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Abstract. Multimedia streams such as audio and video im-
pose tight temporal constraints for their presentation. Often,
related multimedia streams, such as audio and video, must
be presented in a synchronized way. We introduce a novel
scheme to ensure the continuous and synchronous delivery
of distributed stored multimedia streams across a commu-
nications network. We propose a new protocol for synchro-
nized playback and compute the buffer required to achieve
both, the continuity within a single substream and the syn-
chronization between related substreams. The scheme is very
general and does not require synchronized clocks. Using a
resynchronization protocol based on buffer level control, the
scheme is able to cope with server drop-outs and clock drift.
The synchronization scheme has been implemented and the
paper concludes with our experimental results.
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1 Introduction
1.1 Motivation

Advances in communication technology lead to new appli-
cations in the domain of multimedia. Emerging high-speed,
fiber-optic networks make it feasible to provide multime-
dia services such as video on-demand, tele-shopping or dis-
tance learning. These applications typically integrate differ-
ent types of media such as audio, video, text or images.
Customers of such a service retrieve the digitally stored me-
dia from a video server [Ber96] for playback.

1.2 Multimedia synchronization

Multimedia refers to the integration of different types of data
streams, including both continuous media streams (audio and
video) and discrete media streams (text, data, images). A
certain temporal relationship exists between the information
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units of these streams. Multimedia systems must mai
this relationship when storing, transmitting and prese:
the data. Commonly, the process of maintaining the temg
order of one or several media streams is called multim
synchronization [Eff93].

One can distinguish between live synchronization for
media streams and synthetic synchronization for stored
dia streams [Ste95]. In the former case, the capturing
playback must be performed almost at the same time, w
in the latter case, samples are recorded, stored and pli
back at a later time. For live synchronization, e.g., in -
conferencing, the tolerable end-to-end delay is in the
der of a few hundred milliseconds only. Consequently,
size of an elastic buffer at the receiver must be kept sr
trading-off requirements for jitter compensation against
delay for interactive applications. Synthetic synchroniza
of recorded media stream is easier to achieve than live :
chronization: higher end-to-end delays are tolerable, and
fact that sources can be influenced proves to be very ad
tageous as will be shown later. It is, for instance, poss
to adjust playback speed or to schedule the start-up ti
of streams as needed. However, as resources are limite:
is desirable for both kinds of synchronization to keep
required buffers as small as possible [Koe94).

Continuous media are characterized by a well-defi
temporal relationship between subsequent data units. In
mation is only conveyed when media quanta are presei
continuously in time. As for video/audio, the temporal r
tionship is dictated by the sampling rate. The problemr
maintaining continuity within a single stream is refe
to as intra-stream synchronization or serial synchron
tion [Bul91]. Moreover, there exist temporal relationst
between media units of related streams, for instance, an
dio and video stream. The preservation of these temps
constraints is called inter-stream synchronization. To sc
the problem of stream synchronization, we must regard b
issues which are tightly coupled.



1.3 Intra- and inter-stream synchronization

A continuous media stream consists of a sequence of
(encoded)' samples which are transferred between source
and sink. The task of intra-stream synchronization is to main-
tain the inherent temporal properties given by the sampling
rate, i.e., information has to be reproduced as originally
captured? [Scr92]. The temporal relationship within a single
stream is mainly disturbed for the following reasons [Blu94;
Lit92; Scr92}:

— network jitter,

end-system jitter,

clock drift,

— changing network conditions.

Network jitter denotes the varying delay that stream pack-
ets experience on their way from the sender to the receiver
network 1/0 device. It is introduced by buffering in interme-
diate nodes. End-system jitter refers to the variable delays
arising within the end-systems, and is caused by varying
system load and the packetizing and depacketizing of media
units with variable size, which are passed through the dif-
ferent protocol layers. Jitter is commonly equalized by the
use of an elastic buffer at the sink [Blu94].

Capturing, reproduction and presentation of continuous
media is driven by end-system clocks. In general, clocks
cannot be assumed to be synchronized. Due to temperature
differences or imperfections in the crystal clock, the fre-
quency of end-system clocks can differ over a long period
of time. The result is an offset in frequency to real time and
to other clocks, which causes a drift rate from 1076 s/s up to
10~? s/5.* The problem of clock drift can be coped with by
using time-synchronizing protocols within a network. The
network time protocol (NTP), for instance, offers a global
(virtual) time to its service users [Mil91]. Otherwise, if the
problem of clock drift is neglected, buffer overflow or buffer
starvation at the client will arise over a long period of time
[Scr92; Scr95]. The effect of clock drift is also known as
skew, which is defined as an average jitter over a time in-
terval [Lit92].

Changing network conditions, not introduced by jitter,
refer to a variation of connection properties, for instance, an
alteration of the average delay or an increasing rate of lost
media units.* These effects strongly depend on the QoS the
underlying network can provide. However, synchronization
mechanisms need to cope with this kind of problem.

! Commonly used digital compression techniques are, for instance,
JPEG, MPEG, or H.261.

2 There exist exeptions, of course, when, for example, the playback rate
is altered to achieve VCR functions like fast-forward.

* A drift of 100 s/s is a more common value for today’s systems. If the
problem of synchronization is restricted to the playback of a single video,
for instance, with a duration of 90 min, a total asynchronity of 5.4 ms will
arise. This deviation cannot be perceived by a user. On the other hand, a
dritt of 10=% s/s resulting in an asynchrony of 5.4 s will strongly influence
presentation quality [Scr92).

4 Commonly, unconfirmed datagram services are used for transmitting
multimedia data. Retransmissions are not suitable as data is extremely time
critical. A datagram service is unreliable and media units are lost from time
to time. The proposed sychronization scheme handles lost media units such
that the last media unit is displayed again, that is, the last media unit is
doubled.
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Fig. 1. Classification of synchronization mechanisms [Koe94]

Inter-stream synchronization must establish and main-
tain a certain temporal relationship between two or more re-
lated continuous media streams. Little et al. [Lit91] present
13 possible relationships between time intervals of related
streams. Common relations are interval a equals b or a before
b. Inter-stream synchronization must ensure these relations
to a certain accuracy determined by the end user.

1.4 Related work

A common classification scheme for synchronization ap-
proaches does not exist. At present, synchronization mech-
anisms are either application-specific or try to cover syn-
chronization on a more abstract level independent of the
application at hand. Surveys of multimedia synchronization
mechanisms can be found in [Ehl194], [Koe94] and [PL96].
The January 1996 issue of the Journal of Selected Areas in
Communications is also devoted to synchronization [Ge096].
In order to give a rough overview of existing approaches, we
adopted a classification scheme of Koehler et al. [Koe94].
We are using the following three important classification
criteria’ to systematize existing work in a 3D cube (see
Fig. D).

— Time. Schemes can be classified whether or not they
assume a synchronized, global time within a network.
Global clocks allow to compensate for clock drift and
to calculate exact values for delay or jitter. On the other
hand, they are not available on every system at present,
and accuracy is not always as fine-grained as desired. A
sophisticated, complex protocol is required.

- Location. Synchronization functionality may be located
either at the source or at the sink, depending on the
capabilities of the sink [Koe94].

~ Method. Restoring synchronization can be done either
by speeding up or slowing down presentation or pro-
duction of media units, or by stuffing. The latter can
be performed either by duplicating/deleting media units

3 Further criteria are, for instance, participants, direction, and flexibility
(see [Gey95]).
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or by pausing/skipping, respectively. The effect of the
methods is the same. By applying, a stream that is out
of synchronization may either catch up or slow down in
order to regain synchronization. Changing speed might
not always be possible as resources, e.g., bandwidth, are
limited [Koe94; Ste95].

The work of Steinmetz [Ste90] and Little et al. [Lit90] is
not classified in the cube because they do not present a con-
crete synchronization scheme, but examine synchronization
issues in a more abstract way. Steinmetz discusses character-
istics of multimedia systems and presents a set of constructs
to express inter-media relationships. Little et al. model the
inter-media timing based on timed Petri nets.

Escobar et al. [Esc94] and Rothermel et al. [Rot95] pro-
pose a scheme that requires globally synchronized clocks.
Their synchronization mechanism relies on time stamps to
determine the different kind of delays each stream experi-
ences. At the receiver, different delays are equalized to the
maximum delay by buffering. Rothermel et al. enhance this
basic mechanism with a buffer-level control and a master-
slave concept. The usage of a logical time system (LTS) pro-
posed by Anderson et al. {And91] is very similar to global
clocks.

Rangan et al. [Ran93] present a synchronization tech-
nique based on feedback. Synchronization is done at the
sender side, assuming that the receiver stations send back
the number of the currently displayed media unit. Asyn-
chrony can be discovered by the use of so-called relative
time stamps (RTS). Synchrony is restored by deleting or du-
plicating media units. Trigger packets are exchanged period-
ically so as to calculate the relative time deviation between
sender and receiver. Agarval et al. [Aga94] adopt the idea
of Rangan et al. and enhance the scheme by dropping the
assumption of bounded jitter.

Chakrabiti et al. [Cha94] also apply feedback: the
sender’s production rate is controlled by the used buffer
space at the receiver. A receiver clock determines a con-
stant consumption rate from the buffer.

The technique of phase-locked loops is usually applied
to restore synchronization of continuous data transmitted via
an asynchronous network, e.g., ATM. The buffer level at
the receiver is compared to a nominal value. Basically, the
readout clock is driven by the fill level. A phase-locked loop
mechanism is described by Almeida et al. [Alm91].

A more pragmatic solution for synchronization is given
by Cen et al. [Cen95]. It is based on software feedbacks to
the sender. Synchronization is regained either by influencing
production speed or by skipping/pausing. To filter out jitter
effects, low-pass filters are used.

Little et al.’s skew control system [Lit92] applies a kind
of buffer level control. Within a certain nominal buffer level
inter-stream synchronization is maintained. When defined
thresholds are reached, synchronization is regained by du-
plicating or dropping media units. Little assumes a constant
playout rate and guaranteed network resources. The syn-
chronization scheme of Koehler et al. [Koe94] covers intra-
stream synchronization exclusively. The mechanism is based
on controlling the receiver buffer level. The fill level is fil-
tered, compared to a nominal value, and evaluated by a con-
trol function. Correspondingly, intra-stream synchronization

is restored by duplicating or deleting media units in the loc
buffer.

We propose a synchronization scheme for stored n
dia that achieves both, suitable intra- and inter-stream sy
chronization. The scheme is receiver-based and does 1
assume global clocks. Resynchronization is done by sk
ping/pausing (see Fig. 1). Our work has been inspir
by the ideas of Ishibashi et al. [Ish95], who propose
achieve inter-stream synchronization by providing int
stream synchronization for each stream involved, and
Santoso [San93] who provides conditions for a smooth pl:
out. Ishibashi et al. propose a time-stamp-based synchi
nization and apply a concept based on delay estimatic
to perform synchronization in case of unknown delay. On
intra-stream synchronization is established, inter-stream sy
chronization can be maintained with a certain probabili
To initiate the playback of a stream in a synchronized ms
ner, we introduce a novel start-up protocol. For resynchi
nization, we present a buffer level control concept, whi
has been influenced by Koehler et al. and Rothermel et
[Koe94; Rot95].

1.5 Context of the synchronization problem

The synchronization problem addressed in this paper is or
tivated by our work on scalable video servers. We have ¢
signed and implemented a video server, called server
ray, consisting of n server nodes (see Fig. 2). A video
distributed over all server nodes using a technique call
subframe striping. Each video frame f; is partitioned ir
n equal-size parts c; ;, called subframes, which are stor
on the n different servers. If F; = {c;,...,¢;,,} deno
the set of subframes for f;, then f; = |J ¢; ;- The sen
Jj=l..n
array with the synchronization mechanisms presented in tl
paper has been successfully implemented in our video ser
prototype [Ber96].

During playback, each server node is continuously trai
mitting its subframes to the client. The transfer is schedul
such that all striping blocks that are part of the same frai
are completely received by the client at the deadline of t
corresponding frame. The client reassembles the frame
combining the subframes from all server nodes. An exa
ple for n = 3 with each server sending with a rate of
subframes per second is depicted in Fig. 3.

Another example for inter-stream synchronization
stored multimedia streams is given by Cen et al. [Cen9.
They describe a distributed MPEG player with the auc
server and the video server being at different locations
the Internet environment.

2 Synchronization protocol

2.1 Overview

We derive our synchronization scheme by stepwise refir
ment. First, we develop a solution for the case of zero jitt

and then relax this assumption, requiring bounded jitter on
Finally, we cover synchronization problems not introduc
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Fig. 3. Temporal relationship for subframe striping

by jitter. In each step, we derive the buffer requirements and
playout deadlines to assure inter- and intra-stream synchro-
nization. We present three models.

Model 1 solves the problem of different but fixed delays
on the network connections for each substream. We pro-
pose a novel synchronization protocol that compensates for
these delays by computing well-defined starting times for
each server. The protocol allows to initiate the synchronized
playback of a media stream that is composed of several sub-
streams.

Model 2 takes into account the jitter experienced by me-
dia units traveling from the source to the destination. Jitter is
assumed to be bounded. To smooth out jitter, elastic buffers
are required. Our scheme guarantees a smooth playback of
the stream and has very low buffer requirements. Model
2 covers both intra-stream synchronization and inter-stream
synchronization.

Model 3 solves the problems of clock drift, changing
network conditions® and server drop outs by employing a
buffer level control with a feedback loop to the servers so as
to regain synchronization in the case of disturbances. Again,
buffer requirements are regarded with respect to the results
of models 1 and 2. The behavior of a filtering function is
examined. Filters are necessary to identify whether a prob-
lem is of long-term or short-term effect. The tuning of some
parameters is discussed. '

6 Because synchronization is strongly affected by an alteration of the
average delay, we focus on this issue.

server node

Aeise Jonies

Fig. 2. Server array

s

Fig. 4. Distributed architecture for the synchronization scheme

Novel aspects of our work are:

— the start-up protocol and the concept of shifting the start-
ing times,

— a stepwise approach that gradually relaxes the assump-
tions and therefore leads to a whole family of synchro—
nization protocols,

- a rigorous derivation (with proofs) for the exact buffer
consumption,

-~ a working 1mplementat10n of the proposed scheme that
addresses various practical aspects such as the choice of
the parameters and the resynchronization strategy,. and:
allows us to obtain experimental results. salals

For the proposed synchronlzatlon scheme, we as§i1 g jél
a client D is receiving substreams from dlffereglt 60
Client and servers are interconnected via a g%} ork. (
Fig. 4). A
Each of the servers denoted by .S delivers an i
substream of media units.® The production 13§ driven by
the server clock. Arriving media units are buff d in FIFO

client. Our model is more general and covers thls as,
8 We use the term media unit in a broader sensg Depending on rhgtstr‘u-
ame

egy of striping, a media unit can be a complete frime or only a sublras

(see Sect. 1.5). Inter-frame smpmg dlstnbutes oifiplete frames across all
4:frare into n equal parts

server nodes. The pre-
ategies. In the paper. we
“understanding.

sented model is general enough to handle both
always refer to subframe striping in order 10:
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composed of all the substreams, is driven by the destination’s
clock.

While the use of globally synchronized clocks facilitates
synchronization, our synchronization scheme does not as-
sume the presence of a global time or synchronized clocks
for several reasons [Ran93].

— Network time protocols are not ubiquitous.

— Clock synchronization needs sophisticated, complex pro-
tocols.

— Heterogenous subnetworks hinder the presence of a
global time because different organizational domains do
not wish to synchronize their time with other domains.

~ Even when using synchronized clocks, errors are intro-
duced by inaccuracies and, thus, mechanisms are needed
in any case to cope with this problem.

2.2 Sources of asynchrony

Several sources of asynchrony exist in the configuration
described in the previous section. These are different de-
lays, network jitter, end-system jitter, clock drift, alteration
of the average delay, and server drop-outs. Specifically the
assumption of independent network connections imposes dif-
ferent delays. A synchronization scheme has to compensate
for these differences in order to display the continuous media
stream in a timely order. Beside the network delay, media
units experience a delay due to packetizing/depacketizing,
the processing through the lower protocol layers, and the
buffering at the client. Figure 5 shows the cumulative delay
of two independent substreams which are started at the same
time. Due to different delays, the media units of the two sub-
streams are not played out simultaneously. The variation of
delay is defined as jitter. Furthermore, the synchronization
scheme has to be adaptive with respect to a change of the
average delay (changing network conditions) and to server
drop-outs, which are a realistic assumption when using non-
real-time operating systems.

2.3 Assumptions

Our synchronization mechanism uses time stamps. Each time
a media unit® is scheduled by a server, it is stamped with
the current local time in order to allow the client to calculate
the roundtrip delay, jitter, or inter-arrival times. Moreover,
we assume that each media unit carries a sequence number
for determining the media unit order.

In contrast to other approaches, buffer requirements or
fill levels are always stated in terms of media units or time,

9 We will also use the abbreviation mu for media unit.

instead of the amount of allocated memory. This consider-
ation is preferred because synchronization is a problem of
time and, for continuous media, time is represented implic-
itly by the media units of a stream. This seems reasonable be-
cause media unit sizes vary due to encoding algorithms like
JPEG or MPEG [Ko0e94]. However, notice that a mapping
of media units to the allocation of bytes must be carried out
for implementation purposes. Taking the largest media unit
of a stream as an estimate wastes a lot of memory, especially
when using MPEG compression. Sophisticated solutions of
mapping are subject of future work. In the following, we
will use the term buffer slot to denote the buffer space for
one media unit.

Since processing time, e.g., for protocol actions does not
concern the actual synchronization problem, we will neglect
it, whereas an implementation must take it into account. Fi-
nally, we assume that control messages are reliably trans-
ferred.

Model parameters

number of server nodes in the server array

n

N number of media units of a stream

i,J,v media unit index ,5,v=0,...,N -1

k serverindex k£=0,...,n—1

I index set of n subsequent media units start-
ing with media unit j

Sk denotes server node k providing substream
k .

D denotes the destination or client node

S; initial sending time of media unit 7 in server  [s]
time

8¢ synchronized sending time of media unit i [s]
in server time '

a; arrival time of media unit ¢ in client time [s]

d; roundtrip delay'%for media unit i measured [s]
at the client

d™  maximum roundtrip delay [s]

tstart starting time of the synchronization [s]
protocol

Lref reference time for the start-up calculation [s]

to earliest possible playout time of the first [s]
media unit

t; expected arrival of the media unit 7 at the [s]
client

di; arrival time difference between media unit  [s]
i and j

A set of media units that needs to be played out at the same
time is referred to as synchronization group.

10 The roundtrip delay comprises the delay for a control message that
requests a media unit and the delay for delivering the media unit.



We assume that media units are distributed in a round-
robin fashion across the involved server nodes. Hence, we
can identify the storage location of a media unit by its media
unit number!!, ie.,

Server S; modn Stores the media unit 4. §))]

The leads to the following formulation of the synchroniza-
tion problem.

The client must playout the media units of all subsets I;,
with j modn = 0, at the same time.

2.4 Model 1: start-up synchronization
2.4.1 Introduction

Under the assumption of constant delay and zero jitter, we
solve in model 1 the synchronization problem by assuring
that the first n media units, which form a synchronization
group, arrive at the same time at the client. We therefore
need

t; = to, Vi € Iy. 2)

The major problem addressed by model 1 is the compen-
sation for different delays due to the independence of the
different substreams. For instance, the geographical distance
from server to client may be different for each server. Thus,
starting transmission of media units in a synchronized order
would lead to different arrival times at the client, with the
result of asynchrony. Usually, this is compensated by de-
laying media units at the client [Esc94]. Depending on the
location of the sources, large buffers may be required.

In order to avoid buffering to achieve the equalization
of different delays, we take advantage of the fact that stored
media offers more flexibility. The idea is to initiate playout
at the servers such that media units arrive at the sink in
a synchronous manner. This is performed by shifting the
starting times of the servers on the time axis in correlation
to the network delay of their connection to the client. The
proposed start-up protocol consists of two phases.

— In the first phase, called evaluation phase, roundtrip de-
lays for each substream are calculated, while

- in the second phase, called synchronization phase, the

starting time for each server is calculated and transmitted
back to the servers.

The model is based on the assumption of a constant end-
. to-end delay without any jitter. We further exclude, for the
moment, changing network conditions, server drop-outs, and
clock drift. In such a scenario, synchronization needs to be
done once at the beginning and is maintained automatically
afterwards.

We need to introduce some more notation to express
inter-dependencies between the parameters of the model. We
then give a description of the start-up protocol flow and
prove its correctness. We close the section with an example
of the protocol.

' This implies that each substream will send media units at the same
rate. An extension of the scheme to different media unit rate, each one
being the integer multiple of a base rate, is straightforward.
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The starting time ¢5a of the protocol equals the begin-
ning of the first phase. Without loss of generality, let

tstart = 0. (3)

To begin with, we regard the first n media units of a stream
given by I, that are distributed across the n servers. The
roundtrip delay d; for the media unit 7 is given by the dif-
ference between its arrival time a; and the starting time of
the synchronization protocol:

Viel. . €]

The second phase of the protocol begins at time t., which is
determined by the last of the first n media units that arrives.

ter = max{a;i € I} : &)

The difference between the arrival times of arbitrary media
units ¢ and j is needed to calculate the starting times of the
servers. We define the difference as follows:

5ij =a; — a; Vl,] (6)

di =0 — tslart;

2.4.2 Start-up protocol

The synchronization protocol for starting playback at the
server is launched after all involved parties are¢ ready for
playback. It can be divided into two phases: evaluation phase
and synchronization phase. The goal of the first phase is to
compute the roundtrip delays d;, Vi € I, while the second
phase calculates the starting times and propagates them back
to the servers. During start-up, the client sends two different
kinds of control messages to the servers:

— Ewval_Request(i): client D requests media unit 7 from
server S;, Vi € Ip.

- Sync_Request(i, s): client D transmits the starting time
s¢ to server S;. '

(a) Evaluation phase

- At local time tgan, client D sends an Eval_Request(z)
to servers S;, Vi € I. ’

— Server S; receives the Eval.Request(z) at local time s;,
Vi € Iy. '

- Server S; immediately sends media unit ¢ time-stamped
with s; back to client D, Vi € I;.

— At local time a;, client D receives media unit ¢ from
server S;, Vi € Iy.

— At local time t.f, client D has received the last media
unit,
The roundtrip delays d; = a; — tgan, Vi € Iy, and the
maximum roundtrip time as d™* = max{d;|i € [y} are
computed.

(b) Synchronization phase

- At local time t, client D computes £y as tp = max {tper+
d;li € Iy}, the index v that determines g as v € Iy, with
tref + dy, = to, and the delay differences as §,; = a,, — a;,
Vi € 1012

12 In case of subframe striping, 8,,; may be reduced to 8,,; = d™&* — d;,
Vi € Iy. We need a double index for &,,; to cover also inter-frame striping,
where the index of d™®* must not necessarily equal v.
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— With these results, the starting time of server S; is cal-
culated in server time s§ = s; + d™ + §,;, Vi € I,.

- Client D sends a Sync_Request(i,s$) to server S;,
Vi € I.

— At local time s; + d;(ter — a;), server S; receives the
Sync_Request(i, s¢), Vi € I.

— At local time s¢, server S; starts scheduling of the sub-
stream by sending media unit ¢, Vi € Ip.13

- At local time ¢;, client D receives media unit i, Vi € I.

At any time, only one synchronization group of n media
units must be buffered at the client; after the complete re-
ception, the media units are played out immediately. To show
the correctness of our mechanism, we first discuss the cal-
culation of the earliest possible playout time ¢, for the first
media unit as stated in Theorem 1. The future starting times
s are given according to Theorem 2.

Calculation of the earliest possible playout time ¢, for the
first media unit

We need to choose to such that all media units i € I can
be delivered and played out in time, i.e., they will arrive at
their deadline t;, which is given by (2) as #; = t,. Obviously,
media unit ¢ € Ip delivered by server S; cannot be expected
earlier than t.r + d;. Hence, the substream with the largest
delay determines t.

Theorem 1. Let to = max{twes+d; | i € Iy}. Then all media
units can be delivered and played out in time.

Progf. Since the earliest possible arrival time for media unit
1 € I 18 trer+d;, we need to show that t; > trer+d;, Vi € I,
Let ¢ = max{t,ef +di|i € Io}

(2) ==ty > ter + d;, Vi € I,

=> to does not violate the arrival times of other substreams.
To show that #y is minimal, we assume that 3 &, < ¢,

=3 iol with fo < tref + dio

(2) = to = ti, < trer+d,,

=> contradiction to the earliest possible arrival time.

For the calculation of the future starting times s$, Vi € I,
we define the substream v determining ¢, as follows:

v € Iy with teer + dy, = tg. @)

Calculation of the synchronized sending time s of media-
unit ¢ for server S,

Substream v is considered crifical since it determines the
starting times of all other initial substreams, and is therefore
considered as a reference point to which all other substreams
are adjusted. Clearly, the future starting time s$ of substream
i is composed of the initial starting time s; plus the max-
imum roundtrip delay .d™**. This sum is corrected by the
relative arrival time distance §,,; between media unit ; and
media unit v. This gives the starting time that provides a
simultaneous arrival of the media units of any substream 3
and the media units of substream v. The calculation based
on (8), (7), (4) is stated in the following theorem'*.

13 We are retransmitting the initial media units in the synchronization
phase in order to have exactly the same conditions as in the evaluation
phase. This guarantees correctness of the scheme also in the case of inter-
frame striping, where media units may have different size.

14 One can easily imagine situations where synchronization is needed not
only at the beginning of a stream. A typical example is the VCR function
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Fig. 6. Example of the start-up synchronization protocol flow

Table 1. Example for the start-up calculations

B

Server  a; d;  ter . 0y sf
1

So 1 11 12 so+ 13
S 6 6 12 6 s +18
S5, 2 12 12 0 s2+ 12

Theorem 2. Let s¢ = s; + d™* 4 §,;,Vi € I. Then media
unit © € Iy will arrive at client time t;.

Proof. For each i € Ip: at client time t.s, s is sent back
to server S;, which receives it at server time s; + d™* (see
Fig. 6). If S; sent media unit ¢ immediately back to D, it
would arrive at client time t.f + d;. The term s; + d™* is
corrected by §,;.

Media-unit ¢ will arrive at D at client time

tref + dz + 5’Ui = Lper + (ai - tstart) +a, — ai)

3)= tref + Gy =/tref + dv

(Theorem 1) =ty

2) =1,

2.4.3 Example of the start-up protocol

The following example in Fig. 6 illustrates model 1. We
assume n = 3, i.e., three servers, with one substream each.
The calculated starting values are shown in Table 1.

For each server and for the client D, a time axis is pro-
vided. Arrows indicate control messages or media units, re-
spectively, that are transferred between client and servers.
With to = max{tes + d;|i € Ip} = max{23,18,24} = 24, we
get v =2.

“pause”. After having paused, it becomes necessary to resynchronize again,
starting with the media unit subsequent to the last one displayed. The de-
scribed scheme can be generalized to any series of subsequent media units
requested by the client [Gey95].



Substream 2 experiences the largest roundtrip delay d™*,
and therefore determines ¢.r. Substream 2 is critical because
it cannot be started earlier than s, + 12. As indicated on the
time axis for server 0, substream 0 could be started earlier,
but is delayed to arrive at the same time as substream 2.

2.5 Model 2: intra- and inter-stream synchronization
2.5.1 Introduction

Model 1 shows how to cope with different but constant
delays for each substream originating from a single server
node. However, synchronization is performed under the as-
sumption that jitter does not exist. Model 2 loosens this
assumption and takes into account end-system jitter and net-
work jitter. We consider the cumulative jitter to which the
factors described in Sect. 2.2 contribute, and we assume that
the jitter is bounded.

When subject to jitter, media units will not arrive in
a synchronized manner, although they have been sent in a
timely manner. The temporal relationship within one sub-
stream is destroyed and time gaps between arriving me-
dia units vary according to the occurred jitter.. Thus, an
isochronous playback cannot be achieved if arriving media
units of a substream would be played out immediately. Fur-
thermore, jitter may distort the relationship between media
units of a synchronization group. Hence, intra-stream syn-
chronization as well as inter-stream synchronization is dis-
turbed. To smooth out the effects of jitter, media units must
be delayed at the sink such that continuous playback can be
guaranteed. Consequently, playout buffers corresponding to
the amount of jitter are required.

The main point addressed by model 2 is the intra- and
inter-stream synchronization and the calculation of the re-
quired buffer space. First, we regard the synchronization
of a single substream. Based on a rule of Santoso et al.
[San93], we formulate a theorem that states a well-defined
playout time (the playout time or playout deadline is de-
fined as the time elapsed at the client between arrival and
playout of the first media unit of a substream) for a sub-
stream such that intra-stream synchronization can be guar-
anteed. Using this so-called playout deadline, we derive the
required buffer space. Smooth playout cannot be guaranteed
if starting before the playout deadline. Starting at a later
time would require more buffer space. Afterwards, we will
extend our considerations to the synchronization of multiple
substreams. The main idea in order to achieve inter-stream
synchronization is to maintain intra-stream synchronization
for each substream [Ish95]. Each one of the substreams is
assumed to have a different jitter bound. In this case, buffer
reservation according to a single substream is not sufficient
anymore, as inter-stream synchronization will be disturbed
for the reason of differences in the jitter bounds. Additional
buffering is required to compensate for this. Finally, we ex-
amine the effects of the start-up protocol {model! 1) on buffer
requirements in the case of jitter. The application of model 1
to initiate playback of the servers in a synchronized manner
can introduce an error due to jitter. We give a worst case
estimate for the error and additional buffer requirements are
computed accordingly.
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We begin with an extension of the model parameters used
so far.

Model parameters

m substream or server index, m=0,...,n—1
r requested display rate of each substream
at the client [mu/s]
df®  maximum delay for substream k [s]
d’,;““ minimum delay for substream & [s]
dy average delay for substream & [s]
Ay jitter for substream k [s]
A™*  maximum jitter of all substreams [s]
T maximum upper deviation from dj. due to
jitter for substream k& [s]
AL maximum lower deviation from dj, due to
jitter for substream k& [s]
A™* maximum upper deviation of all
substreams [s]
by, buffer requirement for substream % at the
client [mu]
by buffer requirement for substream k at the
client with shifting [mu]
bM  buffer requirement for substream k at the
client with max. jitter [mu]
B total buffer requirement for a synchro-
nization group [mu]
BS  total buffer requirement for a synchro-
nization group with shifting [mu]
BM  total buffer requirement for a synchro-
nization group with max. jitter [mu]

Throughout this paper, we assume bounded jitter and we use
the definition of jitter given by Rangan et al. [Ran92], who
define jitter as the difference between the maximum delay
and the minimum delay.

Ay = dPex — 00 ks 6))
A" = max{Aklk € {0...n —1}}. )]
In addition to this, we need jitter bounds that are defined
as the deviation from the average delay di. Jitter is in gen-
eral not distributed symmetrically. Thus, A7 and 4, may

not be equal. For further considerations, we assume inter-
dependencies as follows.

Ap= AL+ 4, ks (10)
dP™ =dy + A%, Vk; an
dpt =dy — Ay, Vk; (12)
AT = max{A}|k € {0...n—1}}. (13)

2.5.2 Synchronized playout for a single substream

To guarantee the timely presentation of a single stream sub-
ject to jitter, it is necessary to buffer arriving media units at
the client to compensate the jitter. The buffer is emptied at
a constant rate.

Santoso et al. [San93] have already shown that the tem-
poral relationship within one continuous media stream can
be preserved by delaying the output of the first media unit for
dP®* — dMi" seconds. Based on this theorem, both the play-
out deadline and the buffer requirements are derived. The
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Fig. 7. Worst case scenario for a single substream

deadline given by Santoso et al. (case (a)) can be lowered
in some situations (case (b)).

Theorem 3. Consider a single substream k in the case of
bounded jitter Ay given by (8). Then smooth playout can
be guaranteed whenever either one of the following starting
conditions holds true.

(a) dp™ — d?i" = Ay, seconds elapsed after the arrival of the
first media- unit, or

(b) the ([Ag - ] + 1)-th media unit has arrived.

Proof. A proof for (a) can be found in [San93]. Condition
(b) improves (a) in some cases, i.e., playout can start ear-
lier without violating timeliness, as shown in Fig. 7: The
first media unit experiences the maximum delay, subsequent
media units arrive in a burst (indicated by the gray area in
Fig. 7) such that after the arrival of the ([ Ag-7r]+1)-th media
unit, the elapsed time is less than dp™ — d". The average
delay of media units is denoted by dashed arrows. Assum-
ing that the ([Af - r] + 1)-th media unit has just arrived, we
start the playout of the buffered media units immediately.
A number of [Ay - 7] + 1 media units is at least sufficient
for a presentation period of ([Ag - 7]+ 1)-77! > Ap +7~!
seconds. In the worst case, the ([Ag - 7] + 1)-th media unit
experiences its minimum delay and the subsequent media
unit its maximum delay. Then the maximum period without
any arrival is given by Ay +77 1+ A} = Ay + 77! seconds.
([Ag-r]+1)-7~! gives an upper bound to A +7~!. Conse-
quently, the next media unit arrives just in time. Following
media units will not arrive later because the last one has
already experienced the largest delay.

Theorem 4 enables us to calculate the maximum required
buffer space for the synchronization of a single substream.

Theorem 4. Consider a single substream k in the case of
bounded jitter Ay. Let Theorem 3 be applied as a static con-
dition. Then a buffer space of at most [24y, - r| media units
is required to guarantee intra-stream synchronization.

Theorem 3(a)

Fig. 8. Worst case scenario for a burst arrival

Progf. To begin with, we regard the rule of Santoso et al.
stated in Theorem 3 (a). We derive the required buffer space
based on a worst case scenario outlined in Fig. 8.

Let the first media unit of substream k arrive with his
maximum delay, while all subsequent media units experi-
ence their minimum delay. Assuming that no media unit can
overtake another, in this worst case, a burst of media units
occurs before the deadline of Ay given by Theorem 3 (a)
is reached. The situation is indicated by the gray area in
Fig. 8. The time ¢, elapsed between the first media unit of
the burst and the last one that arrives just at the beginning
of the playout computes as follows:

tm=Jk+A;+Ak+A;—Jk=2Ak.

Thus, in the worst case, the client must buffer 24, sec-
onds of playback time, corresponding to [2A4j - r] media
units. Further buffering is not needed because subsequent
media units cannot arrive earlier. -

Theorem 3 (b) improves the rule of Santoso et al., as
indicated in the proof for Theorem 3. Clearly, playout can
start: before A seconds have elapsed as shown in Fig. 7.
But in such a situation, the rule of Santoso et al. is equally
applicable, resulting in a later beginning of the playout, i.e.,
the consumption from the buffer would start later. We have
already covered the worst case for Theorem 3 (a), and there-
fore conclude that, by employing Theorem 3 (b), no further
buffering beyond 2A seconds of playback time is required.

2.5.3 Synchronized playout for multiple substreams

The basic idea of the synchronization scheme in model 2isto

achieve inter-stream synchronization between multiple sub-
streams by intra-stream synchronization. Once intra-stream
synchronization has been established by satisfying Theorem
3 and 4 for each substream, inter-stream synchronization is
attained [Ish95; San93]. This holds true if each substream
would experience the same jitter.

In the following, we consider different jitter bounds for
each substream and examine the impact on buffer require-
ments. The jitter bounds will differ for the case that the paths
from sources to the destination are different. We assume that

i
|
4
|




'z
:
:
E
E
;

S0 D S1 So D St
0T %0 Ak
\ / ks 7 ks

K 1 1

1\\\ /// ///
\ / i /

52 NI - 52 shift 7y 52
R ¢, s,
NN AV s, s

53 \ / 3 / 3
\ \ / / ’ /
RN A s s A s

S,

4\\\\ ///‘/4 ol ////4
NN AP \ s,
N , //-‘5 ~‘1\\ , //55
\ \td ;7 N Ny

\ / s \ 7 s
\ VAV 20 NN A
NI R NN e
‘7 NI 7y
/// \\\ //
/ \ /
/ \ /
/ \ /
[ iy
Y y \ \j

Fig. 9. Multiple substreams without and with shifting

media units experience an average delay d on all substream
connections. The following proofs can also be carried out
with different average delays (see Appendix B for the proof
of Theorem 5).

We present two methods to compute the buffer requu‘ements
for multiple substreams. :

— The first approach estimates the jitter for all substreams
with the maximum jitter value.

— The second strategy attempts to refine this coarse- gram
estimation by shifting the starting times of each sub-
stream in correlation to their jitter values in order to
save buffer space.

(a) Maximum jitter strategy

Obviously, playout can only start if Theorem 3 is satisfied
for all substreams. Thus, the playout deadline for a stream
constituted by a synchronization group is defined by the sub-
stream that satisfies Theorem 3 last of all. The situation is
complicated by different jitter bounds for the correspond-
ing substreams, which lead to different playout deadlines
and buffer requirements. We must avoid a situation where
substreams with large jitter bounds still wait for their dead-
lines, while the buffer of other substreams with small jitter
bounds already overflows. Ishibashi et al. [Ish95] propose a
straightforward solution that allocates a buffer whose size is
determined by the substream with the largest jitter bound.
Hence, the buffer requirement bkM for each substream of the
group and BM for the complete group are given as follows.

WM = [24m . r]; (14)
n—1

BM ="ty =n- 24 .r]. (15)
k=0

(b) Shifting strategy

Depending on the differences in the jitter values of the sub-
streams, the maximum jitter strategy might lead to a buffer
waste. A more sophisticated way to handle this problem is
to synchronize the different substreams such that they reach
their playout deadline at the same time on average. This is
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done by shifting the starting points of all substreams accord-
ing to the deadline of the substream with the largest jitter

. bound. Figure 9 depicts such a scenario for two sources,

where d = 3.5, Ag =2 and A, =6.

With Theorem 4, we get buffer requirements of four me-
dia units for substream 0 and 12 media units for substream
1. Substream O reaches its playout deadline on average at t4;
and substream 1 at ¢;,. Without shifting, a buffer overflow
occurs when receiving the 5-th media unit of substream 0,
while substream 1 must wait another two time units until
playout can start. By shifting, both -substreams are due for
playout at the same time. The amount of the forward shift
can be easily derived from Theorem 3. The k-th substream
has to be shifted forward on the time axis with the difference
of its jitter to the maximum jitter, i.e., A™* — A units of
time. Clearly, substream % has to be started A™* — A, units
later than the substream with the largest jitter. When apply-
ing that shift, one might conclude that no further buffering
is needed, except for the buffer given by Theorem 4. In fact,
there is a worst case that requires additional buffer space for
each substream. The amount of additional buffering is stated
in Theorem 5. ‘

Theorem 5. Consider a synchronization group consisting of
n substreams. With each substream being played out at a rate
r. Each substream k has bounded jitter Ay and is started
A™X _ A seconds later than the substregm with the maxi-
mum jitter A™*, ie., a shift of A™ — Ay, is applied. Further-
more, substreams are assumed to be synchronized to their ay-
erage delay prior to the beginning of their playback. Let The-
orem 3 be applied. Then a buffer space of [(A™** — AL)-r]

media units for each substream k, in addition to the buﬁer
space required by Theorem 4, is needed to guarantee intra-
and inter-stream synchronization for multzple dependent sub-
streams.

Proof. We assume that all substreams have been shifted ac-
cording to the substream with the largest jitter. Let m be
the substream with the largest jitter A™* and let k be any
other substream that has been shifted A™* — Az seconds.
The proof is based on worst case cons1derat10ns described
in Figs. 10 and 11 .

Regard two substreams which reach their playout dead-
line!® at the same time on average due to the shifting strat-
egy. The worst case that can happen is that one substream
still waits for its playout deadline, while the buffer of the
other substream overflows. This becomes true if all media
units of one substream experience their minimum delay and
all media units of the other substream experience their max-
imum delay. We aligned the playout deadlines of the sub-
streams on average. So, the latest possible playout deadline
is determined by the substream with the largest positive jit-
ter bound A* if all media units of this substream experience
their largest delay. We can therefore distinguish two cases'®:
1. A}, > Aj and the first media unit of substream m ex-
periences d%"‘", while all media units of substream & arrive
with their minimum delay di™".

15 We refer to the playout deadline given in Theorem 3 (a).

18 Since we assume arbitrary values of Ay and AL, we need to dis-
tinguish two cases in order to show that the addmonal buffer requirement
depends on the substream with the largest upper jitter bound A™2**,
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2. A}, < Aj and the first media unit of substream % ex-
periences dj>*, while all media units of substream m arrive
with their minimum delay d'™".

Case 1.

According to Theorem 3, the playout deadline for substream
m is reached at the latest d + A}, + A,, seconds after the
first media unit of m has been sent. We are interested in
the maximum number of media units of the k-th substream
that may arrive before the playout deadline is reached. We
consider the period ¢, between the first media unit of the k-
th substream and that media unit of the k-th substream that
arrives just at the playout deadline of the m-th substream.

tr =d+ AL + Ay + Ap — (d+ A™ — Ay)
=d+ AL+ AL + A, + A;
~(d+ A4 + 4y, — A - AY)
= Ay +24; + 45
Applying Theorem 3, we have already allocated 2A;, buffer
space in terms of time. From this we conclude an additional

buffering of [(A4}, +2A, + A — 240)r] = [(4}, — Ap)r]
media units for the k-th substream.

Case 2.
Case 2 can be shown analogous to case 1 (see Fig. 11). The
period t, is computed as follows:

tr = (A™ — A +d+ AL+ A+ A, —d
= (A, + AL+ AL — A+ AL+ AL+ AL + Ay)
= AL+ A} +24

We have already allocated 2A,,, buffer space for substream
m. Thus, we get additional buffering of [(A} + A}, +2A,, —
24,,)r] = [(A; — Af)r] media units for the m-th sub-
stream.

We can conclude that the additional required buffer space
does not depend on the substream with the largest jitter, but
on that one with the largest upper jitter bound A™** defined
in (13). We can therefore derive an additional buffering of
[(A™* — A})-r] media units for an arbitrary substream k.

Y Y Y

Fig. 11. Worst case scenario 2 for multiple substreams with shifting

With the above theorems, the total buffer requirements ¢
be computed as follows.

by = [(2 A + A™ — ALY . r]; (1
n—1 n—1

BS =Y "0 =) [(2- Ap+A™* — A})-r]. a
k=0 k=0

Theorem 6. Applying the shifting strategy for the synchi
nization of multiple substreams saves buffer space whene\
AL <A™ — Ak holds true!”.

Proof. To prove Theorem 6, we must show that b7 < b
For the following considerations, we will express the buf
requirements in terms of time. Let

bf =2 A+ A™* — A}, Vk; and

b =2.4™, V.
Then, bM — b3

=2 - AT — (2. A+ AT — AD)

=2 A™ — AL+ AL) — A + A

=2 A™ — AL -2 4, - A"

=2-A™ — A — AL — AT

=2 A™ — (Ag) = (4 + A™) >0,
because A < A™* with (9) and A, < A™* — Amax+,
= b3 < bM

To demonstrate the buffer savings, we computed BM — |
for two substreams. For substream 0, we have chosen a fix
jitter value of Ay = 40 ms, while A, is varied with

spect to Ag in steps of 20 ms, taking the values 60, 80, .
200 ms. For each substream, we admitted three values

A

- high:  A;=3/4-A,
- medium: A} =1/2- Ay,

'7 The assumption of AL <A™ — AM3+ holds true for a variety
realistic values of A" and A}, specifically for A} = A
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- low: Af =1/4- A .

We calculated the shift of A, — Ay according to Theorem 5,
and for each of the shift values, we regarded all possible
combinations of the A} values between the two substreams.

Combinations are denoted by a pair A}/A}, where Aj
and A} can take the values H, M, and L for high, medium,
and low, e.g., (H/M). Figure 12 depicts the buffer savings for
the different values and jitter combinations. The numerical
values for the buffer savings are provided in the appendix
in Table 4. ‘

For an arbitrary combination of jitter values, buffer sav-
ings increase when the shift between the two substreams
becomes large, that is, the larger the difference in jitter val-
ues between substreams, the more buffer is saved due to
Theorem 5. For a shift of 160 ms for instance, buffer sav-
ings up to 35% compared to the maximum-jitter strategy are
possible. If the difference in jitter between two substreams
equals zero, both the maximum jitter strategy and the shift-
ing strategy require equal buffering.

For the combinations of jitter values, a wave form can be
observed in Fig. 12. The lower the maximum value A™#+,
the more buffers are saved (compare proof for Theorem 6).
Since Ag is always smaller than A, A™** gets minimal for
low A7 values. Thus, we obtain the largest buffer savings
with the combinations L/L, M/L, and H/L. )

2.6 Start-up protocol influence

Until now, we have assumed that substreams are synchro-
nized with respect to their average delay. Model 1 is based
on the assumption of zero jitter. When we use the scheme
in the case of bounded jitter, we cannot guarantee the syn-
chronization of the substreams with respect to their average
delay, since it is based on the roundtrip delay values expe-
rienced by the first n media units. If the experienced delay
corresponds to the average delay, then the start-up protocol
works correctly. However, the observed delay can be altered
due to jitter, hence the calculation introduces an error that
must be considered.

The start-up protocol computation is based on a roundtrip
delay for-a request packet and one or several packets carry-
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ing a media unit. However, the transmission of the request
packet from sink to source and the sending of the media unit
back to the client are subject to jitter.

Theorem 7. Let Theorem 3 and 5 be applied. The start-
up protocol of model 1 is used to initiate the playback of
substreams. Then intra- and inter-stream synchronization for
multiple dependent substreams can be guaranteed if, in ad-
dition to Theorem 5, a buffer space of [max{A,, + A} —
A" m + kAm=0...n— 1} - r| media units for each
substream k is allocated.

Proof. The proof is analogous to the one for Theorem 5,
except that an additional shift introduced by the start-up cal-
culation is taken into account (see [Gey95)).

2.7 Exact buffer requirements

Model 2 provides a framework to compute buffer require-
ments for multiple substreams with different jitter bounds
to attain inter-stream synchronization by maintaining intra-
stream synchronization. Buffer requirements are given by
Theorem 4 and 5. The error introduced by the start-up pro-
tocol is corrected by Theorem 7. Throughout all théorems,
we expressed the time we need to buffer in terms of media
units. The required buffer space can be optimized by adding
up the time to buffer given by Theorems 4, 5 and 7 and by
transforming the resulting sum into buffer slots. Hence, we
can sum up the overall buffer requirements by-for a sub-
stream k, and B for a synchronization group consisting of
n substreams: , : s

b = [QAk + A" — A} + max{A,, + AL — A™>*| (18)
m#kAm=0...n—-1}-7];

> b (19)

k=1

=1

B

[QAL + A™ — AL + max{A,, + A} — A"

m#kAm=0...n—1}-r].

3 Model 3: resynchronization
3.1 Introduction

Models 1 and 2 assured both intra-stream synchronization
and inter-stream synchronization under the assumption that
jitter is bounded. In ATM-based networks, this assumptions
typically holds true at least for the network, because we can
express the acceptable QoS in parameters like throughput,
delay, jitter or cell losses [Scr92]. If the endsystem is not
using a real-time operating system, bounded jitter cannot be
guaranteed.

However, when jitter is unbounded, an application needs
to make certain assumptions on the amount of jitter, since
buffer space may be limited or the increase in end-to-end
delay by buffering is unacceptable [Scr92].

Model 3 can be characterized as a scheme for resyn-
chronization. We apply the concept of a buffer-level control
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Fig. 13. Different types of disturbances

to detect asynchrony. To recover from asynchrony, we use
feedback messages to the servers. Model 3 copes with asyn-
chronies introduced by

— alteration of the average delay,
— clock drift, and
— server drop-outs.

An alteration of the average delay leads to a gap'® or a
concentration in the continuous media stream. A gap occurs
when the average delay becomes larger, a concentration can
be observed when the average delay becomes smaller. The
situation is illustrated in Fig. 13. The playout intervals at the
client are marked on the time axis. Arriving media units are
represented by arrows. Notice that an alteration of the aver-
age delay is assumed to be of long-term effect, otherwise a
disturbance is already covered by the normal buffering due to
jitter. A gap or a concentration leads to a shifting of the aver-
age buffer level obtained after the substream has been started
by employing model 1. Hence, intra-stream synchronization
and consequently inter-stream synchronization is disturbed if
we assume the jitter bounds to remain constant. Depending
on the extent of the shifting, a rising number of lost media
units up to total buffer starvation/overflow may be observed.

The result of clock drift is very similar to the result of
a change in delay, but arises much more slowly. Clock drift
introduces a skew as defined in Sect. 1.3. If a server clock
is faster than the client clock (determining the consumption
rate), the scheduling frequency will be higher at the server
than at the client. Thus, regarding an arbitrary time interval,
the arrival rate is higher than the consumption rate. This pro-
cess accumulates and leads to a buffer overflow. In contrast,
if the server clock is slower than the clock at the client, the
scheduling frequency will be lower at the server than at the
client, resulting in buffer starvation.

A mechanism is needed to adapt to changing conditions,
in order to preserve synchronization without allocating addi-
tional buffer space. Solving the problem by additional buffer-
ing based on worst case estimates might turn out to be a
difficult task because changing conditions are unpredictable.
Even if we succeed in obtaining worst case estimates, we
must be aware that, first, resources are limited and that,
second, large playout buffers increase the overall end-to-
end delay, which is not desired. Furthermore, uncontrolled
buffering compensates the problems to a certain amount, but
will not resolve them over a long period of time.

18 The effect of a server drop-out is also a gap in the media stream.

We have shown that all the described disturbing fac-
tors affect the buffer level. Thus, the buffer level can be
regarded as an indicator for upcoming synchronization prob-
lems. Once a sink has discovered an asynchrony, it must take
measures to restore synchronization. As asynchrony is basi-
cally a shifting in the media stream, we only need to correct
this shifting. Corrective actions must be fed back either to
the source or to the sink in order to restore synchrony. The
idea of taking the buffer level as an indicator is often re-
ferred to as buffer level control. Basic work in this area can
be found in [Rot95], [Koe94] and [Lit92]. Our model will
pick up some of their ideas and extend them to an applica-
ble solution for the synchronization problem. In coritrast to
their work, we take model 1 and 2 as a basis for synchro-
nization and extend them with a buffer level control. We
focus mainly on buffer requirements and parameter tuning.

The next section gives an overview of the used param-
eters, afterwards models 1 and 2 are examined with respect
to a buffer level control, that is, we present a buffer model
suitable to realize a buffer level control. Finally, we discuss
the degree and the duration of resynchronization actions.

Model parameters

UW),. upper buffer watermark for substream & [mu]
LWy lower buffer watermark for substream k [mu}
ba additional buffer slots for substream k [mu]
By, total buffer size of substream k [mu]
Qtk queue size of substream k at time ¢ [mu]
bk smoothed buffer level of substream k

at time ¢t {mu]
Otk computed resynchronization offset  [mu]
S(gx) smoothing/filtering function ~ [mu]
C(b) control function - . [mu}
d_‘,;W . new average roundtrip delay ’ [s]
R length of the resynchronization phase [s]
o smoothing factor

3.2 Buffer level control
3.2.1 System model

The concept of buffer level control is often referred to as a
control loop [Koe94]. Sources transfer media units over the
network, the media units arrive at the sink and are buffered
before playout. The current buffer level is periodically mea-
sured, and if an ill buffer level is found, the appropriate
steps are taken. Actions may affect either the buffer itself
or the server. In the former case, the loop is placed in the
client, in the latter case, it includes the client, the server and
the network. Koehler et. al and Rothermel et al. [Koe94;
Rot95] propose a synchronization scheme that does not adapt
the playout behavior of the server. Actions are taken exclu-
sively at the sink, by changing the consumption rate or by
skipping/pausing. This kind of control loop compensates for
disturbances to a certain extent, depending on the allocated,
available buffer space, but sacrifices the real-time stream
continuity.

We adopt a concept where all components of the video
server architecture are included in the control loop, similar
to the approach of Cen et al. [Cen95]. As shown in Fig. 14,
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Fig. 14. System model for the buffer level control

the architecture applies feedback actions to the sources via
control messages in order to maintain synchronization at the
sink.

(a) Feedback filter

The buffer level for substream k at time ¢ is denoted by
gex. This value is periodically passed to a filtering function
S(qux) to filter short-term fluctuations caused by jitter and to
compute the smoothed buffer level by),.. Examples for filtering
functions are the geometric weighting smoothing function
(with o as smoothing factor) [Rot95; Cen95; Mas90]:

bik = S(qik) = o - b1 + (1 — @) - gux(with « € [0, 1]).(20)

The main goal of filtering is to distinguish between buffer
level changes caused by jitter and long-term disturbances. If
the filter is too sensitive, or no filter is used at all, jitter causes
actions for resynchronization, although no exceptional situ-
ation has occurred. On the other hand, a filter that reacts
to slowly to changing conditions takes actions too late, with
the result of a longer period of buffer starvation or overflow.
Thus, presentation quality suffers.

(b) Control function
The smoothed buffer level b, is passed to a control function
C(by) that takes appropriate actions. For each substream
buffer, a lower watermark LW; and an upper watermark
UW, are defined. When b;;, falls below LW, or exceeds
UWy, there arises the risk of starvation or overflow, respec-
tively, producing an asynchrony. If this happens, a resyn-
chronization or adaptation phase is entered, whose purpose
is to move by, back into between LW, and UWy. Depend-
ing on the extent of asynchrony, the control function sends
an offset o, to the source. The source either skips the num-
ber of media units specified in the offset or pauses for a
duration of oy, media units. We prefer this technique to an
alteration of scheduling speed, respectively production rate,
at the source because we think the latter is too resource-
demanding. The QoS of other clients serviced by the video
server might suffer.

The sink stays in its resynchronization phase for a time
R in order to let the smoothed buffer level react on the taken
measures. At the end of the resynchronization phase, C(l_)tk)
controls again whether or not the buffer level has moved
back into the normal area between LW, and UW,. If not,
a new resynchronization phase is started [Rot95].

3.2.2 Buffer requirements and filter tuning

Models 1 and 2 provide the buffer space bx needed to com-
pensate jitter. In the following consideration, we will denote
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Fig. 15. Buffer model with virtual and real buffer

bi. as kernel buffer. Applying a buffer level control only to
this buffer is not sufficient, since each buffer level within the
range of by must be regarded as normal due to jitter effects.
We fix LW), and UW,, to 1 and b, respectively. To realize
a buffer level control, we must admit buffer levels below
and above the watermarks. Otherwise, it is impossible to get
the smoothed buffer level below or above the watermarks.

We suggest the scheme of a so-called virtual buffer as
indicated in Fig. 15 by the dashed lines. The virtual buffer
includes at least the real buffer comprising the kernel buffer
b and an additional buffer b. The virtual buffer is exclu-
sively used for the calculation of buffer levels below and
above the real buffer. This allows for a faster reaction of the
smoothing function S(g:x). The mapping between the real
buffer level and the virtual buffer level g is performed as
follows.

— If neither buffer starvation nor buffer overflow occurs,
the real buffer level equals the virtual buffer level.

— If a buffer overflow occurs, then the virtual buffer is
increased for each discarded media unit, while the real
buffer levels remains unchanged.

— If a buffer starvation occurs, then the virtual buffer is
decreased each time when the client scheduling finds an
empty buffer, while the real buffer level remains un-
changed.

- If the normal state of the real buffer is restored by resyn-
chronization measures, the virtual buffer level is reset to
the real buffer level.

The size of b{ strongly influences the gracefulness of the
resynchronization'®. The smoothed buffer level b, always
has a latency (see Fig. 15) compared with the virtual buffer
level g, i.e., gsx might be below LWy, while by, still needs
some time to fall below. Let bff = 0, for instance. Then
buffer starvation occurs before it is recognized by the control
function. Hence, presentation quality suffers depending on
the value of bf!. We consider the following three cases for
the size of bf.

1. Selecting b# = 0 yields no gracefulness at all. Asyn-
chrony immediately affects presentation quality and is
soon discovered by a viewer.

2. b can be dimensioned such that a least the period be-
tween the rise of asynchrony and the discovery by the
control function is covered.

3. For full gracefulness, b{* has to be chosen such that asyn-
chrony does not affect presentation at all. The buffer

19 Notice that the start-up latency is also influenced by the size of b.
The larger b;c" is, the longer it takes until the first media unit of a substream
is played out because the buffer level must exceed LW}, before the playout
deadline given by model 2 can be applied.
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space has to cover the period between rise, discovery
and removal of asynchrony.

3.2.3 Parameter tuning

In our model, we have several parameters that must be cho-
sen appropriately in order to trade off reactiveness and over-
head.

(a) Smoothing parameter «
Obviously, the latency of reaction to an asynchrony problem
depends strongly on the behavior of S(gsx). The more in-
dolently S(g:x) reacts, the later a resynchronization phase is
entered, the more buffer space bf may be desired to compen-
sate for asynchrony as much as possible. On the other hand,
the more sensitively S(g:x) reacts, the more often resynchro-
nization is done unnecessarlly (due to the effect of jitter), the
less buffer space b7 is needed to prov1de sufficient grace-
fulness. Hence, the tuning of S(qtk) is a trade-off between
stablhty and reactivity. The choice or the tuning of S(g;z),
rispectlvely, helps to determine the additional buffer space
b

§ For further consideration, we examine the filtering func-
tion given by (20) with respect to the second case described
above, i.e., the size of b must cover the penod between
rise and discovery of an asynchrony. This case is most in-
teresting, because it is influenced by S(gix). The behavior
. of the filter is determined by the parameter o.

- A large value of « yields strong smoothing, a stronger
consideration of the past, and a more indolent reaction.
- A small value of o yields weak smoothing, a stronger
consideration of the present, and a more sensitive reac-
tion. '
An upper bound for the choice of is given by the avail-
able memory. A lower bound should be chosen such that
starvation/overflow events due to jitter can be distinguished
from long-term disturbances. Accordingly, « should be set
as high as possible, while considering reasonable buffering.
In our experiments (see [Gey95] for details), we found that
a value of 0.6 or 0.7 for a is a good compromise with re-
spect to the buffer requirément and the number of necessary
resynchronization ‘actions. Values of « between 0.1 and 0.5
lead to a relatively high number of unrequired resynchro-
nization actions. For a values 0.8 and 0 9, there are zero
resynchronization actions.

(b) Degree o, of resynchronization

Resynchronization is performed by sending an offset to the
servers. The goal is to move the buffer pointer by back
into the area between UW}, and LW, such that the situation
before the occurrence of the disturbance is restored. The
size of the offset o;r can be determined by two different
strategies: fixed offset or variable offset.

Employing the fixed-offset strategy, o is set to a con-
stant value. Resynchronization is done slowly in subsequent
resynchronization phases until synchronization is restored.
The value should not be chosen too high, because resyn-
chronization, e.g., due to clock drift, is in the range of one
or several media units. High values could lead to oscillation
because the extent of asynchrony is always overestimated.

When applying the variable offset strategy, oy is varied
depending on the extent of the occurred asynchrony. Notice
that with the variable-offset strategy several resynchroniza-
tion phases could also be needed because the time when
the offset is calculated (determined by the filtering function)
often reflects only a fraction of the total extent of asyn-
chrony. Nonetheless, synchronization is generally restored
faster with a variable offset. In Sect. 4.5, we present some
experimental results comparing both strategies.

(c) Duration R of resynchronization

The duration of a resynchronization phase is defined by R.
After R seconds, the control function once more compares
the smoothed buffer level with the watermarks. Again, resyn-
chronization actions may be taken.

R must be chosen sufficiently large, so that the server
can perform the resynchronization, that is, the action must
already have taken effect on the client. Selecting R too small
leads to numerous unnecessary resynchronization phases,
where, during each phase, the extent of asynchrony is over-
estimated. Take, for instance, a buffer overflow. Appropri-
ate resynchronization actions are injected, which can result
in buffer starvation due to overestimating the asynchrony.
Again, resynchronization is started. Thus, low values of R
can result in oscillation. For large values of R, several resyn-
chronization phases are also needed, but the total time of
resynchronization becomes- unacceptably long. So, in both
cases presentation quality might be strongly influenced.

3.3 Experimental results

Based on the prototype implementation of the video server
array, we have implemented the proposed synchronization
scheme for evaluation purposes. For implementation details,
refer to [Ber96] and [Gey95].

The following experiments have been performed on a
dedicated SUN Sparc 10 workstation as a client. We used
two videos; each ore distributed across two servers:

— A ”Bitburger” commercial, sampled at a rate of 16 fps
(frames/s), with a total length of 462 frames.

-~ A scene from the production ”Seaquest”, sampled at a
rate of 16 fps, with a total length of 6710 frames.

3.3.1 Intra- and inter-stream synchronization

For the first experiment, we measured the inter-arrival times
of frames for the video “Bitburger”. The experiment was
conducted with two substreams. For substream O and sub- -
stream 1, we measured jitter values of 26 ms and 24 ms,
respectively (see Table 2). According to Theorems 4, 5 and
7, two buffer slots are allocated for each substream, includ-
ing a buffer slot to read a frame from the network. The
shifting of 2 ms between the two substreams is negligible.
The start-up protocol leads to a start-up latency of 252 ms
for the first substream and 314.5 ms for the second sub-
stream. These times include an additional, overall charge of
200 ms for processing time. Thus, we can see clearly that
the maximum roundtrip delay of 52 ms determines the start-
ing time of the first server. The second server starts exactly




Table 2. Experimental results for intra- and inter-stream synchronization

Number of jitter buffer  start-up roundtrip
substream [ms] [(frames] latency?[ms] delay [ms]
0 26 2 252 33

1 24 2 3145 52

4 The start-up latency is usually defined as the delay between user interac-
tion and visibile feedback
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Fig. 16. Cumulative arrival and consumption for two substreams

62.5 ms later, according to the frame rate of 16 fps. These
results prove that the start-up protocol is performed with a
high accuracy.

Consider now Fig. 16, showing the cumulative arrival
times of the first 1000 ms of the “Bitburger” commercial.
The z-axis displays the elapsed time while the y-axis shows
the frame number. The cumulative arrivals of frames of both
substreams never cross the cumulative consumption, i.e., the
cumulative arrival always remains above the consumption,
indicating that at no time buffer starvation occurred. Thus,
the stream is played out smoothly. Further, we can see that
at each time only one frame is buffered for each substream
at most. This is indicated by the so-called backlog function,
which states the difference between the cumulative arrival
and consumption [Kni95]. In the example, the backlog func-
tion takes the value 1 at all times. Consequently, no buffer
overflow occurred. The playout deadline given by Theorem
3 is indicated by the beginning of the cumulative consump-
tion. The results show that intra- and inter-stream synchro-
nization is achieved well by employing the synchronization
scheme given by models 1 and 2%.

3.3.2 Buffer-level control

In the second experiment, we evaluated the efficiency of
the buffer level contro]l mechanism. Our prototype of the
video server array is implemented in an ATM-LAN envi-
ronment. We thus faced the problem that events like gaps

20 Notice that the experiment was performed under shifted time access,
as described in Sect. 4.1.
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Fig. 17. Resynchronization with fixed offset

or concentrations within a stream are rather unlikely. There-
fore, we simulated these events in the servers. The amount
of asynchrony can be specified by the user upon starting a
server. The server then periodically introduces drop-outs in
scheduling or sends several frames at once. The client at-
tempts to resynchronize the server by sending back offsets.
We conducted this experiment again with the "Bitburger”
commercial striped only onto a single server. The following
parameters have been used.

~ Smoothing factor for the geometric weighting function:
a=0.7.

— Amount of injected asynchrony2': -8, —4, +4, +8

— Resynchronization strategy: fixed offset and variable off-
set.

The variable offset was calculated by taking the difference
between gy, and the watermarks. The fixed offset was set
constantly to 1. In accordance with the previous experiment,
we allocated two buffer slots for the substream. This cor-
responds to the kernel buffer b, defined in Sect. 3.2. Fur-
thermore,. for the additional buffering bf, we were using
three buffer slots twice, above and below b;. Consider now
Fig. 17, showing the virtual buffer level and the filtered
buffer level over time for the resynchronization of a concen-
tration of eight frames. The y-axis shows the virtual buffer
level, while the z-axis denotes the consumption period. The
upper bound of the real buffer level is denoted by b, while
the lower bound is not shown in the figure. Thus, bf? equals
b— UW and by is given by UW — LW. The virtual buffer
level ranges from 1 to 108 because we arbitrarily selected
a number of 50 frames above and below the real buffer to
calculate the virtual buffer. Figure 17 shows the course of
resynchronization if the fixed offset strategy is employed.
The first resynchronization phase is entered exactly dur-
ing consumption period 142, when the filtered buffer level
crosses the upper watermark. The virtual buffer level rises
up to 61, that is, four frames are discarded. The loss of four
frames could be perceived during playback. The client then
sends an offset of —1 to the server. After the end of the first

2l Negative values denote a drop-out, while positive values denote a
concentration.
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Fig. 18. Resynchronization with variable offset

resynchronization phase, the filtered buffer level is reset to
the virtual buffer level, as indicated by the abrupt decrease
of the filtered buffer level depicted in Fig. 17. The client
undergoes seven subsequent resynchronization phases in all.
These phases are indicated by the peaks. Synchronization
is restored exactly during consumption period 180, when
the filtered buffer level falls below UW. We can therefore
conclude a total duration of 38 consumption periods for the
resynchronization of an asynchrony of eight frames with the
fixed-offset strategy. This corresponds to 2375 ms.

We now consider the same situation with the variable-
offset strategy. The course of the filtered and unfiltered
buffer level is depicted in Fig. 18.

Resynchronization starts during consumption period 130.
Again, a number of four frames is discarded. The client first
sends an offset of —3 frames to the server. Just after this
resynchronization action, the buffer level falls below UW
for a short period of time. Now, two additional resynchro-
nization phases are undergone until synchrony is restored. In
each phase, an offset of —2 is sent to the server. Synchro-
nization is exactly restored during consumption period 149.
In contrast to the fixed-offset strategy, only 19 consumption
periods are needed to regain synchrony. This corresponds to
1187.5 ms.

To obtain more representative values concerning the to-
tal duration of resynchronization in dependency of the ap-
plied strategy, we performed a third experiment. This time,
we took a video of longer duration. During the playback
of "Seaquest”, 50 resynchronization are undergone. We esti-
mated the duration by taking the mean value of the duration
sum. Table 3 presents the experimental results for different
sizes of asynchronies.

When applying the variable-offset strategy, the duration
of the synchronization can be reduced by more than half
compared to the fixed-offset strategy. For an asynchrony of
eight frames, only 43% of the duration of the fixed-offset
strategy is needed to regain synchronization. The results also
show clearly that resynchronization with a variable offset be-
comes even more efficient for larger asynchronies, because
the adoption is performed faster. For negative asynchronies
or gaps, respectively, we can see that the gain with the vari-

Table 3. Mean and variance of the resynchronization duration

Fixed offset
Asynchrony Mean

Variable offset
Variance Mean Variance [%)?

[ms] [ms] [ms] {ms]
-4 1,143.80 223.13  773.75 78.95 67.6
4 1,327.50 250.50 707.50 139.72 S3.3
-8 1,223.80 310.60 665.00 123.56 54.3
8 2515.00 789.21 1,081.20 202.95 43.0

# The percentages compare the two strategies and are calculated with re
to the results for the fixed-offset strategy

able offset is not as high as for positive asynchronies. Th
due to the way the asynchrony is produced. While conce1
tions are introduced by sending a specified amount of da
once, gaps are produced by just skipping a number of fra
at the server. So, a concentration arises immediately and
therefore be removed faster. Gaps arise slowly, because
buffer at the client is emptied only during the presenta
cycle. Thus, resynchronization for gaps is achieved n
slowly when comparing the two strategies.

The conducted experiments prove the effectiveness o;
buffer level control mechanism. Furthermore, they indi
that a variable-offset strategy restores synchrony much f:
than a fixed-offset strategy.

4 Extension to the synchronization scheme

In our model, we have so far assumed that

~ the media units from the different servers, which for
synchronization group, must be played out at the s
time,

- the substreams from the sever nodes are parts of a si.
stream, e.g., an audio or a video stream.

In the following, we will show how the proposed sync
nization protocol can be extended to work even when
above assumptions are not met.

4.1 Synchronization under shifted time order

In contrast to the synchronization problem we have so.
so far, we now assume a shifted time order between
substreams to be synchronized. We will extend our sch
to inter-media unit synchronization where media unit
different substreams are played out subsequently, and
this modified synchronization requirement. Hence, we
a temporal relationship like: playout of media unit of :
stream 0, then playout of media unit of substream 1, |
playout of media unit of substream 2.

Such a synchronization problem arises, for instance
the context of our server array, when entire media units
stored on the different server nodes (see Fig. 19).

While we assumed so far a display rate of » of ¢
substream at the client, we now require a display rat
r for the complete stream consisting of n substreams.
means, that the rate within one substream is defined by
while the complete stream at the sink is played out with
rate 7, i.e., subsequent media unit numbers are expecte
arrive with a distance of r~.
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Fig. 19. Temporal relationship for inter-media unit striping

As far as the start-up protocol (model 1) is concerned,
we need to make a few adaptations.

The presentation rate r determines the arrival time ¢; of
media unit 7. After the first media unit arrived at ty, media
unit ¢ is expected at time t;, given by

ti=to+i-77",Vi. @n

During the synchronization phase of the start-up protocol,
the computation of the variables ¢y, v and s{ must be mod-
ified to take into account that the media units are now ex-
pected one after the other. This leads to the following defi-
nitions.

— At local time trf, client D computes ty = max{te+d; —

i ~7'_I'i € I()},
— the index v that determines tg as v € Iy with ter+dy, —
—1
v-rT =i

- With these results, the starting time of server S; is cal-
culated in server time s = s; +d™ + Ay + (4 — V) -
T—l./\V/Z' € I.

The proof that the calculation of 1, s¢ is correct, which was
given in Theorem 1 and 2, can be easily adapted to take into
account the modified synchronization requirement.

Theorem 3 defined the conditions for each substream to
guarantee a simultaneous playout of the media units in a syn-
chronization group. With the modified synchronization re-
quirement, subsequent media units are required to be played
out 7~ seconds later, relative to their predecessors. To adapt
Theorem 3, the idea is simply to lower the starting condi-
tions for subsequent substreams according to their distance
to substream 0.

Theorem 8. Consider a synchronization group consisting of
n substreams, with each substream being played out at a
rate v /n. Each substream has a bounded jitter Ay, and the
concept of a shifted time order is applied. Then, smooth play-
out of the complete synchronization group can be guaranteed
whenever either one of the following starting conditions is
satisfied for each substream k:

(a) Ar — (k — Dr~! seconds elapsed after the arrival of the
first media unit of substream k,

(b) the ([ Ay - v/n])-th media unit of substream k arrived,
and since then (n — k+ 1) - v~ seconds have elapsed.

Proof. The first media unit of the first substream is expected
to be played out first. Obviously, to guarantee smooth play-
out, substream () has to satisfy Theorem 3. Let k be an arbi-
trary substream of a synchronization group. The first media
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unit of k is expected (k — 1)r~! seconds after the first media
unit of substream 0. We assume that Theorem 3 holds true
for the first substream and that at least Ay — (kK — 1)r~!
seconds have elapsed since the first media unit of the sub-
stream k has arrived. If the playout of the first media unit
is started anew, we will know exactly that the k-th me-
dia unit is needed to be played out in (k — 1)r~' seconds.
The time passed till this moment amounts up to at least
A — (k= Dr~ '+ (k- Dr—!' = A, seconds.

With this, we can conclude that Theorem 3 is satisfied
for any substream k& when applying Theorem 8 (a).

To prove 8 (b), we argue analogously to the proof of
Theorem 3. Again, we assume that Theorem 3 is satisfied
for the first substream. Moreover, the ([Ag - 7/n])-th me-
dia unit of substream k has arrived and (n — k + 1) - ™!
seconds have elapsed since the arrival. Playout of the first
media unit is started instantaneously. An amount of [Ay -
r/n| media units is at least sufficient for a presentation of
[Ak - 7r/n] - (r/n)~! > A seconds. In the worst case, the
maximum period between the arrival of the ([ 4 - r/n])-th
media unit and the ([Ag - r/n] + 1)-th media unit equals
Ay +n/r seconds. A period of (n — k+ 1) -7~ seconds
has already elapsed. Furthermore, media units of substream
k are expected (k — 1)r~' seconds later than the first me-
dia unit of substream 0. We can therefore compute the total
elapsed time by

(n=k+1D -7 DH+k=Dr™H
=nr —kr e vk = =)y

Thus, the worst case is covered and media unit ([Ag-r/n]+
1) will arrive in time. We can conclude that Theorem 3 is
satisfied for any substream k when applying Theorem 8(b).

4.2 Synchronization of multiple streams

The problem of synchronizing multiple streams occurs if
several related synchronization streams must be synchro-
nized, e.g., an audio stream and a video stream. Each audio
or video stream can itself consist of an arbitrary number
of substreams. We call each such stream, which consists
of multiple substream and must itself be synchronized with
other streams, a synchronization group. We assume that the
synchronization groups are presented simultaneously, i.e.,
media unit ¢ of one group at the same time as media unit
1 of the other groups. To solve this synchronization prob-
lem, we suggest to combine all synchronization groups in a
supergroup.

The calculations of model 2 can be applied to this su-
pergroup without any modifications. The start-up protocol
must be modified slightly to take into account that there
exists a different starting point £y for each synchronization
group. Taking the maximum of these g values as the earliest
starting time for all groups allows to initiate start-up of the
servers in a synchronized fashion.

Synchronizing a supergroup is a bit more complicated
if the rates of the synchronization groups are different. In
this case, we can get started once in a synchronized manner.
However, further synchronizations necessary due to VCR
functions cannot be performed with the start-up protocol
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Table 4. Computed buffer savings

jitter combination

Ay A shit /L LM L/H M/L MM M/H HL HM WH
40602 6 6 6 6 6 6 6 6 6 BM
6 6 6 6 6 6 6 5 6 BS
0O 0 0 0 0 0 0 1670 %
408 4 8 8 8 8 8 8 8 8§ 8 BM
7 7 8 6 1 7 1 71 1 BS
125 125 0 25 125 125 125 125 125 %
40 10060 10 10 10 10 10 10 10 10 10 BM

8 8 9 8 8 9 8 8 9 B
20 20 10 20 20 10 20 20 10 %
40 12080 12 12 12 12 12 12 12 12 12 BM
9 10 10 9 9 10 8 9 10 BS
25 167 167 25 25 167 33 25 167 %
40 140100 14 14 14 14 14 14 14 14 14 BM
10 11 12 10 11 12 10 11 12 BS
28.57 21.43 14.29 28.57 21.43 14.29 28.57 28.57 21.43 %
40 160120 16 16 16 16 16 16 16 16 16 BM
1M 12 13 11 12 13 11 12 13 BS
312525 18.7531.2525 18.7531.2525 18.75%
40 180140 18 18 18 18 18 18 18 18 18 BM
12 13 15 12 13 14 12 13 14 BS
33.3327.78 16.67 33.33 27.78 22.22 33.33 27.78 22.22 %
40 200160 20 20 20 20 20 20 20 20 20 BM
13 15 16 13 14 16 13 14 15 BS
35 25 20 35 30 20 35 30 25 %
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Fig. 20. Worst case scenario for different jitter values

because sequence numbers of the media units for the dif-
ferent synchronization groups are not related. We propose
two techniques to cope with this problem. First, the greatest
common divisor (GCD) of the media unit rates of all syn-
chronization groups can be taken as a basis for determining
the sequence numbers [Ran93]. This mostly implies a mod-
ification of the sequence numbers, after having captured a
media stream. Second, a mapping of sequence numbers can
be done. The synchronization group with the highest me-
dia unit rate serves as a reference. For instance, media unit
number 6 of a group with a rate of 12 mu/s is mapped to
media unit number 12 of a group with a rate of 24 mu/s.
Depending on the media unit rates, this technique introduces
inaccuracies by rounding.

5 Conclusion

We have presented a scheme for intra- and inter-stream syn-
chronization of stored multimedia streams. Our scheme com-
prises three models that assure synchronization in an envi-
ronment with different delays, jitter, server drop-outs, clock
drift, and alteration of the average delay. The models do not
rely on synchronized clocks within the network. In contrast
to existing synchronization solutions, the scheme is suitable
for streams that are striped across multiple server nodes, as
well as for a single-server approach.

Model 1 presents a new protocol that allows to initiate
the synchronized start-up of distributed multimedia streams.
The protocol has little overhead, is easy to implement and
is flexible with respect to different strategies of distributing
the video material (e.g., shifted time order).

Model 2 provides intra- and inter-stream synchroniza-
tion. Using a rule of Santoso et al., we formulate a condi-
tion that decreases the start-up latency of a stream without
sacrificing smooth playout. Based on Santoso et al. and in-
spired by an idea of Ishibashi et al., we derive buffer require-
ments that assure intra- and inter-stream synchronization for

" multiple substreams originating from' different sources. In

contrast to Ishibashi et al., we could considerably reduce
these requirements by applying our novel shifting strategy.
Our experiments proved that models 1 and 2 obtain a per-
fect flow reconstitution in case of bounded jitter. Moreover,
we provide new modified starting conditions for the smooth
playout of a stream distributed across multiple sources.

Model 3 extends the previous two models by a buffer
level control to cope with long-term effects such as clock
drift. We introduce a new buffer model called virtual buffer
that allows for faster reaction in response to disturbances.
Our system model includes the source of a stream into the
control loop, which allows to maintain the real-time continu-
ity of a stream during playback. We investigate the trade-off
between stability and reactivity when tuning the parameters
of a filtering function and propose two strategies for restor-
ing synchrony. Experimental results comparing these two
strategies show the effectiveness of our buffer level control.

Models 1 to' 3 have been successfully implemented in
our video server prototype [Ber96], where each video is dis-
tributed (striped) over n server nodes.
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Appendix

A Buffer savings

The values for BM and B shown in Table 4 are rounded
up based on a media unit rate of 25 mu/s.

B Shifting strategy with different delay values

In order to compensate for different delays when applying
the start-up protocol, substream & is shifted d,,, —d}, seconds




forward on the time axis. According to the proof of Theorem
5, tg is calculated as follows:

te = sz

+A;+AW+A;—(Jk+A'"aX—Ak+ch~c?k)

= AL + A+ AL - A™ + A
=A:,n +A; + A
= A} +24, + A,
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