut lattice reduct|0n_, for mo_st common_codgs, the
PN, = 0) <P (|w| > ¢) complexity cost for asymptotically optimal regularizedtitze
" - sphere decoding is exponential in the number of codeword
to get that bits, and in many cases it in fact matches the complexity cost
 PBry_1a #5) . P (N > p%) of ML- sphere decoding. _ . o
gr(z) < lim — —"—>+ lim ————= In light of the fact that, prior to this work, a vanishing erro
v PBraas) oo PEriats) f lly attributed only to nearkdt
CP(w"] > €) performance gap was generally attribute ly to k
+ lim —— 17 >7 (42) tice searches that have exponential complexity, in corionc
p=o0 P (8,10 7 8) with the fact that subexponential complexity was generally
Furthermore from (30) we observe that attributed to early-terminated (linear) solutions whichvé
. . though a performance gap that can be up to exponential in
P(8r—tr-1a#8) =P (r-1a #9), (43) " dimension and/or rate, the work constitutes the first proof
and from (39) we recall that that subexponential complexity need not come at the cost of

) . exponential reductions in lattice decoding error perfaroea
2} (NZPeT) < pde('rfe) p 9 p
which implies that for any: > 0 it holds that APPENDIXA

. P(N > %) PROOF FORTHEOREM 1 AND COROLLARY 1A
lim ————— =0. (44)
p—oo P (8,14 # )

Finally the last term in (42) relates to the search radiuand
to the behavior of the noisev which was shown in (16),

(27) to take the form

In the following we begin by providing an upper bound
on the complexity exponent of MMSE-preprocessed (uncon-
strained) lattice sphere decoding, where this bound halds f
the general quasi-static MIMO channel, for all fading stats
and for any full-rate lattice code. We will then proceed to
w' = Q" (o’ R s+ R""M w). (45) provide a lower bound on the complexity exponent of the same
decoder, where this bound, under the extra assumptions of
"o ) regular i.i.d. fading statistics and of layered codes, inilfact
accounts fpr the fact thab includes .self-mterference anOImatch the above mentioned upper bound to prove the theorem
colored noise, to bound the last term in (42). and the associated corollaries. Before proceeding with the

Lemma 2: There exist a finite: > dy,(r) for which a search bounds, we describe thexny (nr > nr) quasi-static point-

The following lemma, whose proof is found in Appendix D

radius¢ = v/zlog p guarantees that to-point MIMO channel, and its corresponding associatimn t
_ P(W > the general MIMO channel model in (10) and metric in (17).
lim —————— =0. (46)  The aforementioned quasi-static channel model takes the
p= P(8r1a 7 5) form

Consequently combining (43), (44) and (46) gives that
gr(z) =1, Vz > 0. The following directly holds. Yo =pHcXc + W, (47)



where X¢o € C"7*T, Yo € C"»¥T and W € CnexT Towards lower bounding;(Ry), we note that

represent the transmitted, received and noise signals aver

period of T' time slots, and wher#l € C"=*"T represents o;(Ry) > 0;(R) = 0;(M"%9) = \/a2 4+ o;(MHEM), (57)
the matrix of fade coefficients. The real-valued represemta o ) ) )

of (47) can be written as where the first inequality makes use of the interlacing prigpe

of singular values of sub-matrices [26]. Furthermore for

= Ir®Hp)x+w 48
Y Vot @ e “o o logo; (H{ He) i=1 . (58)
_ = -, =1,---,nr
whereHp = Re{He}  —Im{Hc} cx = (xt,-,xp)T ’ log p

Ich} Re{Hc} L
with x;, = [Re{X, 0}, Im{X,c} " for t = 1,...,7, anduy >---=> pn,, we see that;(Hc) = p~ 2/, and from
whereX, ¢ is t-th column ofX ¢, y and wherew are defined (53) that

similar to x. The system model in (48) is of the familiar form 1_rT
x. The sy (48) (M) > p4 % 0in(G)oy (Ir © Hp))
y = VpHx+w (49) = p2 =W oy, ) (Ho)
as in (1) withm = 2nsT, n = 2ngT, and where =p e tal-prm), (59)
H=1r ® Hg. (50)  wherelr(i) 2 [ L], and where the asymptotic equality is due

to the fact thatr,,in (G) = p°. Substituting from (59) in (57)

As before the vectorized codewords associated to the full-
we now have that

rate code, take the form

—rT

0i(Rg) > p 30 )=

){zp%TGs7 sEZ“ﬁp%R, (51) K (60)

whererx = 2min{ny,ng}T = 2npT = m, which allows us Corresponding to (56) we see that
to rewrite the model as
|:\/ 2k + 25 :| < p(%_%(l_“lzT(i))+)+’

y =Ms+w, (52) gi(Ry)| —
for forany: =1,--- ,2n7T, and from (56) we have that
M=p: %" HG=p: % (Ir 9 Hp)G.  (53) Ni() € p=ier (=30 pr ) ) (61)

Finally the corresponding coherent MMSE-preprocessed latherep = (1, - -+, pin, ). It follows that
tice decoder for the transmitted symbol vectgr can be

expressed to be (cf. (17)) Ngp(p) = ZNk(N) < ZpZLl (2~ 21—y t) T
k=1 k=1

~ . ~l12

§,_1q = arg min ||r — RS§||", 54
rld 8 serr | | ®4) = poin (Z =3 0—pypan™)”

wherer = Qf'y andR € C*** is the upper-triangular matrix, 2T ST (L_(l_uj)+)+ (62)

where furthermore botl®Q; and R result from the thin QR .

decomposition of then + ) x x dimensional preprocessedyhere the last asymptotic equality is due to the multipficit
channel matrix of the singular values.

M Q Now consider the set
reg A _ _
s[4 [g]n -
T
and where as before, = p . T(x) £ {“ | TZ <E - (1= “J')Jr) =z x} , (63)
=1
A. Upper bound on complexity of regularized lattice SD and note that for any < z, then (62) andu ¢ 7 (y)

ntly imply that Nep < p®, which in turn implies that

I . joi
In establishing the upper bound, we consider Lemma 1 (¢ T(y) < P (Nsp < p*) and consequently that

[1], which we properly modify to account for MMSE prepro-

cessing and for the removal of the constellation boundaries - logP (Nsp > p*) > _ lim logP (p € T(y))
and get that the numbéY;, of nodes visited at layet by the st log p = % log p ‘
MMSE-preprocessed lattice sphere decoder, is upper bdunde (64)
as

In evaluating the right hand side of (64) we note thiy) is a

k . L. !
B 2¢ closed set and thus, applying the large deviation prindigfle
N = [Nk < lj[l {m—i_ Ui(Rk)} ' (56) [27]), we have that

whereo;(Ry), i = 1,--- , k denote the singular values B, iy 08P (m € T(y)) > inf I(u) (65)
in increasing order. pro0 log p BET (y)



for some rate functiod(x). Consequently from (64) and (65),any code [8], we recall that the equivalent upper bound for

it follows that the ML-based sphere decoder, without MMSE preprocessing,
logP (Nsp > p* takes the form
T N S )
P00 log p HET (y)

nr +
Cot(1) £ max TZ min (L — 14 py, %) (72a)

This lower bound specified in (66) holds for angy < =. = nr

Consequently to get the tightest possible bound, we need

. . toI(p) <d 72b
to find sup, ., inf,cr) I(n). As inf,c7,) I(n) is non- st I{p) < du(r), (72b)
decreasing and left-continuous 4s it follows that p1 2 2 g 2 0. (72c)
sup inf I(p)= inf I( ). Comparing (70) and (72) we are able to conclude that both
y<z LET (y) KET (x the objective functions (70a) and (72a) as well as both pairs
Consequently of constraints are identical. To see this, we first note tbat f
log P (Nsp > p*) 0<u; <1, then
— lim —2 (1 SD=P) > inf I(p), (67) , N , +
p—r00 og p pneT (x) min (__1"',“7’_) _ (——1+/L7) ’
which in conjunction with (40) gives that nr nr N nr N
r r
Comtalr) < Eroaar) & inf{a] inf 1) > dy(1)} (Z-a-mr) = (E-tem)
=sup{z| Hlf( )I( p) < dp(r)} and furthermore we note that far; > 1, then
+ +
= <
max{ac| 1nf I( dr(r)} (68) min(L—l—i—uj,L) :<L—(1—M7) ) _r
nr nr nr nr

where the above follows from the aforemenuoned fact thath h h dz identical.
~ Qi leeP(Nsp>p") (and by extension alsmif,,cr ) /(1)) ich proves that,,;(r) andc,_;4(r) are identica

p—00 log p In considering the case of MMSE-preprocessed ML
is continuous and nondecreasingainand from the fact that SD, it is easy to see that the summands in the objec-

T(x) is a closed set. Consequently-q(r) takes the form e function in (72a) will be modified to take the form

Cr_1a(r) & max x (69a) min (% —(1—py)", #)Jr which can be seen to match
* nr n (70a) for alli.; > 0, which in turn concludes the proof that the
st TZ (L —(1- ,Uj)+) >z, (69b) upper boundz,_,q(r) for MMSE-preprocessed lattice SD is
j ' also shared by the ML-based sphere decoder, with or without
I(p) < di(r), (69¢) MMSE preprocessing, irrespective of the full-rate coded an
for all fade statistics represented by monotonic rate fonst
pr > > iy >0, (690)

Furthermore since/ (x) is a closed set, the maximumin B | ower bound on complexity of regularized lattice SD
(69) must be such that (69b) is satisfied with equality, inclzhi

casec,_;4(r) can be obtained as the solution to a constralnea
maximization problem according to

We will here, under the extra assumptions of regular i.i.d.
ding statistics and of layered codes with natural deapdin
order, provide a lower bound that matches the upper bound

_ r + in (71). The same bound and tightness will also apply to any
eroia(r) £ max TZ (E - (1= “J')+> (708) " fyll-rate code, under the assumption of a fixed, worst case
=1 decoding ordering.
st. I(p) < dp(r), (70b) The goal here is to show that at layker= 2¢T, for some
1> > g > 0. (70c) q € [1,nt|, the sphere decoder visits close/o—¢(") nodes

with a probability that is large compared to the probability
of decoding errorP (s #s) = p~?() which from the
expression of the complexity exponent (40), will prove that
Cr—1d(r) = Cr—1a(r).

Going back to (71), we lef be the largest integer for which
o8 ()’

Equivalently for u* = (ui,---,p;,,) being one of the
maximizing vector¥, i.e., such thap* € 7 (x) andI(p*) =
dr(r), thenc,_;4(r) takes the form

Cr_1a(r (71)

.
(1=t 73
o (1 —pg)™ >0, (73)

As we will now show the above bound is also shared by the € Which case (71) takes the form

ML-based sphere decoder, with or without MMSE preprocess

ing, irrespective of the full-rate code and the fading stas. 2 r y*
Directly from [1, Theorem 2], and taking into consideration Cr1a(T TZ nr . (74)
that MMSE-preprocessed lattice decoding is DMT optimal for =1
logo;(HEH .
14In general, (70) does not have a unique optimal point becéuse is We recall from (58) thaty; = _W’ J =

- p
constant ina for a < 0. 1,---,ny, and thatp* € T(z) satlsﬁesl(u*% = dy(r) and



maximizes (70a). We also note that without loss of gengralitve have that
we can assume that > 1 as otherwisec,_;4(r) = 0 (cf.

H H : H

(71)). Consequently it is the case thgt> 0 forj = 1,--- ,q. HpHp = 0(2¢+1)(Hr Hp)V(diag{0,---,0,1,--- ,1})V
Furthermore given the monotonicity of the rate functigpm), 2q 2p
gnd the fact that the objective function in (70) dqes notease = 0(2q+1) (HAHR)V (diag{0,---,0,1,---,1})
in u; beyondy; = 1, we may also assume without loss of ‘;f—’ ‘;f—’
generality that; < 1forj=1,--- ,nr. . 3{ i

As in [1] we proceed to define two everfts and; which (diag{0,---,0,1,---, 1)V
we will prove to be jointly sufficient so that, at layer= 24T, 2q 2p
the sptr:ere decoder visits close #&-¢(") nodes. These are = 0(2g+1)(HEFHR)V, V]
given by

N . _ where the last equality follows from the fact th¥i, contains
= {pj =20 <p; <pj—0,j=1--.,q (75) the last2p columns of V and whereA = B denotes that

0<pj<d,j=q+1,---,nr}, A —B is positive-semidefinite. Sineg (H”H) <€ R and since
for a given smalls > 0, and the Kronecker product induces singular value multiplicity
N . follows that
Qy = {Ul ((IT & Vp )G|p) > U}, (76)
(MTE(])HM"";(]

for some givenu > 0, where forp £ ny — ¢ then G, or

denotes the firsepT" columns ofG, and whereV,, denotes = p'~ % 0(q11) (HgHR)G{I (Ir ©® V, V)G, + /L
the last2p columns of V obtained by applying the singular
value decomposition ol g, i.e., Hgr = USV¥H, where

With respect to the smallest singular vaIue(MTeg)HMrsg

we have
Eédiag{ol(HR),--- ,O'QnT(HR)} . |z .
With o1 (Hg) < - < 03, (Hp) andVVH = I Hence,v#  T1(M7 ) MET) = 5 0o 4) (H Hi)
corresponds to thep largest singular values @ r. o1 (G‘H(IT ® VpVH)G‘p) +a?
Note also that by choosing sufficiently small, and using b b
the fact thatu; > 0 for i = 1,---,¢, we may without loss and consequently, given thifr € Q, we have that
of generality assume th&t; implies thaty; > 0 for all j = .
L, nr. o1 (M7) > p‘T\/uzpffzz(qu)(Hé’Hc) +1

Modifying the approach in [1, Theorem 1] to account for
MMSE preprocessing and unconstrained decoding, the lower
bound on the number of nodes visited at laydsy the sphere > pmm =0T (78)
decoder, is given by

Nsz[l[ﬁmk)—x/%r.

In the following, and up until (83), we will work towards uppe
boundingo;(Ry) so that we can then lower bourid.

=p % pz(l pa+1) "

where the first inequality follows from (76), the exponehtia
equality follows from (58) and from the fact that > 0 is
fixed and independent gf, and the last inequality follows
from (75).

From (53) we have that

(77)

: —rT
Towards this let (M) < p (1t pl00(G)or ) (He)P)
M7 = [ 22 T HG, } € R2nrtn)Tx2pT = petelomar@)T =1 20T, (79)
rip

contain the firs2pT columns of M"Y from (55), and note where the asymptotic equality follows from the fact that
that 0. (G) is fixed and independent @f Furthermore (75) gives
that fori =1,---,2¢T then

reg\H reg __ 2
(M, *)" M, = i ol —rT st Sy, o)t
and that from (50) we get ai(M™9) < p fer®7 (80)
(M) M9 = p' =G (Ir @ HIHR)G), + o?L.  where we have made use of the fact thgt < 1 for j =
i 1’ e 7nT'
Since

Given thatu? > 0 for j = 1,--- ¢, then for sufficiently
HEHR = V(diag{o,(HEHR), - - , 02, (HEHRg)}) VY small§ and fori =1,---,2¢T, we have that

= V(diag{o (HgHR)v T, 02n (HEIHR)} rT 1 rT 1 .
H . ’ H __+§(1_5)+>—_+5+2( leT(i))Jr,
— 0(2¢+1) (HRHR)dlag{Oa T 707 11 ) 1})V K
2 2p which means that for sufficiently smal| a comparison of (78)

+ G(?q-ﬁ-l)(HgHR)V(diag{Ov e 707 17 ) 1})VH5 and (80) y|e|dS
—— N——

2q 2p o (M) < oy (M‘T;g),



fori=1,---,2¢T. The above inequality allows us to apply We now turn to [1, Lemma 2] and recall that for the layered

Lemma 3 in [1], which in turn gives that codes assumed here, as well as for any full-rate design and
some non-random fixed decoding ordering (corresponding to a
0, (Mre9) . . ; .
oi(Ri) < | =it + 1| 0, (M), (81) permutation of the columns @), there exists a unitary matrix
1(M,*) V, such thatrank((IT ® (V;,')H)G“D) = 2pT i.e., that

fori=1,---,2¢T. )
Settingi = & in (79) upper bounds the maximum singular a1 ((IT ® (\Q,)H)G‘p) > 0.

value of M"¢9 as - . .
. However, by continuity of singular values [26] it followsrfo

0 (M) < p~ " t30omn)” < p3=55 0 (82)  sufficiently smallu > 0 (cf.(76)) thatP (22) > 0, which
implies'® that P (€25) = p° as(, is independent of. This in

where the last inequality is due to the fact that > 0. ) .
d y hat = turn implies that

Consequently combining (82) and (78) gives that

o (M0) P (Nsp 2 poe)=3T0) 2 P(y).  (90)
—NATeqy S PR,
o1 (M) With ©; being an open set, we have that
which together with (80) and (81) gives that . P(y) )
. rT 35,1 * + — lim 1 < inf I(N),
Ui(Rk) < p*T+‘§5+§(17#z2T(i)) i=1,-- ,2qT. (83) p—oo log p p,qul
Consequently, going back to (77), we have that = Z(|TLT —ng|+2j = 1)(uj — 20),
+ j=1
[fi - \/E} > p(F3 300 S 0 (84) = di(r) = 2(|ng — gl + q)ad,
ko;(Ryg) < du(r), (o1)
and furthermore foi = 1,--- ,2¢T', we have that"?T — %5 -

11 - “ZT(i))JF ~ 0 directly from definition ofg and for where the above follows from the monotonicity of the rate

2 .
sufficiently smalls. As a result, fork < 24T we have that ~ unction
nr
k . anTt
. r * I = — 27 — 1)y s
N > Hp(%_%‘s_%(l_“lnm)) (85) (1) Z;G”T ng|+2j = 1u; + 5 Hnr
> <
1=1
=) ) (%‘%(1—%”@)*)—%%7 (86) evaluated at
i *_25...7 *_25’07...’0 — inf I ’
and settingk = 2¢7T" we have that {m Hq } =arg Jnf (1)

29T (rT

Nagr 3 p(ZHE0 (=3 0niyp0)7) =3aT0) g7y and*® also follows from the fact that, by definitiod{(n*) =
rT * d (T‘)
TS, (B —(1—p*)t)—3¢T5 L
= plT Eie (FE=0=)™)=3019) (88) Consequently from (90) we have that
— (E,,‘fld(’l‘)—3qT6)
P ) (89) P (NSD Z pEszd(r)—?»qTé)

where the last equality follows from (74). Consequently — lim

lim, o < di(r), (92)

Nsp > Nagr > p%-t) 73410, and directly from the definition of the complexity exponent,
for small§ > 0. Given thatd can be chosen arbitrarily small,we have that,_4(r) > ¢, 14(r) —3¢T'é. As the bound holds
and given that event§; and (2, occur, then the number of for arbitrarily smalld > 0, it follows thatc,;a(r) = @.—a(r).
nodes visited by the SD at lay@qT is arbitrarily close to the Directly from [1, Theorem 4] which analyzes the ML-based

upper bound of?-a("). complexity exponent;,;(r), together with the fact that the
Now to show that,._;4(r) > ,_14(r) —3¢T3, we just have ML-based sphere decoder, with or without MMSE prepro-
P (Ngp > per-ta(r)=34T6 cessing, shares the same upper bogng,(r) as the MMSE-
to prove that— lim < dp(r). preprocessed lattice decoder, gives thai(r) = ¢,._;q(r),
p—re0 log p . which in turns implies that
Toward this we note that as (75) and (76) imply thagp >
pCr-1a(1)=34T3 it follows that cr—14(r) = cu(r).

P (NSD > pET—ld(T)*fiqT(;) >P (0 N0Q) =P (Q)P(Q,) This establishes Theorem 1 and Corollary Ta.

where the equality follows from the i.i.d. assumption on the ™®In light of the fact that evenV, has zero measure, what the continuity
entries inH¢, which makes the singular values HHHC of eigenvglues guarantees is that we can construct a netybdub of matrices
. ! . ¢ aroundV,, which are full rank, and which have a non zero measure. We also
independent of the singular vectorsEf Hc [28], [29], and o . , .

S . R . note that the matriced,, can be created recursively, starting from a single
which in turn also implies independence of the smgularelalumatrix v

H H H no*

of HAHc (event(2;) from the singular vectors oHy Hp 16Recall that parametet was previously introduced as a parameter that
(event()y). regulates the near zero behavior of the random variable.



APPENDIXB complexity of MMSE-preprocessed lattice SD is universally

PROOF FORCOROLLARIES 1B AND 1C upper bounded as (cf. [1])
Section A-A shows that,_;;(r) can be obtained as the T +
. oA — - -1 - -1 . (96
solution to the constrained maximization problem ny (T(nT 7] )+ (o lr] = r(nr = 1)) ) (%6)
nr oo + This proves Corollary 1d-]
= a oot
Cr_1d(r) = max TZ <7”LT (1—py) >
J=1 APPENDIXC
st I(p) <dp(r), (93a) PROOF FORLEMMA 1
p1 > > g > 0. (93b)  For RER, = MZM, + oI (cf. (14)}7, it follows by

the bounded orthogonality defect of LLL reduced bases that
In some cases though, further knowledge of the error perf?ﬁ'ere is a constank, > 0 independent ofR,. and p, for
mance of the encoder and decoder, can result in an exPlWﬁich (cf. [22] and tr:e proof in [30]) " ’
characterization of the complexity exponent. Take foranse '

the case of DMT optimal encoding [15], [16] and DMT Ky

. : : Tmae(R; 1) < (97)
optimal MMSE-preprocessed lattice decoding [6], [8], wher AR;)
the constraint/ (u) < dz(r) in (93a) reverts to the constraintynere
Z?jl(l — w;)t > r (cf. [8]), which may be recognized
to ‘correspond to the no-outage region (cf. [3]). In this case AR,) 2 min [Rec| (98)
¢-—14(r) can then be explicitly obtained from the optimization c€Z\0
problem denotes the shortest vector in the lattice generateR hyAs
o N a result we have that
r
Er_ld(’f') = m}?X TZ (E - (1 - /LJ)+) (94a) Tonin (Rr) > A(:R”I“) . (99)
j=1 KN
St nzT:(l _M)+ > (94b) Looking to lower boundamm(fir), we seek a bound on

A(R,). Towards this let’ = r — v for somer > ~v > 0,
(94c) in which case fors being the transmitted symbol vector, and
for any§ € Z* such thats # s, it follows that

j=1
H1 2 e 2 g 2 0,

which can be solved in a straightforward manner to give that It —R.8]| = |/(t—Rys)+Ru(s—3)

_ T < ~ R, (s —8

#rmta(r) = - (rlnr = [r) = 1)+ (7 [r] = r(nr — 1)), < Nt =Res)ll 4 |Ry (s =S| (200)
and

describing the upper bound on the complexity exponent for A A
MMSE-preprocessed lattice sphere decoding of DMT optimal ~ [[Rw (s =8)[| > [r —Ry8[ — [[(r — R,ss)]|
full-rate codes, which for minimum delaynf = 7) DMT = |lr —R,.8] — ||w]. (101)

optimal full-rate codes takes the form o i
From (101) it is clear that to find a lower bound a(R,,.),

Cr_1a(r) =r(ng — |r] = 1)+ (nr |r] —r(nr — 1) T, we need to lower bounffr — R,-§|| for all § € Z" and upper

(95) bound||w||. Let us, for now, assume thiatv||® < p°. To lower
bound|r — R,-§]|, we draw from the equivalence of MMSE
preprocessing and the regularized metric (cf. equatioh (45
[8]), and rewrite

and which further simplifies to

Croa(r) =r(np — 1),

A2 A2 2 11al12
. . . . . . r—R,.8|" = |y — M,.§||" + o ||8]]” — ¢, 102
for integer multiplexing gaings = 0, 1, - - - , np. In conjunction | 8| Iy 8l ~ I8l (102)

with the lower bound in Section A-B, under the conditions laywherec £ y#[I — MZ(MZM,, + o21)"'M,.Jy > 0. We

ered codes in Corollary 1b, we have thatq(r) = ¢—(r), now note that fo = s then |ly — M,.s|> + o2 ||s|* < p°,

which proves Corollary 1b] and since the left hand side of (102) cannot be negative, and
Moving on to the universal upper bound, we can see frofarthermore given that is independent of, we conclude that

(70) that, regardless of the fading statistics and the spoed- . < pb.

ing I(p), the exponent, _;4(r) is non-decreasing iy (r) We will now proceed to lower boundly — M,.§|° +

and is hence maximized wheh, (r) is itself maximized, i.e., a2 H§||2 and then use (102) to lower bourjg — R..3].

it is maximized in the presence of DMT optimal encodinggowards lower boundindly — MT/§||2 + a2, ||§,H2 we draw

and decoding. Combined with the fact that the correspondiftgm Theorem 1 in [8] and we leB be the spherical region

maximization problem in (94) does not depend on the fadirgven by

distribution, other than the natural fact that its tail must B2 {deR" HdH2 <1

vanish exponentially fast, results in the fact that, for &l

rate code and statistical characterization of the charthel, 17Note the transition to the notation reflecting the depeneesfdR on r.



where the radiug’ > 0 is independent op and is chosen so Applying (98) and (101), we have
thatd; +ds € R for anyd;, ds € B. The existence of the set

B follows by the assumption th#étis contained in the interior ARy) 2 HI;T_ RT’bSH = [lwll
of R. Now let > pr —p2
1 = %
v & min I IM,.d|?, = p (110)
T
dep™= BNLr:d#0 where the exponential inequality follows from (109). Ferth
and for giverny > ¢ > 0 chooseb > 0 such that more we know that
=T - —eT
KT o pso. ARy) =p7 AMRw) > p= (111)
I{ .
This may clearly be done for arbitraty> 0. We will in the wheree = v — ¢, r > € > 0, and from (99) and (111) it

follows thato ., (R,) > p~= .

We now note that the above implies that fgr, . > 1 and
[w||* < pb then o (R,) = p—=, and thus applying the
union bound yields

following temporarlly assume that.- > 1 and prove that,
together W|th||w|| < p®, the two conditions are sufficient for
AR,) > p <* to hold.

In order to bound the metric fa¥ € 7" where§ # s, we
note thatv,, . > 1 implies thatvd € p"=""BNZ*.d #0 P (omm(ﬁr) < pfiT)
it is the case that

P (e < DU > ")
P(vmic < 1)+ P (Iw]* > o).

We know from the exponential tail of the Gaussian distri-

IN

1
7 I\Mw+<d|\2 > 1

% ’ p7~ e HGdH (2) 1 bution thatP (|\w||2 > pb) = p~* and from Lemma 1 in [8]
1 that P (v, < 1) < p~4me(r'+0)  Hence
—‘p%_wHGdH > (Vrrge < 1) f) ot
P (Umzn(Rr) < p%) < pfdML(Tfe)
where (a) follows from the fact thatM, = p2~ = HG.
Consequently forall r > ¢ > 0.

The association with the singular values
o1(Ryp) <--- < on(Ryg)
. er
As R is bounded, and a$ > 0, it holds thatR C 3p= B is made using the interlacing property of singular values of

for all P, > pl, for a sufficiently Iargepl This |mpI|es that gyp- matrices, which gives that
'+

'+OT

HdeH >pn,vdep < BNZF,d+£0. (103)

s€yp B f?:fff p1 sinces € p R. wsor oi(Ryp) > ou(R,), i<k=1,--.x (112
Fors,d e 5 BNZ*, there exists af € p BN
7,8 +s, such that = d+s. Hence for any e p( nor g andfork =1k, that
7+, we have from (103) that P (Umin(ﬁr )< p ) < prhan(r=e),
l M, (8 —s)||* = 1 IM,.d|? > p™= . (104) Finally from the DMT optimality of the exact implementation

) ) of the regularized lattice decoder [6], [8], we have that
As ||w|| < p®, it follows that 1 |M,.d|" > ||w]|” for large

p, and that P (Umin(Rr )< pw ) < pdelr=e),
ly — M8 = |[M, (s —8) + w|?> > p™*.  (105) This proves Lemma [
Consequently APPENDIX D
ly — M,.8)° + a2 |8 > P (106) PROOF FORLEMMA 2

For a search radius that grows &s= \/zlogp = p°, we
first prove that

(r +<)

On the other hand i p B, then by definition of3

we have that?, |8]> > 11“2 , and consequently that .
1, P(Iw2>€2) < p
Iy = My8|* + a2 8] = ;1% . (207) o _
for = > 2/ > dp(r). Towards establishing the properties of
From (106) and (107) we then conclude that the equivalent noisev’ (cf. (45)), we consider an equivalent
ly — MT/s|| +a2 ||SH > p =L (108) representation of the MMSE-preprocessed lattice decautér a

let (cf. [31])
Given (106) and (108) for anye 7" such thag # s, itis the

case thalily M. 8|]> + a2 |8]]* = p**", which combined QR = { Q }R: { M

with ¢ < p® allows for (102) to give that Q: arl
g o T be the thin QR factorization of the modified channel matrix,
v =Ry 8[| = p< (109) whereQ, = R~'M € R"**, Q, = o, R~! € R*** and

] e ROHRIXr(113)



whereRER = MM + o21. It then follows that forF =  [7]
Q¥#, the MMSE-preprocessed lattice decoder is equivalent to
lattice decoding in the presence of chanRelnd noise (8]

’

w

—a’R s + R T Mw
_OLTQgIS + Q{IW

Consequently we calculate

El

(114)

, [10]
P (1wl >¢)
< P (|- aQYs| +Qiw] > ¢€) ny
(@) - H H| W
S (R B IR o I T B
< P H(HWH—I—SUP | — aus|) >§> [13]
seSr [14]
© P (slw + kK > €)
1 15
= P (slwll > (zlogp)? — rK) 1l
©) L
< P (lwl > (s110gp)?) e
= P(IIW|I2>—10gp)
[17]
d
2 P(||W||2>2210gp)

(115) [

where (a) follows from the MMSE-preprocessed equivalent
channel representation (cf. (113)), and where the inetipsli [1°]
in (b), (¢) and(d) follow for some fixedK that upper bounds
Supsess || — arsl|, and for some arbitrary;, z» satisfying
z > z1 > z2 > 0 independent op. Consequently

PIWl>¢) =P (107w >¢) £ p 21

for some0 < 2’ < 2, and as a result [22]
P(|w'] >

lim (H H 6) — lim p(dL(r)—z/) =0, [23]

p—oo P (ér—ld 7é S)
where the last equality follows after choosing the seardiusa
such thatz > 2z’ > d(r). This proves Lemma 2

p—r00

[24]

[25]
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