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Abstract 

 
In this paper we propose a novel algorithm for 

video summarization, OB-MMR (Optimized Balanced 
Audio Video Maximal Marginal Relevance). This 
algorithm is suitable to summarize both single and 
multiple videos. OB-MMR is achieved by optimizing 
the parameters in Balanced AV-MMR (Balanced Audio 
Video Maximal Marginal Relevance), namely the 
balance factor between audio information and visual 
information in the video, but also the importance of 
face and audio transitions among audio segments with 
different genres. Therefore, OB-MMR achieves a better 
result than previous algorithms, Video-MMR and 
Balanced AV-MMR. Furthermore, it is possible to 
select the optimized parameters for each genre of 
videos, which leads to promising automatic algorithms 
for video summarization in the future large-scale 
experiments.  
 
1. Introduction 
 

With the spectacular increase of videos from TV, 
mobile phone, and Internet, human beings cannot 
handle the explosion of multimedia information. It is 
necessary for a person to spend a lot of time to find his 
interesting videos. Therefore, various methods, like 
shot detection and video abstraction, have been 
proposed by researchers to facilitate the access to large 
quantities of video information. Among these methods, 
video summarization has an important role. Video 
summarization produces summaries by analyzing the 
video content, and condenses this content into an 
abbreviated descriptive form. Video summaries can be 
for example used in interactive browsing and searching 
systems, by which the user easily manages and 
accesses the digital video content.  

Earlier work in video summarization focused on 
processing a single video [1] [2], while more recent 
approaches have considered the case of multi-video 
summarization [3] [4]. However there are still many 
limitations. Many existing algorithms only consider the 

features from the video track, and neglect the audio 
track because of the difficulty of combining the 
information from audio and video. Some algorithms 
like [5] consider both the audio track and video track, 
but they are often domain-specific. There are not many 
generic algorithms, because in this case some specific 
features like music energy are difficult to use in a 
generic manner.  

In previous work, the authors have proposed a series 
of generic algorithms, Video-MMR (Video Maximal 
Marginal Relevance) [4] for multi-video 
summarization by using only visual information, AV-
MMR (Audio Video Maximal Marginal Relevance) by 
exploiting both audio and visual information [10], and 
Balanced AV-MMR (Balanced Audio Video Maximal 
Marginal Relevance) [11] which considers the balance 
factor between audio and visual information. In this 
paper, we improve over Balanced AV-MMR by 
optimizing some parameters in the algorithm. 

This paper is organized as follows: Section 2 briefly 
reviews video summarization. Then Section 3 
introduces related work of MMR. And Section 4 and 5 
describe the principle and experimental results of OB-
MMR. At last the paper is concluded in Section 6. 
 
2. The review of video summarization 
 

The aim of video summarization is to exploit the 
audiovisual information to obtain the underlying 
relation among video frames and create a condensed 
version from the original videos. Video summaries are 
useful especially for long videos, which could save the 
time and help the user understand the whole video 
without watching it honestly in details. The user could 
choose the most interesting videos faster and easier. 
Another possible advantage of video summaries is to 
prepare the original video for the searching engine. 
Only the selected frames of videos are inserted in the 
index, which saves a great amount of resources. The 
methods for video summarization are various, but 
some basic features are very often present. Four 
audiovisual cues may be used in video summaries [2]: 
keyframes, text, video segments and graphic cues. In 



video summarization, it is still a problem to perfectly 
combine the information from text, audio track and 
video track, though some algorithms [5] [11] [17] have 
been proposed. 

The computational mechanism in video 
summarization [16] includes maximum content 
coverage, minimum correlation among summary 
elements, and interesting/highlight events. They are the 
aims for video summarization to achieve, no matter 
what kind of algorithm it is.  

Video summaries can be distinguished by content 
types into object based, event based, perception and/or 
feature based summaries [2]. 1) Object based 
summaries focus on specific objects that occur within 
the video, especially human face, like [11]. In [11], the 
frames with faces own greater weights in the 
computation. 2) Event based summaries aim to find 
specific events in the video. Attention indicator and 
saliency map are significant measures in [19]. 3) 
Perceptions based summaries focus on high-level 
concepts and try to mimic the perception of the video 
by the user. For example, [18] summarizes the video 
by maximizing the entropy among concept entities. 4) 
Feature summarization tries to objectively generate the 
summaries from an analysis of low-level features, such 
as speech, color, texture, and the most duplicated 
scenes. In [17] the authors generate the skimming by 
intercepting the sections with the high sum of different 
feature curves. 

There are usually two kinds of representations 
forms for video summaries: static video keyframes and 
dynamic video skimming [16] [17]. From these two 
forms, it is necessary to consider the best methods to 
display video summaries, such as video panel [19], 
story board, circle representation and graph tree [18]. 

 
3. Related work 
 
3.1. MMR in Text Summarization 
 

In the domain of Natural Language Processing, 
Maximal Marginal Relevance (MMR) proposed by J. 
Carbonell and J. Goldstein [9] is a successful algorithm 
for text summarization. MMR is based on the idea of 
Marginal Relevance (MR). In the case of the selection 
of documents while answering a query, the MR of a 
document with respect to the query Q and the current 
selection ܵ is defined by: ܴܯ(ܦ) ,ܦ)ଵ݉݅ܵߣ 																																																																			=	 ܳ) − (1 − ೕ∈ௌݔܽ݉(ߣ ܵ݅݉ଶ൫ܦ,  ൯  (1)ܦ

Where ܳ is a query or user profile, and ܦ and ܦ  are 
text documents in the returned list of documents	ܴ for 
the query ܳ ܦ .  is a document already selected in S, 
while ܦ  is a candidate in the list of unselected 

documents 	ܴ\ܵ . By iteratively selecting the text 
fragments with MMR in the text document, a text 
summary can easily be constructed by Eq. 2: 	ܦெெோ =  (2)              (ܦ)ܴܯ∈ோ\ௌݔܽ݉	݃ݎܽ	

 
3.2. Video-MMR 
 

The goal of video summarization is to select the 
most important instants in a video or a set of videos. 
When iteratively selecting keyframes to construct a 
summary, Video-MMR [4] selects a keyframe whose 
visual content is most similar to the content of the 
videos, but at the same time most different from the 
frames already selected in the summary. Video 
Marginal Relevance (Video-MR) is defined as: 
        Video-MR(݂) = ߣ ܵ݅݉ଵ(݂, ܸ\ܵ) − (1 − ∈ௌݔܽ݉	(ߣ ܵ݅݉ଶ(݂, ݃)	 (3) 

where V is the set of all frames in all videos, S is the 
current set of selected frames, ݃ is a frame in S and ݂ 
is a candidate frame for selection. Based on this 
measure, a summary ܵାଵ  can be constructed by 
iteratively selecting the keyframe with Video-MMR: ܵାଵ = ܵ ∪ ∈\ௌೖݔܽ݉݃ݎܽ ቆ ,݂)ଵ݉݅ܵ	ߣ ܸ\ܵ) −(1 − ∈ௌೖݔܽ݉	(ߣ ܵ݅݉ଶ(݂, ݃)ቇ (4) 

 
3.3. AV-MMR 
 

Video-MMR is extended to AV-MMR in [10] by 
considering information from both audio and video. 
We then extend Eq. 4 to Eq. 5, which defines how 
summary ܵାଵ  can be constructed by iteratively 
selecting a new audio-video segment: ܵାଵ = ܵ ∪ ∈\ௌೖݔܽ݉	݃ݎܽ ,݂)ூଵ݉݅ܵ	ߣ 																																															] ܸ\ܵ) − (1 − ∈ௌೖݔܽ݉(ߣ 	ܵ݅݉ூଶ(݂, ݃) ,݂)ଵ݉݅ܵ	ߤ + ܸ\ܵ) − (1 − ∈ௌೖ	ݔܽ݉(ߤ ܵ݅݉ଶ(݂, ݃)]  (5)                        

where visual similarities ܵ݅݉ூଵ and ܵ݅݉ூଶ are the same 
measures as ܵ݅݉ଵ  and ܵ݅݉ଶ  in Eq. 4. Audio 
similarities ܵ݅݉ଵ  and ܵ݅݉ଶ  play roles similar to ܵ݅݉ூଵ  and ܵ݅݉ூଶ . Eq. 5 combines visual and audio 
similarities corresponding to the same frame, and it is 
called Synchronous AV-MMR.  
 
3.4. Balanced AV-MMR 
 

In [11], the authors consider that audio is composed 
by audio segments corresponding to silence, music, 
and speech. The HTK toolkit [7] is used to 
automatically detect those genres of audio segments. 
Several remarks are used to better combine audio and 
video information. When the audio information is 
significantly changing, it is likely that the user will pay 



more attention to this instant. The importance of video 
track and audio track in an audio segment are 
complementary, so a combination of the summary 
created by video track and the summary created by 
audio track is utilized in Balanced AV-MMR. 

 
3.4.1. Fundamental Balanced AV-MMR. The 
fundamental formula of Balanced AV-MMR is: ݂ାଵ = ்ߩ}∈\ௌೖݔܽ݉	݃ݎܽ ,݂)ூଵ݉݅ܵ	ߣ] (݂) ܸ\ܵ) 	−	(1 − ∈ௌೖݔܽ݉(ߣ 	ܵ݅݉ூଶ(݂, ݃)] +ቀ1 − ்ߩ (݂)ቁ [ߤ	ܵ݅݉ଵ(݂, ܸ\ܵ) − (1 − ∈ௌೖݔܽ݉(ߤ 	ܵ݅݉ଶ(݂, ݃)]}    (6)      

We define the importance ratio ߩ  between audio 

summary and video summary as: ்ߩ(݂) = ேೇ()ேೇ()ାேಲ(), 
where ܰ(݂)  and ܰ(݂)  are summary sizes of video 
summary, and audio summary in audio segment ܶ 
where frame ݂	is inside. 
 
3.4.2. Balanced AV-MMR V1. Then we introduce the 
augment factor ߬ for audio genre. The importance ratio 

becomes from ߩ  to ߩᇱ ᇱ்ߩ: (݂) = ఘ()ఘ()ା((ଵିఘ())ାఝೝ) , 

where ߮௧  is the factor brought by the transition of 
audio genres. And the formula of BAV-MMR V1 is 
modified to the following formula: ݂ାଵ = ᇱ்ߩ}∈\ௌೖݔܽ݉	݃ݎܽ ,݂)ூଵ݉݅ܵ	ߣ] (݂) ܸ\ܵ) −	(1 − ∈ௌೖݔܽ݉(ߣ 	ܵ݅݉ூଶ(݂, ݃)]    +൫1 − ᇱ்ߩ (݂)൯   [ߤ	ܵ݅݉ଵᇱ (݂, ܸ\ܵ) − (1 − ∈ௌೖݔܽ݉(ߤ 	ܵ݅݉ଶᇱ (݂, ݃)]}     (7)        

 
3.4.3. Balanced AV-MMR V2. After introducing face 
information ߚ  to Eq. 7, the formula of Balanced 
AV-MMR V2 is: ݂ାଵ = ூଵᇱ݉݅ܵ	ߣ] (݂)ᇱ்ᇱߩ}∈\ௌೖݔܽ݉	݃ݎܽ (݂, ܸ\ܵ) − (1 − ∈ௌೖݔܽ݉(ߣ 	ܵ݅݉ூଵᇱ (݂, ݃)] +൫1 − ଵᇱ݉݅ܵ	ߤ]  ᇱ்ᇱ(݂)൯ߩ (݂, ܸ\ܵ) − (1 − ∈ௌೖݔܽ݉(ߤ 	ܵ݅݉ଶᇱ (݂, ݃)]}     (8) 

where ߩᇱ்ᇱ(݂) = ఘ()ାఉೌ()(ఘ()ାఉೌ())ା((ଵିఘ())ାఝೝ). 
 
3.4.4. Balanced AV-MMR V3. At last, we consider 
that it is necessary to consider the temporal distance 
when computing the similarity between two frames ݂ 
and ݂ . Consequently, the formula of Balanced AV-
MMR V3 is the same with Eq. 8 of Balanced AV-
MMR V2, but ܵ݅݉ூଵᇱ  and ܵ݅݉ଵᇱ  contain the factor of 

temporal distance ߙ௧: ܵ݅݉ூଵᇱ ( ݂, ܸ\ܵ) = ଵ|\(ௌೖ∪)| ∙∑ ൫ߚ ݂, ݂൯ߙ௧൫ ݂, ݂൯݉݅ݏ൫ ݂, ݂൯ೕ∈\(ௌೖ∪)    and  

ܵ݅݉ଵᇱ ( ݂, ܸ\ܵ) =ଵ|\(ௌೖ∪)| ∑ ߬൫ ݂, ݂൯ߙ௧൫ ݂, ݂൯݉݅ݏ൫ ݂, ݂൯ೕ∈\(ௌೖ∪) . ܵ݅݉ூଶᇱ 	and	ܵ݅݉ଶᇱ  own the factor ߙ௧ similarly, and  ߙ௧൫ ݂, ݂൯ =൝1.1																					, ݂݅	 ݂	ܽ݊݀	 ݂	ܽ݁ݎ	݉ݎ݂	ݓݐ	1;ݏ݁݀݅ݒ + ห௧()ି௧൫ೕ൯หଵ∗ಾ , )ݐ  .݁݀݅ݒ	݁݉ܽݏ	ℎ݁ݐ	݉ݎ݂	݁ݎܽ	ݓݐ	݂݅ ݂) and ݐ൫ ݂൯ are the frame times of ݂ and ݂ in video ݎܾ݁݉ݑ݂݊݁ܿܽ .ܯ means the number of faces in frame ݂. ܦெ is the duration of video ܯ.  
 
4. OB-MMR 
 

In [11], Balanced AV-MMR exploits many 
parameters which are manually set according to 
experience. These parameters are: the balance 
parameter between audio and visual information ߩᇱ்ᇱ , 
the parameter of temporal distance ߙ௧ , the face 
parameter ߚ, the audio genre parameter ߬, and the 
parameter for audio transition ߮௧. 

However, it is hard to manually decide the best 
values of these 5 parameters. Also for different genres 
of videos, the optimal values of those parameters may 
vary, because the relation between video track and 
audio track is different. Therefore, we wish to propose 
an automatic mechanism to optimize the set of weights 
for Balanced AV-MMR. First, what we do is to 
reformulate Eq. 8 into the following formula: ݂ାଵ =  ∈\ௌೖݔܽ݉	݃ݎܽ

۔ۖەۖ
ۓ (݂)ᇱ்ᇱߩ  ,݂)ூଵᇱ݉݅ܵ	ߣ ܸ\ܵ) −(1 − ∈ௌೖݔܽ݉	(ߣ 	ܵ݅݉ூଶᇱ(݂, ݃)൩ 	+൫1 − ᇱ்ᇱ(݂)൯ߩ  )ଵᇱ݉݅ܵߤ ݂, ܸ\ܵ) −(1 − ∈ௌೖݔܽ݉(ߤ 	ܵ݅݉ଶᇱ(݂, ݃)൩ۙۖۘ

ۖۗ
           (9)                      

where ߩᇱ்ᇱ(݂) = ()∙ௐ್ାி()∙ௐ൫()∙ௐ್ାி()∙ௐ൯ା[(ଵି())∙ௐ್ାோ()∙ௐೝ]; ܵ݅݉ூଵᇱ( ݂, ܸ\ܵ) = ଵ|\(ௌೖ∪)| ∑ [1 +ೕ∈\(ௌೖ∪)(ܨ( ݂) + ൫ܨ ݂൯) ∙ ܹ]൫1 + ܶ( ݂, ݂) ∙ ௧ܹ൯݉݅ݏ൫ ݂, ݂൯; ܵ݅݉ூଶᇱ(݂, ݃) = [1 + (݂)ܨ) + ((݃)ܨ ∙ ܹ](1 +ܶ(݂, ݃) ∙ ௧ܹ)݉݅ݏ(݂, ݃); ܵ݅݉ଵᇱ( ݂, ܸ\ܵ) = ଵ|\(ௌೖ∪)| ∑ (1 +ೕ∈\(ௌೖ∪)ܵ( ݂, ݂) ∙ ௦ܹ)(1 + ܶ( ݂, ݂) ∙ ௧ܹ)݉݅ݏ൫ ݂, ݂൯; ܵ݅݉ଶᇱ(݂, ݃) = (1 + ܵ(݂, ݃) ∙ ௦ܹ)(1 + ܶ(݂, ݃) ∙௧ܹ)݉݅ݏ(݂, ݃). 
Inside Eq. 9, the functions ܤ, ,ܨ ܶ, ܴ, and ܵ are the 

computed features for the balance between audio and 



visual information, the face importance, the temporal 
distance, the audio transition, and the audio genre; 
while, ܹ, ܹ, ௧ܹ , ܹ , and ௦ܹ are the weights for those 
features ܤ, ,ܨ ܶ, ܴ, and ܵ. Compared to Eq. 8, Eq. 9 is 
easier to be optimized because we just have to 
automatically adjust the values of the weights ܹ, ܹ , ௧ܹ , ܹ , and ௦ܹ to achieve the best result. The 
result of the optimization of Eq. 9 is called Optimized 
Balanced AV-MMR (OB-MMR). 

Before adjusting the weights in Eq. 9, we need to 
define the fitness function for these weights. In video 
summarization, we usually regard the summaries from 
human being as the ground truths, because video 
summarization is a problem which is absolutely human 
oriented. Assume that we already have some groups of 
human summaries, we could use the similarities 
between the summaries from OB-MMR and the 
summaries from human as the fitness function to adjust 
the weights ܹ, ܹ , ௧ܹ , ܹ ,  and ௦ܹ  as the fitness 
function, because we want the summary from OB-
MMR more similar to the summary from human. 

Then it is necessary to select an automatic algorithm 
to automatically tune the weights ܹ, ܹ , ௧ܹ, ܹ , and ௦ܹ . One successful algorithm is Particle Swarm 
Optimization (PSO) proposed by R. Poli, J. Kennedy 
and T. Blackwell [12] [13]. PSO has been used across 
a wide range of applications, which has proved the 
effect of PSO. In PSO, every particle decides its 
movement by considering its current location and the 
previous best location of the particles. The individual 
contains three D-dimensional vectors: the current 
position ݔԦ , the previous best position Ԧ	 , and the 
velocity ݒԦ . The best function result is denoted by ݐݏܾ݁ , and Ԧ  is the best neighbor of Ԧ . PSO 
procedure is described in [13]. In OB-MMR, 5 weights ܹ, ܹ , ௧ܹ , ܹ ,  and ௦ܹ  can be considered as 5 
elements of a vector ݔԦ in the searching space of PSO 
for the fitness function. 

Another simple algorithm to find the optimized 
weights for OB-MMR is the gridding and relaxation 
(GR). Here the gridding means averagely gridding the 
possible weights in a suitable range, and trying every 
combination of the weights to optimize the fitness 
function, the similarity between OB-MMR summary 
and human summary. Since the interval between two 
gridding values is initially large so that the 
computation is fast enough, when the best values are 
found on the grid, a similar process is repeated 
recursively with a finer grid around the optimal point, 
which is called the relaxation step. The fitness function 
for gridding and relaxation is the same with above, the 
similarity between OB-MMR summary and human 
summary. The relaxation occurs multiple times, until 
the grid interval reaches the desired precision. 

The optimized weights from PSO and GR will be 
shown in the next section. After we obtain the 
optimized weights, we could implement OB-MMR 
process in a way similar to Balanced AV-MMR: 
Algorithm: OB-MMR 
1: Summarize video track by Video-MMR with Eq. 4. 
2: Summarize the audio track by Audio-MMR: ܵାଵ = ܵ ∪ ∈\ௌೖݔܽ݉݃ݎܽ (1 + ܵ(݂, ݃) ∙ ௦ܹ) ∙ 
                        ቆ ,݂)ଵ݉݅ܵ	ߣ (ܵ\ܣ −(1 − ∈ௌೖݔܽ݉	(ߣ ܵ݅݉ଶ(݂, ݃)ቇ              

3: Detect the audio segments and their genres by HTK 
audio system. 
4: The initial video summary ଵܵ is initialized with one   
frame, defined as: ଵܵ = ݃ݎܽ ∏	],ஷೕݔܽ݉ ܵ݅݉ூ൫ ݂, ݂൯ୀଵ ∏ ܵ݅݉൫ ݂, ݂൯ୀଵ ]భ        

where ݂ and ݂ are frames in video set ܸ, and ݊ is the 
total number of frames except ݂ . ܵ݅݉ூ  computes 
similarity of image information between ݂  and ݂ , 
while ܵ݅݉  is the similarity of audio information 
between ݂ and ݂. 
5: Find the optimized weights for Eq. 9 by fitting the 
OB-MMR summary to human summaries. 
6: loop 
7:    Select frame ݂ାଵ by Eq. 9 with optimized weights 
8:    Set ܵାଵ = ܵ ∪ { ݂ାଵ}. 
9.    Iterate to step 7) until ܵ has reached the predefined 

size. 
10: End loop 
 
5. Experimental results 
 

We have two video sets, “DATI” and “YSL”, which 
are both news videos obtained from the aggregation 
website, “WIKIO”. There are 16 videos in “DATI”, 
and 14 videos in “YSL”. Both video sets own videos 
with the duration from around 30 seconds to around 10 
minutes, and video categories vary from news, 
advertisements and music video to movie. 

The visual content of a keyframe is represented by 
the Bag-Of-Word feature vectors [4] [15], and audio 
feature are MFCC vectors obtained by [6]. The 
similarities between audio features and visual features 
are identical to their definition in AV-MMR. And 
visual similarity is used as the fitness function in OB-
MMR.  

Same with Balanced AV-MMR, we also use the 
trained HTK toolkit [7] to process the audio track and 
get the audio genre of each audio frame. The statistical 
data of audio genres of audio frames in “DATI” and 
“YSL” is shown in Table 1. The toolkit provided in [8] 
is used to detect faces in the video frames. Furthermore, 



in [14] we have already got the human summaries for 
“DATI” and “YSL”, which are used in the fitness 
function of PSO and GR to get the optimized weights 
for OB-MMR. The human summaries used as the 
ground truth are assessed by 12 people with 
professional background of image processing. Each 
person selects 10 most important video frames for each 
video in our prepared frames. 

Table 1. The number of audio frames  
with different genres 

 silence music speech 
DATI 24 524 2366 
YSL 57 1173 1318 

In PSO, we consider a population, individual sets of 
weights, of size 20. And according to [13] ݓ = 0.7298, 
and ∅ଵ = ∅ଶ = 1.49618 in Eq. 9. In the gridding, the 
range of gridding for each weight is [0.0, 2.0] and the 
initial interval of gridding is 0.5. During the relaxation 
phrases, the intervals of the two relaxation iterations 
are 0.04 and 0.006 respectively. 

And in Eq. 9 of OB-MMR, we define the 
parameters ܶ, ,ܨ ,ܤ ܴ	and ܵ as follows: ܶ( ݂, ݂) =  ൝ 1.1																														, ݂݅	 ݂ 	ܽ݊݀	 ݂	݂݉ݎ	ݓݐ	1ݏ݁݀݅ݒ + 0.1 ∙ |௧()ି௧()|்ಾ , ݂݅	 ݂	ܽ݊݀	 ݂	݂݉ݎ	݁݉ܽݏ	݁݀݅ݒ  

where  ݐ( ݂) and ݐ൫ ݂൯ are time orders of ݂  and ݂  in 
video ܯ, which owns a time duration ெܶ; ܨ(݂) = (݂)ܤ ;݂	݁݉ܽݎ݂	݊݅	ݎܾ݁݉ݑ݊	݂݁ܿܽ = ேೇ()ேೇ()ାேಲ(), where ܰ(݂) is frame number of 

video summary, created by Video-MMR, in audio 
segment ܮ where frame ݂	is inside, and ܰ(݂) is frame 
number of audio summary, by Audio-MMR, in ܮ; ܴ( ݂, ݂ାଵ) = |݇( ݂) − ݇( ݂ାଵ)|, (݂)݇	݁ݎℎ݁ݓ =ቐ0.1, ,0.3,݁݉ܽݎ݂	݅݀ݑܽ	݈݁ܿ݊݁݅ݏ	ݏ݅	݂	݁݉ܽݎ݂ ,0.4,݁݉ܽݎ݂	݅݀ݑܽ	ܿ݅ݏݑ݉	ݏ݅	݂	݁݉ܽݎ݂ )ܵ ;.݁݉ܽݎ݂	݅݀ݑܽ	ℎܿ݁݁ݏ	ݏ݅	݂	݁݉ܽݎ݂ ݂, ݂) = ห݉( ݂) − ݉൫ ݂൯ห, (݂)݉	݁ݎℎ݁ݓ =ቐ0.5, ,0.8,݁݉ܽݎ݂	݅݀ݑܽ	݈݁ܿ݊݁݅ݏ	ݏ݅	݂	݁݉ܽݎ݂ ,0.9,݁݉ܽݎ݂	݅݀ݑܽ	ܿ݅ݏݑ݉	ݏ݅	݂	݁݉ܽݎ݂  ..݁݉ܽݎ݂	݅݀ݑܽ		ℎܿ݁݁ݏ	ݏ݅	݂	݁݉ܽݎ݂
The optimized weights of ܹ, ܹ, ௧ܹ , ܹ , and ௦ܹ by 
PSO and GR and their corresponding similarities of 
fitness function are shown in Table . 

Table 2. Optimized weights and similarities 
 PSO GR 
 DATI YSL DATI YSL 

similarity 0.35410 0.33616 0.34991 0.31470ܹ 0.65946 0.69707 0.75000 0.75000 ܹ 0.22887 0.01958 0.25000 0.25000

௧ܹ 1.50302 0.29761 1.75000 0.25000ܹ 0.13954 0.09365 0.25000 0.25000௦ܹ 0.08224 0.21695 0.05000 0.63000
To prove the effect of the optimized weights from 

“DATI” and “YSL”, the cross validation is used here, 
which means that the weights from “DATI” are used to 
compute the similarity of “YSL” and vice versa. The 
results of cross validation are shown in Table . 

Table 3. Cross validation 
 Weights from PSO Weights from GR

similarity DATI YSL DATI YSL 
DATI 0.35410 0.19519 0.34991 0.19350
YSL 0.27719 0.33616 0.26851 0.31470

From Table 3, it is obvious that the weights from 
PSO and GR for “DATI” are better than the weights 
from PSO and GR for “YSL” for both video sets, while 
the similarities are very similar in Table 2. Therefore 
we exploit these two sets of optimized weights, from 
PSO and GR, of “DATI” other than “YSL” in the 
following experiments.  

Then we use these 2 weights to compute video 

distance,݀(ܵ, ܸ) = ଵ	∑ ݉݅݊ೕ∈,∈ௌ(1 − ூᇱ൫݉݅ݏ ݂, ݃൯)ୀଵ , 

and audio video distance  ݀(ܵ, ܸ) = ଵ	∑ ݉݅݊ೕ∈,∈ௌ 1 − ௦ᇲ൫ೕ,൯ା௦ಲᇲ ൫ೕ,൯ଶ ൨ୀଵ  

between OB-MMR summaries and original videos [11], 
which are shown in Figure 1 and Figure 2. It is obvious 
that two OB-MMR curves are better than the previous 
algorithms, Video-MMR and Balanced AV-MMR. 
OB-MMR by PSO is a little better than OB-MMR by 
GR, which is caused by the better similarity with the 
human summaries shown in Table 2. And even when 
the optimized weights from video set “DATI” are used 
in OB-MMR for “YSL”, the results in Figure 1 and 
Figure 2 are better. So OB-MMR is a generic 
algorithm, even the optimized weights are from the 
other videos. In the future, it is possible to decide a 
fixed optimized set of weights for each genre of videos 
after the large-scale experiments. 

 
Figure 1. Video distance with original videos 
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Figure 2. Audio video distance with original videos 

We could also conclude that PSO is better than GR 
for OB-MMR according to the curves shown in Figure 
1 and Figure 2. Furthermore, it is unnecessary for PSO 
to define the range and intervals to do the gridding and 
relaxation before the computation, so PSO is an 
unsupervised algorithm and better for OB-MMR. OB-
MMR optimized by PSO can be used to summarize 
different categories of videos without a prior 
knowledge except the video category. 
 
6. Conclusions 
 

In this paper, we have proposed a summarization 
algorithm, OB-MMR, which better resolves the 
problem of combining audio and visual information 
during the summarization than previous algorithms, 
and is able to summarize multi-video. OB-MMR 
improves its predecessor, Balanced AV-MMR, by 
automatically adjusting the optimized weights fitting to 
the known human summaries. But similar to Balanced 
AV-MMR, OB-MMR exploits several typical features 
in the video: temporal information, face, audio genre, 
and audio transition of the genre. In the same category 
of videos, even the optimized weights are from the 
other videos, OB-MMR could obtain a better summary 
than Video-MMR and Balanced AV-MMR. And 
between OB-MMR by PSO and OB-MMR by GR, 
PSO is the better one, because the summary from OB-
MMR is more similar to the original video, and PSO 
does not need the prior knowledge of the video, like 
the range and interval of possible weights.  

OB-MMR can use the same optimized weights for 
different categories of videos, but it is better for OB-
MMR to decide one set of optimized weights for each 
category of video, such as news, movie, sports, and so 
on, by fitting the weights to the known human 
summaries, which needs large-scale human 
assessments. Consequently the next step of OB-MMR 
is to test and decide the optimized weights for different 
categories of videos by the large-scale experiments 
with massive video sets. 
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