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Abstract—This paper considers the MISO broadcast channel
with different spatial correlations of the user vector channels.
The base station implements regularized zero-forcing (RZF)
precoding based on an imperfect channel estimation. We de-
rive a deterministic equivalent of the signal-to-interference plus
noise ratio (SINR) by applying novel results from the field of
large dimensional random matrices. Based on this deterministic
equivalent, we compute the sum rate maximizing RZF precoder
which is given in closed form for independent and identically
distributed channels. Simulations show that the accuracy of the
approximated SINR extends well into finite dimensions.

I. INTRODUCTION

We consider a multiple-input single-output (MISO) broad-
cast channel where an M -antenna base station (BS) transmits
to K single-antenna users. To mitigate inter-user interference,
the data are linearly precoded, based on the available channel
state information at the transmitter (CSIT). In this contribution
we study regularized zero-forcing (RZF) precoding since it
features a good performance-complexity trade-off [1].

This work extends the results in [1]–[3] by applying novel
results from the field of large dimensional random matrices.
In particular, we consider a general channel with per-user
correlation and imperfect CSIT. We derive a deterministic
equivalent of the (instantaneous) signal-to-interference plus
noise ratio (SINR) per user. That is, a close approximation
independent of the channel realization for every M which is
(almost surely) exact as M→∞ with finite β , M/K. This
approximation can be applied to a wide range of problems [4],
[5], among which the present contribution addresses solely the
problem of deriving the sum rate maximizing regularization
term.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (·)H, tr(·) and E[·] denote conjugate transpose,
trace and expectation, respectively. The N×N identity matrix
is denoted IN , log(·) is the natural logarithm, =(z) is the
imaginary part of z∈C and ‖X‖ is the spectral radius of X.

II. SYSTEM MODEL

Consider a MISO broadcast channel where a BS equipped
with M antennas transmits to K single-antenna users. The

narrow-band signal yk received by user k is

yk = hH
kx + nk, k = 1, 2, . . . ,K, (1)

where hH
k ∈ C1×M is the channel of user k, x ∈ CM is the

transmit vector and the nk are independent complex Gaussian
noise terms with zero mean and variance σ2.

Each user channel hk is correlated, i.e., E[hkhH
k ]=Θk and

can be written as

hk =
√

MΘ1/2
k zk, (2)

where Θk is the correlation matrix of user k and zk has
independent and identical distributed (i.i.d.) complex entries
of zero mean and variance 1/M . Moreover, only an imperfect
estimate ĥk of the true channel hk is available at the BS.
Following [6], [7], we model ĥk as

ĥk =
√

MΘ1/2
k

(√
1− τ2

kzk + τkqk

)
,
√

MΘ1/2
k ẑk, (3)

where qk has i.i.d. entries of zero mean and variance 1/M
independent from zk and nk. The parameter τk∈ [0, 1] reflects
the amount of uncertainty in the channel estimate ĥk.

The transmit vector x is a linear combination of the in-
dependent user symbols sk ∼ CN (0, 1) and can be written
as

x =
K∑

k=1

√
pkgksk, (4)

where gk ∈CM and pk≥0 are the beamforming (BF) vector
and the signal power of user k, respectively. The BF vectors
are normalized to satisfy the average power constraint

E[‖x‖2] = tr(PGHG) ≤ P, (5)

where G , [g1,g2, . . . ,gK ]∈CM×K , P = diag(p1, . . . , pK)
and P is the total available transmit power.

The RZF precoder G is given by

G = ξ
(
ĤHĤ + MαIM

)−1

ĤH, (6)

where Ĥ, [ĥ1, ĥ2, . . . , ĥK ]H∈CK×M is the channel estimate
available at the BS, ξ is a normalization scalar to fulfill the
power constraint (5) and α > 0 is the regularization term.



Here, α is scaled by M to ensure that, as M grows large, both
trĤHĤ and trMαIM grow with the same order of magnitude.

From the total power constraint (5), we obtain ξ2 as

ξ2 =
P

trPĤ(ĤHĤ + MαIM )−2ĤH
,

P

Ψ
. (7)

Denoting ρ , P/σ2 the signal-to-noise ratio (SNR) and
Ŵ,(ĤHĤ + MαIM )−1, the SINR γk of user k under RZF
BF, Gaussian signalling and single-user decoding with perfect
channel state information at the receivers, takes the form

γk =
pk|hH

kŴĥk|2

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk + Ψ
ρ

, (8)

where Ĥ[k] , [ĥ1, . . . , ĥk−1, ĥk+1, . . . , ĥK ]H∈CK−1×M and
P[k] , diag(p1, . . . , pk−1, pk+1, . . . , pK). The ergodic sum
rate is defined as

Rsum =
K∑

k=1

EĤ [log (1 + γk)] . (9)

III. DETERMINISTIC EQUIVALENT OF THE SINR
In this section we derive a deterministic equivalent γ◦k =

γ◦k(M) for the instantaneous SINR γk in (8) such that

γk − γ◦k
M→∞−→ 0, (10)

almost surely. That is, γ◦k is an approximation of γk which
becomes more accurate as M increases.

In the course of the derivation of γ◦k , we require the
following theorem.

Theorem 1: Let BN = XH
NXN + SN with SN ∈ CN×N

Hermitian nonnegative definite and XN ∈ Cn×N random.
The ith column xi of XH is xi = Ψiyi, where the entries
of yi ∈ Cri are i.i.d. of zero mean, variance 1/N and
have finite moment of order 4 + ε, for some ε > 0. The
matrices Ψi ∈ CN×ri are deterministic. Furthermore, let
Θi =ΨiΨH

i ∈CN×N and define QN ∈CN×N deterministic.
Both Θi and QN are assumed to have uniformly bounded
spectral norm (with respect to N ). Define

mBN ,QN
(z) ,

1
N

trQN (BN − zIN )−1
. (11)

Then, for z∈C\R+, as n, N grow large with ratios βi ,N/ri

and β,N/n such that 0< lim infN β(N)≤ lim supN β(N)<
∞, we have that

mBN ,QN
(z)−m◦

BN ,QN
(z) N→∞−→ 0, (12)

almost surely, with m◦
BN ,QN

(z) given by

m◦
BN ,QN

(z) =
1
N

trQN

 1
N

n∑
j=1

Θj

1 + ej(z)
+ SN − zIN

−1

(13)

where e1(z), . . . , en(z) form the unique solution of

ei(z) =
1
N

trΘi

 1
N

n∑
j=1

Θj

1 + ej(z)
+ SN − zIN

−1

(14)

which is the Stieltjes Transform of a nonnegative finite mea-
sure on R+. Moreover, for z<0, the e1(z), . . . , en(z) are the
unique nonnegative solutions to (14).
Note that (14) forms a system of n coupled equations, from
which (13) is given explicitly.

Proof: The proof of Theorem 1 is available in [8].
Based on Theorem 1, the approximated SINR γ◦k is provided

in the following theorem.
Theorem 2 (Deterministic equivalent for the SINR): Let

γk be the SINR of user k defined in (8). Then

γk − γ◦k
M→∞−→ 0, (15)

almost surely, where γ◦k is given by

γ◦k =
pk(1− τ2

k ) (m◦
k)2

Υ◦k(1− τ2
k [1− (1 + m◦

k)2]) + Ψ◦

ρ (1 + m◦
k)2

, (16)

where

m◦
k =

1
M

trΘkV, (17)

Ψ◦ =
1
M

K∑
j=1

pje
′
j

(1 + ej)2
, (18)

Υ◦k =
1
M

K∑
j=1

pje
′
j,k

(1 + ej)2
. (19)

Denoting V , (F + αIM )−1, three systems of K coupled
equations have to be solved. First, the e1, . . . , eK form the
unique positive solutions of

ei =
1
M

trΘiV, (20)

F =
1
M

K∑
j=1

Θj

1 + ej
. (21)

Secondly, the e′1, . . . , e
′
K form the unique positive solutions of

e′i =
1
M

trΘiV2 (F′ + IM ) , (22)

F′ =
1
M

K∑
j=1

Θje
′
j

(1 + ej)2
. (23)

Finally, the e′1,k, . . . , e′K,k are the unique positive solutions of

e′i,k =
1
M

trΘiV2 (F′k + Θk) , (24)

F′k =
1
M

K∑
j=1

Θje
′
j,k

(1 + ej)2
. (25)

Sketch of Proof: Due to space limitations, we can only
give a brief sketch of the proof of Theorem 2. For the detailed
proof refer to [8].

The strategy is as follows: The SINR γk in (8) consists
of three terms, (i) the signal power |hH

kŴĥk|2, (ii) the
interference power hH

kŴĤH
[k]P[k]Ĥ[k]Ŵhk and (iii) the term

Ψ of the power normalization. For each of these three terms
we will subsequently derive a deterministic equivalent which
together constitute the final expression for γ◦k .



a) Deterministic equivalent for Ψ: The term Ψ =
trPĤ(ĤHĤ + MαIM )−2ĤH can be written as

Ψ =
K∑

k=1

pkĥH
k

(
ĤHĤ + MαIM

)−2

ĥk (26)

(a)
=

1
M

K∑
k=1

pk

ẑH
kΘ1/2

k C−2
[k] Θ

1/2
k ẑk(

1 + ẑH
kΘ1/2

k C−1
[k] Θ

1/2
k ẑk

)2 , (27)

where C[k] ,Γ[k] + αIM with Γ[k] ,
1
M ĤH

[k]Ĥ[k] and in (a)
we applied the matrix inversion lemma [9, Lemma 2.2] twice
together with (3). For M large, we apply [10, Lemma 2.7]
and obtain

Ψ− 1
M

K∑
k=1

pk

1
M trΘkC−2

[k](
1 + 1

M trΘkC−1
[k]

)2

M→∞−→ 0 (28)

(b)⇔ Ψ− 1
M

K∑
k=1

pk

m′
Γ,Θk

(−α)

(1 + mΓ,Θk
(−α))2

M→∞−→ 0, (29)

almost surely, where in (b) we applied the rank-1 perturbation
lemma [11, Lemma 2.1], the definition (11) and denoted
m′

Γ,Θk
(−α) the derivative of mΓ,Θk

(z) along z at z =
−α. To obtain a deterministic equivalent m◦

Γ,Θk
(−α) and

m′◦
Γ,Θk

(−α) of mΓ,Θk
(−α) and m′

Γ,Θk
(−α), respectively,

we apply Theorem 1. With the notations in Theorem 2, we
have m◦

k ,m◦
Γ,Θk

(−α)= 1
M trΘkV and e′k ,m′◦

Γ,Θk
(−α)=

1
M trΘkV2(F′ + IM ) and therefore

Ψ◦ ,
1
M

K∑
k=1

pk

m′◦
Γ,Θk

(−α)(
1 + m◦

Γ,Θk
(−α)

)2 =
1
M

K∑
k=1

pke′k
(1 + ek)2

,

satisfies Ψ−Ψ◦ M→∞−→ 0, almost surely.
b) Deterministic equivalent for hH

kŴĥk: Similar to the
derivations in (26) and (27), we have

hH
kŴĥk =

zH
kΘ1/2

k C−1
[k] Θ

1/2
k ẑk

1 + zH
kΘ1/2

k C−1
[k] Θ

1/2
k ẑk

(30)

=

√
1− τ2

kzH
kΘ1/2

k C−1
[k] Θ

1/2
k zk

1 + zH
kΘ1/2

k C−1
[k] Θ

1/2
k ẑk

+
τkzH

kΘ1/2
k C−1

[k] Θ
1/2
k qk

1 + zH
kΘ1/2

k C−1
[k] Θ

1/2
k ẑk

.

Since qk and zk are independent, zH
kΘ1/2

k C−1
[k] Θ

1/2
k qk

M→∞−→
0, almost surely [8] and we obtain

hH
kŴĥk −

√
1− τ2

k

m◦
k

1 + m◦
k

M→∞−→ 0, (31)

almost surely.

c) Deterministic equivalent of hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk:
With (2) and C,Γ + αIM , Γ, 1

M ĤHĤ, we have

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk

=
1
M

zH
kΘ1/2

k C−1ĤH
[k]P[k]Ĥ[k]C−1Θ1/2

k zk (32)

=
1
M

zH
kΘ1/2

k C−1
[k] Ĥ

H
[k]P[k]Ĥ[k]C−1Θ1/2

k zk+

1
M

zH
kΘ1/2

k

[
C−1 −C−1

[k]

]
ĤH

[k]P[k]Ĥ[k]C−1Θ1/2
k zk. (33)

Substituting C−1 − C−1
[k] =−C−1(C − C[k])C−1

[k] with C −
C[k] = Θ1/2

k (c0zkzH
k + c1qkqH

k + c2zkqH
k + c2qkzH

k )Θ1/2
k ,

where c0 ,(1−τ2
k ), c1 ,τ2

k and c2 ,τk

√
1− τ2

k into (33), we
obtain a sum of five terms. Applying [8, Lemma 1] repeatedly
to each of these terms yields

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk−
Υk

[
1− τ2

k

(
1− (1 + mΓ,Θk

(−α))2
)]

(1 + mΓ,Θk
(−α))2

M→∞−→ 0, (34)

almost surely, where Υk = 1
M2 trPĤC−1ΘkC−1ĤH. To find

Υ◦k such that Υk − Υ◦k
M→∞−→ 0, almost surely, we define

C̄,Θ−1/2
k ΓΘ−1/2

k +αΘ−1
k and subsequently apply the same

techniques as previously. Therefore

Υ◦k =
1
M

K∑
j=1

pj ẑH
j Θ1/2

j Θ−1/2
k C̄−2Θ−1/2

k Θ1/2
j ẑj (35)

(a)
=

1
M

K∑
j=1

pj

m′◦
Γ−zΘk,Θj

(−α)(
1 + m◦

Γ,Θj
(−α)

)2 (36)

=
1
M

K∑
j=1

pje
′
j,k

(1 + ej)2
, (37)

where in (a), we applied Theorem 1 to the numerator by
setting Θj =Θ−1/2

k ΘjΘ
−1/2
k in the inverse of (13) and (14),

which completes the sketch of proof.
In the next section we will discuss one particular application

of Theorem 2, namely the sum rate maximizing RZF precoder,
for different assumptions on Θk.

IV. SUM RATE MAXIMIZING REGULARIZATION

The possible applications of Theorem 2 are numerous. One
can analyze and optimize e.g. power allocation strategies P,
the regularization parameter α, the cell loading M/K [4] or
CSIT acquisition techniques [5]. In this contribution we focus
on the optimization of the regularization parameter α.

The objective function is an approximation R◦sum of the
ergodic sum rate (9), where the instantaneous SINR γk is
replaced by its the large system approximation γ◦k in Theorem
2, i.e.,

R◦sum =
K∑

k=1

log (1 + γ◦k) . (38)

The case Θk = IM is particularly interesting, as it leads to a
closed form solution.



The optimal regularization parameter α?◦ maximizing (9)
is defined as

α?◦ = arg max
α>0

K∑
k=1

log (1 + γ◦k) . (39)

In general, the optimization problem (39) is not convex in α
and the solution needs to be computed via a one-dimensional
line search1.

We refer to the RZF precoder with optimal regularization
parameter α?◦ as ORZF. For homogeneous networks (Θk =
IM ) the user channels hk are statistically equivalent and it is
reasonable to assume that the distortions τ2

k of the CSIT ĥk

are identical for all users, i.e., τ2
k =τ2. Under this assumption,

it can easily be shown that the power allocation strategy P
maximizing (38) is P?◦ = P

K IK , i.e., the total power P is
distributed equally among the users. From the above assump-
tions, the solution to (39) yields a closed form expression for
the ORZF precoder, summarized in the following proposition.

Proposition 1: Let Θk =IM and τk =τ . The approximated
SINR γ◦k of user k under RZF precoding (equivalently, the
approximated per-user rate and the sum rate) is maximized
for a regularization term α , α?◦, given by

α?◦ =
(

1 + τ2ρ

1− τ2

)
1
βρ

. (40)

Proof: For Θk =IM , m◦
k =m◦ is the Stieltjes Transform

of the Marc̆enko-Pastur law and reads [12]

m◦ =
β(1− α)− 1 + d(α, β)

2αβ
(41)

with d(α, β) =
√

β2α2 + 2αβ(1 + β) + (1− β)2.

Furthermore, Ψ◦(m◦) = Υ◦k =
P
K (m◦)2

β(1+m◦)2−(m◦)2 . Substituting
(41) into (16), differentiating w.r.t. α and equating to zero
yields

(m◦)2 +
1 + 1

ρ − β(1− τ2)

τ2 + 1
ρ

m◦ − β(1− τ2)
τ2 + 1

ρ

= 0. (42)

As the coefficients of the quadratic polynomial (42) in m◦

are independent of α, we solve (42) for m◦ and subsequently
find the maximizing α. Setting the only positive solution of
(42) equal to m◦ in (41) and after some algebraic calculus,
we obtain

α2β

(τ2ρ + 1)2
[
αβρ(τ2 − 1) + τ2ρ + 1

]2
= 0. (43)

Since α>0, only the term in brackets needs to be considered.
The quadratic equation (43) has exactly one distinct real root
(40), which completes the proof.
Notice that for perfect CSIT (τ = 0) we have α?◦ = 1/(βρ),
which corresponds to the RZF precoder derived in [1], [3]. As
mentioned in [1], for large M the RZF precoder is identical
to the minimum mean square error (MMSE) precoder in [6],
[13]. In contrast, for τ > 0, the ORZF precoder and the

1However, in simulations we observe only a single maximum for α>0. In
this case α?◦ can be computed very efficiently.

MMSE precoder [6] are not identical anymore, even in the
large M limit. Furthermore, for τ > 0, at asymptotically
high SNR the regularization term α?◦ in (40) converges to
limρ→∞ α?◦ = τ2

1−τ2
1
β . Thus, for asymptotically high SNR,

ORZF is not equivalent to zero-forcing (ZF) precoding, in the
sense that α?◦ does not converge to zero. Similar observations
have been made in [6] for the MMSE precoder.

With (40), the approximated SINR γ◦k in (16) takes the
following simplified form.

Corollary 1: Let Θk = IM , τk = τ and γk be the SINR of
user k under ORZF precoding. Then γk − γ◦k

M→∞−→ 0, almost
surely, where γ◦k is given by

γ◦k , γ◦ = m◦(−α?◦) =
ω

2
ρ(β − 1) +

χ

2
− 1

2
, (44)

where ω∈ [0, 1] and χ are given by

ω =
1− τ2

1 + τ2ρ
, (45)

χ =
√

(β − 1)2ω2ρ2 + 2(1 + β)ωρ + 1. (46)

Proof: Replace α in (16) by α?◦ in (40). After some
algebraic manipulations we obtain (44).
Note that for τ2 = 0 and α = α?◦, (44) is identical to
the asymptotic SINR derived in [3] and for the inter-cell
interference-free system in [14]. For β = 1, equation (44)
simplifies to γ◦=− 1

2 +
√

ωρ + 1
4 .

V. NUMERICAL RESULTS

In this section we validate our results by comparing them
to Monte-Carlo (MC) simulations of i.i.d. Rayleigh block-
fading channels for finite system dimensions and equal power
allocation P=IK .

The correlation Θk of the kth user channel is modeled as in
[15] by assuming a diffuse two-dimensional field of isotropic
scatterers around the receivers. The waves impinge the receiver
k uniformly at an azimuth angle θ ranging from θk,min to
θk,max. Denoting dij the distance between transmit antenna i
and j, the correlation is modeled as

[Θk]ij =
1

θk,max − θk,min

∫ θk,max

θk,min

e j 2π
λ dij cos(θ)dθ, (47)

where j ,
√
−1 and λ denotes the signal wavelength. The

users are assumed to be distributed uniformly around the BS
at an angle ϕk =2πk/K and as a simple example we choose
θk,min =−π and θk,max =ϕk − π. The BS is equipped with a
uniform linear array (ULA). To assure that ‖Θk‖ is bounded as
M grows large, we assume that the distance between adjacent
antennas is independent of M , i.e., the length of the ULA
increases with M .

Figure 1 compares the ergodic sum rate to our determin-
istic approximation (38). The error bars indicate the standard
deviation of the MC results. The notation Θk 6= IM indicates
that Θk is modeled according to (47) with dij/λ=0.5. It can
be observed that the approximation lies approximately within
the standard deviation of the MC simulations. Therefore, we
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conclude that the approximation in Theorem 2 is accurate
even for finite dimensions and can be applied to various
optimization problems.

In Figure 2 we compare the ergodic sum rate performance
for different regularization parameters α with CSIT distortion
τ2
k =0.1. The upper-bound α=α? is obtained by optimizing

α for every channel realization, whereas ᾱ? maximizes the
ergodic sum rate. It can be observed that both ᾱ? and α?◦

perform close to the optimal α?. Furthermore, if the channel
uncertainty τ2

k is unknown at the BS (and hence assumed zero),
the performance is decreasing as soon as τ2

k dominates the
noise power σ2 and approaches the sum rate of ZF precoding
for high SNR. We conclude that (i) adapting the regularization
term yields a significant performance increase and (ii) that the
proposed ORZF with α?◦ performs close to optimal even for

small system dimensions.

VI. CONCLUSION

This paper presented a large system approximation of the
SINR under RZF precoding for a very general channel model
giving rise to numerous possible applications. Among those
we discussed the sum rate maximizing RZF precoder and
found that an optimization based on the novel deterministic
equivalent achieves an almost optimal performance even for
small system dimensions.
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