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Abstract. This paper presents a spectrum sensing algorithm for wideband cog-

nitive radio exploiting sensed spectrum discontinuity properties. Some work has

already been investigated by wavelet approach by Giannakis et al, but in this

paper we investigate an algebraic framework in order to model spectrum dis-

continuities. The information derived at the level of these irregularities will be

exploited in order to derive a spectrum sensing algorithm. The numerical sim-

ulation show satisfying results in terms of detection performance and receiver

operating characteristics curves as the detector takes into account noise annihi-

lation in its inner structure.
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1. Introduction

During the last decades, we have witnessed a great progress and an increasing need

for wireless communications systems due to costumers demand of more flexible,

wireless, smaller, more intelligent and practical devices explaining markets invaded

by smartphones, personal digital assistant (PDAs), tablets and netbooks. All this

need for flexibility and more ”mobile” devices lead to more and more needs to afford

the spectral resources that shall be able to satisfy costumers need for mobility. But,

as wide as spectrum seems to be, all those needs and demands made it a scarce

resource and highly misused.

Trying to face this shortage of radio resources, telecommunication regula-

tors and standardization organisms recommended sharing this valuable resource be-

tween the different actors in the wireless environment. The federal communications



2 W. Guibene, M. Turki, B. Zayen and A. Hayar

commission (FCC), for instance, defined a new policy of priorities in the wireless

systems, giving some privileges to some users, called primary users (PU) and less to

others, called secondary users (SU), who will use the spectrum in an opportunistic

way with minimum interference to PU systems.

Cognitive radio (CR) as introduced by Mitola [1], is one of those possible de-

vices that could be deployed as SU equipments and systems in Wireless networks.

As originally defined, a CR is a self aware and ”intelligent” device that can adapt it-

self to the Wireless environment changes. Such a device is able to detect the changes

in Wireless network to which it is connected and adapt its radio parameters to the

new opportunities that are detected. This constant track of the environment change

is called the ”spectrum sensing” function of a cognitive radio device.

Thus, spectrum sensing in CR aims in finding the holes in the PU transmission

which are the best opportunities to be used by the SU. Many statistical approaches

already exist. The easiest to implement and the reference detector in terms of com-

plexity is still the energy detector (ED). Nevertheless, the ED is highly sensitive to

noise and does not perform well in low signal to noise ratio (SNR). Other advanced

techniques based on signals modulations and exploiting some of the transmitted

signals inner properties were also developed. For instance, the detector that exploits

the built-in cyclic properties on a given signal is the cyclostationary features detec-

tor (CFD). The CFD do have a great robustness to noise compared to ED but its

high complexity is still a consequent draw back. Some other techniques, exploiting

a wavelet approach to efficient spectrum sensing of wideband channels were also

developed [2].

The rest of the paper is organized as following. In Section 2, we introduce

the state of the art and the motivations behind our proposed approach. In Section 3,

we state the problem as a detection problem with the formalism related to both

sensing and detection theories. The derivation of the proposed technique and some

key points on its implementation are introduced in Section 4. In Section 5, we give

the results and the simulation framework in which the developed technique was

simulated. Finally, Section 6 summarizes about the presented work and concludes

about its contributions.

2. State of the art

As previously stated, CR is presented [4] as a promising technology in order to han-

dle this shortage and misuse of spectral resources. The main functions of Cognitive

Radios are:

• Spectrum sensing: which is an important requirement towards CR implemen-

tation and feasibility. Three main strategies do exist in order to perform spec-

trum sensing: Transmitter detection (involving PU detection techniques), co-

operative detection (involving centralized and distributed schemes) and inter-

ference based detection.

• Spectrum management: which captures the most satisfying spectrum opportu-

nities in order to meet both PU and SU quality of service (QoS).
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• Spectrum mobility: which involves the mechanisms and protocols allowing

frequency hopes and dynamic spectrum use.

• Spectrum sharing: which aims at providing a fair spectrum sharing strategy in

order to serve the maximum number of SUs.

The presented work fits in the context of spectrum sensing framework for CR

networks (CRN) and more precisely single node detection or transmitter detection.

In this context, many statistical approaches for spectrum sensing have been devel-

oped. The most performing one is the cyclostationary features detection technique

[3, 5]. The main advantage of the cyclostationarity detection is that it can distin-

guish between noise signal and PU transmitted data. Indeed, noise has no spectral

correlation whereas the modulated signals are usually cyclostationary with non null

spectral correlation due to the embedded redundancy in the transmitted signal. The

cyclostationary features detector is thus able to distinguish between noise and PU.

The reference sensing method is the energy detector [3], as it is the easiest

to implement. Although the ED can be implemented without any need of apriori

knowledge of the PU signal, some difficulties still remain for implementation. First

of all, the only PU signal that can be detected is the one having an energy above the

threshold. So, the threshold selection in itself can be problematic as the threshold

highly depends on the changing noise level and the interference level. Another chal-

lenging issue is that the energy detection approach cannot distinguish the PU from

the other SU sharing the same channel. CFD is more robust to noise uncertainty

than an ED. Furthermore, it can work with lower SNR than ED.

More recently, a detector based on the signal space dimension based on the

estimation of the number of the covariance matrix independent eigenvalues has been

developed [6, 7, 8]. It was presented that one can conclude on the nature of this

signal based on the number of the independent eigenvectors of the observed signal

covariance matrix. The Akaike information criterion (AIC) was chosen in order to

sense the signal presence over the spectrum bandwidth. By analyzing the number of

significant eigenvalues minimizing the AIC criterion, one is able to conclude on the

nature of the sensed sub-band. Specifically, it is shown that the number of significant

eigenvalues is related to the presence or not of data in the signal.

Some other techniques, exploiting a wavelet approach to efficient spectrum

sensing of wideband channels were also developed [2]. The signal spectrum over

a wide frequency band is decomposed into elementary building blocks of subbands

that are well characterized by local irregularities in frequency. As a powerful mathe-

matical tool for analyzing singularities and edges, the wavelet transform is employed

to detect and estimate the local spectral irregular structure, which carries important

information on the frequency locations and power spectral densities of the subbands.

Along this line, a couple of wideband spectrum sensing techniques are developed

based on the local maxima of the wavelet transform modulus and the multi-scale

wavelet products.

The proposed method was inspired from algebraic Spike detection in elec-

troencephalograms (EEGs) [9] and the recent work developed by Giannakis based

on wavelet sensing [2]. Originally, the algebraic detection technique was introduced

[9, 10, 11] to detect spike locations in EEGs. And thus it can be used to detect
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signals transients. Given Giannakis work on wavelet approach, and its limitations

in complexity and implementation, we suggest in this context of wideband chan-

nels sensing, a detector using an algebraic approach to detect and estimate the local

spectral irregular structure, which carries important information on the frequency

locations and power spectral densities of the subbands.

This paper summarizes the work we’ve been conducting in spectrum sensing

for cognitive radio networks. A complete description of the reported work can be

found in [15, 16, 17, 18, 19].

3. System Model

In this section we investigate the system model considered through this paper. In

this system, the received signal at time n, denoted by yn, can be modeled as:

yn = Ansn + en (3.1)

where An being the transmission channel gain, sn is the transmit signal sent from

primary user and en is an additive corrupting noise.

In order to avoid interferences with the primary (licensed) system, the CR

needs to sense its radio environment whenever it wants to access available spectrum

resources. The goal of spectrum sensing is to decide between two conventional hy-

potheses modeling the spectrum occupancy:

yn =

{
en H0

Ansn + en H1
(3.2)

The sensed sub-band is assumed to be a white area if it contains only a noise

component, as defined in H0; while, once there exist primary user signals drowned

in noise in a specific band, as defined in H1, we infer that the band is occupied. The

key parameters of all spectrum sensing algorithms are the false alarm probability

PF and the detection probability PD . PF is the probability that the sensed sub-band

is classified as a PU data while actually it contains noise, thus PF should be kept as

small as possible. PD is the probability of classifying the sensed sub-band as a PU

data when it is truly present, thus sensing algorithm tend to maximize PD. To de-

sign the optimal detector on Neyman-Pearson criterion, we aim on maximizing the

overall PD under a given overall PF . According to those definitions, the probability

of false alarm is given by:

PF = P (H1 | H0) = P ( PU is detected | H0) (3.3)

that is the probability of the spectrum detector having detected a signal given the

hypothesis H0, and PD the probability of detection is expressed as:

PD = 1− PM = 1− P (H0 | H1)

= 1− P ( PU is not detected | H1) (3.4)

which represents the probability of the detector having detected a signal under hy-

pothesis H1, where PM indicates the probability of missed detection.

In order to infer on the nature of the received signal, we use a decision thresh-

old which is determined using the required probability of false alarm PF given by
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(3.3). The threshold Th for a given false alarm probability is determined by solving

the equation:

PF = P (yn is present | H0) = 1− FH0(Th) (3.5)

where FH0 denote the cumulative distribution function (CDF) under H0. In this

paper, the threshold is determined for each of the detectors via a Monte Carlo sim-

ulation.

4. Mathematical Background

In this section some noncommutative ring theory notions are used [13]. We start

by giving an overview of the mathematical background leading to the algebraic

detection technique. First let’s suppose that the frequency range available in the

wireless network is B Hz; so B could be expressed as B = [f0, fN ]. Saying that

this wireless network is cognitive, means that it supports heterogeneous wireless

devices that may adopt different wireless technologies for transmissions over dif-

ferent bands in the frequency range. A CR at a particular place and time needs

to sense the wireless environment in order to identify spectrum holes for oppor-

tunistic use. Suppose that the radio signal received by the CR occupies N spectrum

bands, whose frequency locations and PSD levels are to be detected and identi-

fied. These spectrum bands lie within [f1, fK ] consecutively, with their frequency

boundaries located at f1 < f2 < ... < fK . The n-th band is thus defined by:

Bn : {f ∈ Bn : fn−1 < f < fn, n = 2, 3, ..., K}. The PSD structure

of a wideband signal is illustrated in Fig. 4. The following basic assumptions are

adopted:

1. The frequency boundaries f1 and fK = f1 + B are known to the CR. Even

though the actual received signal may occupy a larger band, this CR regards

[f1, fK ] as the wide band of interest and seeks white spaces only within this

spectrum range.

2. The number of bands N and the locations f2, ..., fK−1 are unknown to the CR.

They remain unchanged within a time burst, but may vary from burst to burst

in the presence of slow fading.

3. The PSD within each band Bn is smooth and almost flat, but exhibits discon-

tinuities from its neighboring bands Bn−1 and Bn+1. As such, irregularities

in PSD appear at and only at the edges of the K bands.

4. The corrupting noise is additive white and zero mean.

The input signal is the amplitude spectrum of the received noisy signal. We

assume that its mathematical representation is a piecewise regular signal:

Y (f) =
K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (4.1)

where: χi[fi−1, fi]: the characteristic function of the interval [fi−1, fi], (pi)i∈[1,K]:

an N th order polynomials series, (fi)i∈[1,K] : the discontinuity points resulting
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FIGURE 1. K frequency bands with piecewise smooth PSD.

from multiplying each piby a χi and n(f) :the additive corrupting noise.

Now, let X(f) the clean version of the received signal given by:

X(f) = ΣK
i=1χi[fi−1, fi](f)pi(f − fi−1) (4.2)

And let b, the frequency band, given such as in each interval Ib = [fi−1, fi] =
[ν, ν + b] , ν ≥ 0 maximally one change point occurs in the interval Ib.

Now denoting Xν(f) = X(f + ν),f ∈ [0, b] for the restriction of the signal in the

interval Ib and redefine the change point which characterizes the distribution dis-

continuity relatively to Ib say fν given by:

yn =

{
fν = 0 if Xν is continuous
0 < fν ≤ b otherwise

Now, in order to emphasis the spectrum discontinuity behavior, we decide to

use the N th derivative of Xν(f), which in the sense of Distributions Theory is given

by:

dN

dfN
Xν(f) = [Xν(f)](N) +

N∑

k=1

µN−kδ(f − fν)(k−1) (4.3)

where: µk is the jump of the kth order derivative at the unique assumed change

point:fν

µk = X
(k)
ν (f+

ν )−X
(k)
ν (f−

ν )

with µk = 0⌋k=1..N if there is no change point and µk 6= 0⌋k=1..N if the change

point is in Ib.

[Xν(f)](N) is the regular derivative part of the N th derivative of the signal.

The spectrum sensing problem is now casted as a change point fν detection

problem. Several estimators can be derived from the previous equations equation.

For example any derivative order N can be taken and depending on this order the

equation is solved in the operational domain and back to frequency domain the

estimator is deduced.

In a matter of reducing the complexity of the frequency direct resolution, those
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equations are transposed to the operational domain, using the Laplace transform:

L(Xν(f)(N)) = sN X̂ν(s)−

N−1∑

m=0

sN−m−1 dm

dfm
Xν(f)⌋f=0

= e−sfν (µN−1 + sµN−2 + .. + sN−1µ0) (4.4)

Given the fact that the initial conditions, expressed in the previous equation, and

the jumps of the derivatives of Xν(f) are unknown parameters to the problem, in a

first time we are going to annihilate the jump values µ0,µ1,...,µN−1 (Appendix A)

then the initial conditions (Appendix B). After some calculations steps detailed, we

finally obtain:
N−1∑

k=0

(N
k ).fN−k

ν .(sN X̂ν(s))(N+k) = 0 (4.5)

In the actual context, the noisy observation of the amplitude spectrum Y (f) is taken

instead of Xν(f). As taking derivative in the operational domain is equivalent to

high-pass filtering in frequency domain, which may help amplifying the noise effect.

It is suggested to divide the whole previous equation by sl which in the frequency

domain will be equivalent to an integration if l > 2N , we thus obtain:

N−1∑

k=0

(N
k ).fN−k

ν .
(sN X̂ν(s))(N+k)

sl
= 0 (4.6)

Since there is no unknown variables anymore, the previous equation is now trans-

formed back to the frequency domain, we obtain the polynomial to be solved on

each sensed sub-band:

N−1∑

k=0

(N
k ).fN−k

ν .L−1[
(sN X̂ν(s))(N+k)

sl
] = 0 (4.7)

And denoting:

ϕk+1 = L−1[
(sN X̂ν(s))(N+k)

sl
] =

∫ +∞

0

hk+1(f).X(ν − f).df (4.8)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! 0 < f < b

0 otherwise

To summarize, we have shown that on each interval [0, b], for the noise-free obser-

vation the change points are located at frequencies solving:

N∑

k=0

(N
k ).fN−k

ν .ϕk+1 = 0 (4.9)

To summarize, we have shown that on each interval [0, b], for the noise-free

observation the change points are located at frequencies solving:

N∑

k=0

(N
k ).fN−k

ν .ϕk+1 = 0 (4.10)
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In [14], it was shown that edge detection and estimation is analyzed based

on forming multiscale point-wise products of smoothed gradient estimators. This

approach is intended to enhance multiscale peaks due to edges, while suppressing

noise. Adopting this technique to our spectrum sensing problem and restricting to

dyadic scales, we construct the multiscale product of N + 1 filters (corresponding

to Continuous Wavelet Transform in [14]), given by:

Df =

∣∣∣∣∣

∣∣∣∣∣

N∏

k=0

ϕk+1(fν)

∣∣∣∣∣

∣∣∣∣∣ (4.11)

4.1. Implementation Issues

The proposed algorithm is implemented as a filter bank which is composed of N

filters mounted in a parallel way. The impulse response of each filter is:

hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! 0 < f < b

0 otherwise
(4.12)

where k ∈ [0..N−1] and l is chosen such as l > 2×N . The proposed expression of

hk+1⌋k∈[0..N−1] was determined by modeling the spectrum by a piecewise regular

signal in frequency domain and casting the problem of spectrum sensing as a change

point detection in the primary user transmission. Finally, in each stage of the filter

bank, we compute the following equation:

ϕk+1(f) =

∫ +∞

0

hk+1(ν).X(f − ν).dν (4.13)

Then, we process by detecting spectrum discontinuities and to find the intervals of

interest.

4.2. Algorithm Discrete Implementation

The proposed algorithm in its discrete implementation is a filter bank composed of

N filters mounted in a parallel way. The impulse response of each filter is:

hk+1,n =

{
(nl(b−n)N+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(4.14)

where k ∈ [0..N−1] and l is chosen such as l > 2×N . The proposed expression of

hk+1,n⌋k∈[0..N−1] was determined by modeling the spectrum by a piecewise regular

signal in frequency domain and casting the problem of spectrum sensing as a change

point detection in the primary user transmission. Finally, in each detected interval

[nνi
, nνi+1 ] , we compute the following equation:

ϕk+1 =

nνi+1∑

m=nνi

Wmhk+1,mXm (4.15)

where Wm are the weights for numeric integration defined by:

W0 = WM = 0.5
Wm = 1 otherwise
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In order to infer whether the primary user is present in the detected intervals, a

decision function is computed as following:

Df =

∣∣∣∣∣

∣∣∣∣∣

N∏

k=0

ϕk+1(nν)

∣∣∣∣∣

∣∣∣∣∣ (4.16)

5. Performance Evaluation

5.1. Performance Metrics

Receiver operating characteristic (ROC) is a curve that shows comparison of the

probability of correct detection (PD) versus the probability of false alarm (PFA).

Such curve is standard way for verification of a detection algorithms. AD technique

has been compared to the ED considered as a reference technique. Each point is

constructed by averaging results from 1000 simulations and the change of detec-

tion probability has been achieved by changing the algorithms threshold level. An

estimate of PD , P̂D can be expressed as:

P̂D =

∑1000
i=1 N

(i)
cd∑1000

i=1 N
(i)
a

(5.1)

where Ncd is the number of correct detections per iteration and Na is number

of generated change points per iteration (it’s the same in every iteration).

Estimation of PFA, P̂FA is more complex since Nd, total number of detected

change points per iteration, is not a constant. Therefore P̂FA is calculated as a sum

of fake detection probabilities for each different number of total detections, multi-

plied with the probability that such number of total detection occurs (weight factor

in conditional probability):

P̂FA =

n∑

k=0

P̂FA|kP (Nd = k) (5.2)

where:P̂FA|k is defines as:

P̂FA|k =

{
NF A|k

k
k ∈ N∗

0 if k = 0
(5.3)

where NFA|k is the average number of falsely detected change points given

that the number of detected ones is k with n different realizations.

5.2. Simulations Results

In this section, we use the ED as a reference technique, since it is the most common

method for spectrum sensing because of its non-coherency and low complexity. The
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ED measures the received energy during a finite time interval and compares it to a

predetermined threshold. That is, the test statistic of the ED is:

M∑

n=1

‖ yn ‖
2 (5.4)

where M is the number of samples of the received signal xn. Traditional ED can be

simply implemented as a spectrum analyzer. A threshold used for PU detection is

highly susceptible to unknown or changing noise levels. Even if the threshold would

be set adaptively, presence of any in-band interference would confuse the ED.

Since the complexity of sensing algorithms is a major concern in implementa-

tion. As ED is well known for its simplicity, the comparison is made with reference

to it. Denoting M the number of samples of the received signal yn and N is the

model order of the AD, we show that the AD complexity is NM and the ED com-

plexity is M . From these results, we clearly see that the proposed sensing algorithm

has a comparable complexity level as the energy detector. Table 1 summarizes the

complexity of the two techniques.

Sensing technique Complexity

Energy detector M

Algebraic detector NM

TABLE 1. Complexity comparison of the different sensing techniques

For simulation results, the choice of the DVB-T PU system is justified by

the fact that most of the PU systems utilize the OFDM modulation format [12].

The considered model is an additive white Gaussian noise (AWGN) channel. The

simulation scenarios are generated by using different combinations of parameters

given in Table 2.

Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Frequency-flat Single path

Sensing time 1.25ms

Location variability 10dB

TABLE 2. The transmitted DVB-T primary user signal parameters

Figure 2 shows the detected change points by the algebraic technique where:

the blue signal is the simulated OFDM signal and the green stars are the detected

change points.

Figure 3 reports the comparison in terms of Probability of Detection Vs. SNR

between the Energy Detector (ED) and the three first Algebraic Detectors:(AD1)
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FIGURE 2. Change point detection with SNR=-8dB.

(AD2) and (AD3), for PF =0.05 and SNR ranging in -40 to 0dBs. The threshold

level for each detector is computed with function of the probability of false alarm

PF with respect to (3.5). This figure clearly shows that the proposed sensing algo-

rithm is quite robust to noise. These curves show also that the detection rate goes

higher as the polynomial order gets higher. This result is to be expected as the higher

the polynomial order is, the more accurate the approximation a polynomial is. Nev-

ertheless, it is to be noticed that this gain in precision is implies a higher complexity

in the algorithms implementation.

In Figure 4, we plot the ROC curve at an SNR=-15dB. We clearly see that for

the proposed technique, the higher the order, the more performing the detector gets.

6. Conclusion

In this paper, we presented a new standpoint for spectrum sensing emerging in de-

tection theory, deriving from differential algebra, noncommutative ring theory, and

operational calculus. The proposed algebraic based algorithm for spectrum sensing

by change point detections in order to emphasizes ”spike-like” parts of the given

noisy amplitude spectrum. Simulations results showed that the proposed approach

is very efficient to detect the occupied sub-bands in the the primary user transmis-

sions. We have shown how very simple sensing algorithm with good robustness to

noise can be devised within the framework of such unusual mathematical chapters in
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signal processing. A probabilistic interpretation, in the sense of ROC curve, prob-

ability of detection and probability of false alarm, is shown to be attached to the

presented approach. It has allowed us to give a first step towards a more complete

analysis of the proposed sensing algorithms.
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Appendix A. Annihilating Jumps in the derivatives

In a matter of reducing the complexity of the frequency direct resolution, the in-

volved equations are transposed to the operational domain, using the Laplace trans-

form. The equation in the operational domain is given by:

L(Xν(f)(N)) = sN X̂ν(s)−

N−1∑

m=0

sN−m−1 dm

dfm
Xν(f)⌋f=0 (A.1)

= e−sfν (µN−1 + sµN−2 + sµN−3 + ...... + sN−1µ0) (A.2)

Given the fact the initial conditions and the jump of the derivatives of Xν(f) are

unknown parameters to the problem, in a first time we are going to annihilate the

jump values µ0,µ1,...,µN−1 then the initial conditions. In order to make further cal-

culations easier and shorter to write, let:

u(s) = sN X̂ν(s) −
∑N−1

m=0 sN−m−1 dm

dfm Xν(f)⌋f=0, then the equation A.1 be-

comes:

esfν u(s) = µN−1 + sµN−2 + s2µN−3 + ...... + sN−1µ0 (A.3)

Now, a simple N times derivation of the previous equation with respect to s cancels

the jumpsµ0,µ1,...,µN−1 of the derivatives and we thus obtain:

dN

dsN
(esfν u(s)) = 0 (A.4)

Now, given the fact that both functions:

[s 7→ esfν ]

[s 7→ u(s) = sNXν(s)−
∑N−1

m=0 sN−m−1 dm

dfm Xν(f)⌋f=0]

are N -times differentiable functions, using the Leibniz Theorem for generalized

N th derivative, we obtain:

(esfν u(s))(N) =

N∑

k=0

(N
k ).(esfν )(N−k).(u(s))(k) (A.5)



Spectrum Sensing for Cognitive Radio Exploiting Spectrum Discontinuities Detection15

where, (N
k ) = N !

k!(N−k)! : denotes the binomial coefficient.

That’s to say:
N∑

k=0

(N
k ).esfν .fN−k

ν .(u(s))(k) = 0 (A.6)

Now, given the fact that the initial conditions in:

u(s) = sN X̂ν(s) −
∑N−1

m=0 sN−m−1 dm

dfm Xν(f)⌋f=0 are unknown parameters, we

make N-times derivatives of the previous equation equation to annihilate them, we

thus obtain:
N∑

k=0

(N
k ).esfν .fN−k

ν .(u(s))(N+k) = 0 (A.7)

Now, given that:

u(s) = sNX̂ν(s)−
∑N−1

m=0 sN−m−1 dm

dfm Xν(f)⌋f=0,

after N -times derivatives only (sN X̂ν(s))(N) remains, so :

N∑

k=0

(N
k ).esfν .fN−k

ν .(sN X̂ν(s))(N+k) = 0 (A.8)

Appendix B. Annihilating Initial conditions

Since there is no unknown variables anymore, the equations are now transformed

back to the frequency domain using the inverse Laplace transform, we obtain the

polynomial to be solved on each sensed sub-band:

N∑

k=0

(N
k ).esfν .fN−k

ν .L−1[
sN X̂ν(s)(N+k)

sl
] = 0 (B.1)

In a matter of clarity, the equation 18 is taken back to frequency domain for the three

arguments separately:

L−1[
sN X̂ν(s)(N+k)

sl
] =

1

(l − 1)!

∫ b

0

(b− f)(l−1)fN+kX(N)
ν (f)df (B.2)

Denoting the substitution λ, so that λb = f , leads to integration borders:{
f = b⇒ λ = 1
f = 0⇒ λ = 0

and the integration becomes:

L−1[
sN X̂ν(s)(N+k)

sl
] =

1

(l − 1)!

∫ 1

0

(b − λb)l−1λN+kX(N)
ν (λ).b.dλ

L−1[
sN X̂ν(s)(N+k)

sl
] =

bl+N+k

(l − 1)!

∫ 1

0

(1 − λ)l−1λN+kX(N)
ν (λ).dλ

In order to avoid X
(N)
ν (λ) which corresponds to a high-pass filtering, integration by

parts is applied (N − 1)-times with the formula:

∫ b

a
u′v = [uv]ba −

∫ b

a
uv′
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where each time:

u′(λ) = X
(N)
ν (λ), X

(N−1)
ν (λ), ..., X

(2)
ν (λ), X1

ν (λ), which gives:

L−1[
sN X̂ν(s)(N+k)

sl
] = −

bl+N+k

(l − 1)!

∫ 1

0

((1 − λ)l−1λN+k)(N)Xν(λ).dλ (B.3)

Now back to the original notations, we obtain:

L−1[
sN X̂ν(s)(N+k)

sl
] = −

1

(l − 1)!

∫ b

0

((b − f)l−1fN+k)(N)Xν(f).df (B.4)

And as stated previously, Xν(f) = X(f + ν), fε[0, b], we thus obtain:

L−1[
sN X̂ν(s)(N+k)

sl
] = −

1

(l− 1)!

∫ b

0

((b − f)l−1fN+k)(N)X(f + ν).df (B.5)

Now, in order to emphasize the convolution form, let’s denote: f ← b− f :

L−1[
sN X̂ν(s)(N+k)

sl
] =

1

(l − 1)!

∫ b

0

(f l−1(b− f)N+k)(N)X(ν + b− f).df (B.6)

And in order to simplify the expression let ν ← ν + b, we get the following expres-

sion:

L−1[
sN X̂ν(s)(N+k)

sl
] =

∫ b

0

(f l−1(b− f)N+k)(N)

(l − 1)!
X(ν − f).df (B.7)

Now , denoting:

ϕk+1 = L−1[
sN X̂ν(s)(N+k)

sl
] =

∫ +∞

0

hk+1(f).X(ν − f).df (B.8)

where:hk+1(f) =

{
(f l−1(b−f)N+k)(N))

(l−1)! , 0 < f < b

0 , otherwise

To summarize, we have shown that on each interval [0, b], for the noise-free obser-

vation the change points are located at frequencies solving:

N∑

k=0

(N
k ).esfν .fN−k

ν .ϕk+1 = 0 (B.9)

And the estimator is deduced by assuming as input the real amplitude spectrum

Y (f) instead of X(f).
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