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Abstract— We analyze the sum rate performance in multicell
single-hop networks where access points are allowed to cooperate
in terms of a joint resource allocation. The resource alloca-
tion policies considered here combine power control and user
scheduling. Although promising from a conceptual point of view,
the optimization of the sum of per-link rates hinges on tough
issues such as computational complexity and the requirement for
heavy receiver-to-transmitter and cell-to-cell channel information
feedback. In this paper, however, we show that simple distributed
algorithms can scale optimally in terms of rates, when the number
of users per cellU is allowed to grow large. We use extreme value
theory to provide scaling laws for upper and lower bounds for
the network sum-rate (sum of single user rates over all cells),
corresponding to zero-interference and worst-case interference
scenarios. We show that the scaling is either dominated by path
loss statistics or by small-scale fading, depending on the regime
and user location scenario. A key result is that the well known
log log U rate behavior exhibited in i.i.d. fading channels with
maximum rate schedulers is transformed into a log U behav-
ior when path loss is accounted for. Additionally, by showing
that upper and lower rate bounds behave in fact identically,
asymptotically, our results suggest, remarkably, that the impact
of multicell interference on the rate (in terms of scaling) actually
vanishes asymptotically, when appropriate resource allocation
policies are used.

Index Terms— Cooperation, cellular networks, extreme value
theory, sum rate scaling, interference, coordination, distributed,
scheduling.

I. I NTRODUCTION

The performance of wireless cellular networks with reuse
of the spectral resource is limited by the problem of interfer-
ence. Traditional ways to tackle this problem include careful
planning of the spectral resource and the use of interference
mitigation or advanced coding/detection techniques combined
with fast link adaptation protocols at the physical layer [1],
[2]. In a typical approach to resource planning, the system
designer aims at the fragmentation of the network geographical
area into smaller zones (reuse patterns) using orthogonal
spectral resources. Static orthogonal multiple access is ac-
ceptable (although suboptimal) at the cell level but is very
inefficient across cells because it neglects the natural ability
of wireless propagation to alleviate interference throughpath
loss and random fading. More efficient resource allocation
protocols include power control [3] and dynamic channel
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assignment methods which exploit the fading information. Due
to a heavy legacy from voice-centric network, the majority
of existing techniques are designed with the aim of achiev-
ing a given signal to interference plus noise ratio (SINR),
common to all users, rather than maximizing the spectral
efficiency in Bits/Sec/Hz per area [4], [5]. However rate-
maximizing resource allocation has been addressed before,e.g.
in game theoretic power control algorithms with pricing [6],
[7], iterative/greedy techniques combining power controland
scheduling [8] to name just a few.

In this paper, we look at interference suppression from the
point of view of the diversity benefits provided by resource
allocation techniques. We do not assume advanced multiuser
or multicell encoding or decoding. In particular, MIMO (mul-
tiple input multiple output) based joint encoding at multiple
base stations, such as the one considered e.g. in [9], [10],
[11], [12] is left out, in order to emphasize less complex
and less signaling hungry coordination schemes where various
transmitters need not exchange the user data information to
achieve cooperation.

The impact of scheduling on so-called multiuser diversity
has been researched extensively for the single cell scenario,
with or without interference, with single or multiple antennas.
Here we revisit the advantages of multiuser diversity for
multicell networks, where some level of cooperation between
the transmitters is allowed in the form of joint power control
and user scheduling across the cells. The positive impact of
scheduling in multicell networks is intuitively well under-
stood and has been addressed, sometimes in conjunction with
beamforming [11], [13]. In [14], the gain related to intercell
scheduling is analyzed with the means of extreme value theory
with the emphasis on the extra multi-user diversity extracted
from intercell scheduling when interference is assumed to
be eliminated, either with the help of joint multicell DPC
encoding/decoding, or orthogonal dynamic frequency reuse.

Here we explore how the scaling of rates (when increasing
the number of users per cell) is impacted by interference in a
typical cellular network, under joint power control and user
scheduling. Single user encoding/decoding is used and no
frequency reuse is assumed (i.e. all cells are fully interfering).
We are targeting the maximization of the network throughput
(sum of rates over the cell). Scaling laws for single cell, MISO
and MU-MIMO channels have been analyzed in the recent
past [15], [16], exploiting interesting extreme value theoretic
tools. Extensions to traffic data model where different users
share some of the data were addressed in [17]. Interestingly,
some of these results can be readily reused in the multicell
network context with i.i.d Rayleigh fading channel models.
In [11] it is shown for a simplified interference model (Wyner
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model) that the same scaling is obtained for multicell networks
with joint linear MIMO precoding as for an optimal precoder,
both of these coinciding with the scaling reached in a single
cell network (i.e. inlog log U ). However other channel models
accounting for the path loss effects and cell user locations
require additional tools and bring fundamental changes in
the scaling performance. Interestingly, there is other work on
the scaling law of capacity in interference-limited networks,
for which path loss is a key factor, including [18]. Up to
our knowledge the existing analysis considers the rate with
asymptotically growing number of links (cells) rather than
users, thus yielding quite different interpretations, mostly
targeting ad hoc networks.

Specific contributions of this paper include the finding of
scaling laws of rates in different interference scenarios in
cellular networks. We show in particular that the impact of
multicell interference on the scaling of rates in the network
asymptotically vanishes when sum rate-optimal resource al-
location strategies are used. Another important point is that
while a log log U scaling law is obtained for networks with
symmetric i.i.d Rayleigh channels (much akin to single cell
results [15], [16]), a much higher growth rate inlog U is
achieved when path loss is accounted for.

II. N ETWORK AND SIGNAL MODELS

We consider a wireless network featuring a numberN
of transmit-receive active pairs, which are simultaneously
selected for transmission by the scheduling protocol at any
considered instant of time, others remaining silent. All active
links interfere with each other. This setup, an instance of the
interference channel [19] can be observed in e.g. a cellular
network with reuse factor one, such as the upcoming IEEE
802.16e (WiMax) and 3GPP (LTE) wireless standards. We
assume each of theN cells is equipped with an access point
(AP) and that APs communicate with the users in a single-
hop fashion. We also assume the APs are time-synchronized.
In this paper we focus on the performance of downlink
communication from the AP to the users. However we believe
our analysis carries over to the uplink without great difficulty.

Let Un be the number of users randomly distributed over
cell n, for n = 1, . . . , N . We will assume these users are
uniformly randomly distributed over either a circle or a disk
around their access point.

Since we focus on the impact of inter-cell rather than intra-
cell interference, we consider an orthogonal multiple access
schemewithin the cellso that asingleuser per cell is supported
on any given spectral resource slot (time slot, frequency slot,
code slot, etc.). For instance, in OFDMA-based WiMax or
LTE standards, a resource slot is represented by a unique
time/frequency slice. For ease of exposition, single antenna
devices are considered. On any given spectral resource slot,
shared by allN cells, we denote byun ∈ {1, . . . , Un}
the index of the user that is granted access to the slot (i.e.
scheduled) in celln. An example of such a situation is depicted
for a simple two cell network in Fig.1.

We denote the complex downlink flat-fading channel gain
between thei-th AP and userun of cell n by αun,i. In practice

Fig. 1. A two-cell network diagram example. Direct and interfering links
toward the scheduled user (black) are indicated in solid anddashed arrows
respectively. Users are located randomly over a cell of radius R around their
access point.

the flat fading channel model may be obtained at the subcarrier
level in an OFDM setting. The local channel state information
(CSI) is assumed perfect at the receiver side. This information
is also fed back perfectly to the control unit responsible
for resource allocation, either in a centralized or distributed
manner (this point crucial when it comes to applicability,
as discussed later). The study of how much degradation is
incurred by the capacity in the case of imperfect feedback is
interesting, yet beyond the scope of this paper. The received
signalYun

at userun is given by

Yun
= αun,nXun

+
N

∑

i6=n

αun,iXui
+ Zun

,

where Xun
is the message-carrying signal from the serving

AP, subject to a peak (per block) power constraintPmax.
∑N

i6=n αun,iXui
is the sum of interfering signals from other

cells andZun
is the additive noise or extra interference.Zun

is modeled for convenience as white Gaussian with power
E|Zun

|2 = σ2. Note that a single power level is applied at each
AP in this notation. This will allow us to ease the expositionof
our analysis. In the OFDMA case however, a possibly unequal
power level may be applied on each subcarrier, leading to the
optimization of apower vector, under sum power constraint,
rather than ascalarpower level at each AP. The analysis in that
case however leads to similar conclusions on the rate scaling
and is skipped in this paper.

III. T HE MULTICELL RESOURCE ALLOCATION PROBLEM

As stated above, intra-cell multiple access is orthogonal,
while intercell multiple access is simply superposed, due
to full reuse of spectrum. The resource allocation problem
considered here consists inpower allocationanduser schedul-
ing subproblems. Importantly we focus onrate maximizing
resource allocation policies, rather thanfairness-orientedones
[20]. As is the case with known single cell protocols, multicell
scheduling protocols can be enhanced to offer some desired
performance-fairness trade-off, however this is outside the
focus of this paper. Fairness issues are touched upon in [8].In
our setting the optimization of resource in the various resource
slots decouples and we can consider the power allocation
and user scheduling maximizing the rate in any one slot,
independently of other slots. A few useful definitions follow.
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Definition 1: A scheduling vector U contains the set of
users simultaneously scheduled across allN cells in the same
slot:

U = [u1 u2 · · · un · · · uN ]

where [U ]n = un. Noting that1 ≤ un ≤ Un, the constraint
set of scheduling vectors is given byΥ = {U | 1 ≤ un ≤
Un ∀ n = 1, . . . , N}.

Definition 2: A transmit power vector P contains the
transmit power values used by each AP to communicate with
its respective user:

P = [Pu1
Pu2

· · · Pun
· · · PuN

]

where [P ]n = Pun
= E|Xun

|2. Due to the peak power
constraint0 ≤ Pun

≤ Pmax, the constraint set of transmit
power vectors is given byΩ = {P | 0 ≤ Pun

≤ Pmax ∀ n =
1, . . . , N}.

A. Rate optimal resource allocation

The merit (or utility) associated with a particular choice of
a scheduling vector and power allocation vector is measured
via the set of SINRs observed by all scheduled users simul-
taneously.Γ([U ]n,P ) refers to the SINR experienced by the
receiverun in cell n as a result of power allocation in all cells,
and is given by:

Γ([U ]n,P ) =
Gun,nPun

σ2 +

N
∑

i6=n

Gun,iPui

, (1)

where Gun,i = |αun,i|
2 is the channel power gain from

cell i to receiver un. This expression corresponds to the
use of orthogonal multiple-access schemes (TDMA, FDMA,
etc.) within the cell but non orthogonal access from cell to
cell. This might be considered as a first step toward a more
general analysis taking into account both intra-cell and inter-
cell interference simultaneously.

Assuming that (i) the transmitters cannot afford to perform
cooperative encoding, (ii) single user decoding, and Gaussian
interference, we consider the average of rates achieved over
all cells as our utility [19]:

C(U ,P )
∆
=

1

N

N
∑

n=1

log
(

1 + Γ([U ]n,P )
)

. (2)

The sum-rate optimal resource allocation problem can now
be formalized simply as:

(U∗,P ∗) = arg max
U∈Υ
P∈Ω

C(U ,P ), (3)

The optimization above can be seen as generalizing known ap-
proaches in two ways. First the capacity maximizing schedul-
ing problem has been considered (e.g. [21]), but in general
not jointly over multiple cells. Second, the problem above
extends the classical multicell power control problem (which
usually rather aims at achieving SINR balancing) to include
joint optimization with the scheduler.

The problem in (3) presents us with many degrees of
freedom for optimizing system capacity but also with several
serious challenges. First the problem above is non convex
(as a mixed integer-non linear problem) and standard opti-
mization techniques do not apply directly. On the other hand
an exhaustive search of the(U ,P ) pairs over the constraint
set is prohibitive. Finally, even if computational issues were
to be resolved, the optimal solution still requires a central
controller updated with instantaneous inter-cell channelgains
which would create acute signaling overhead issues in practice.
The central question addressed by this paper can be formulated
as follows: Can we approach the gains related to multicell
resource allocation within reasonable complexity and signaling
constraints? Our study provides a positive answer to this
problem, at least from the point of view of rate scaling.

IV. N ETWORK SUM-RATE: MODELS AND BOUNDS

Let us consider a system with a large number of users
in each cell. For the sake of exposition we shall assume
Un = U for all n, whereU is asymptotically large, whileN
remains fixed. We expect a growth of the sum-rateC(U∗,P ∗)
with U thanks to themulticell multiuser diversity gain1. Thus
we are interested in how theexpectedsum-rate scales with
U . To this end we shall use several interpretable bounding
arguments. We consider two channel gain models. The first
considers a symmetric distribution of gains to all users from
their serving AP. Although not very practical, this assumption
has the merit of creating a strong parallel with the single cell
MU-MIMO rate analysis carried out in [15], [16], allowing us
to readily exploit these results. Later on, we are considering
a more general model where an additional random distance-
dependent path loss is accounted for. In this case however,
existing analysis does not apply and special extreme value
theoretic tools are developed.

A. Bounds on multicell sum-rate

The simple bounds below hold in the asymptotic and non
asymptotic regimes as well.

Upper bound: An upper bound (ub) on the rate for a given
resource allocation vector (not necessarily an optimal one) is
obtained by simply ignoring intercell interference effects:

C(U ,P ) ≤
1

N

N
∑

n=1

log
(

1 +
Gun,nPun

σ2

)

. (4)

In the absence of interference, the optimal rate is clearly
reached by transmitting at a level equal to the power constraint,
i.e. Pmax = [Pmax, . . . , Pmax] and selecting the user with the
largest channel gain in each cell (maximum rate scheduler),
thus giving the following upper bound on rate:

C(U∗,P ∗) ≤ Cub (5)

where

1The multicell multiuser diversity gain can be seen as a generalization
of the conventional multiuser diversity [21] to multicell scenarios with joint
scheduling
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Cub =
1

N

N
∑

n=1

log
(

1 + Γub
n

)

. (6)

and where the upper bound on SINRΓub
n is given by the

maximum rate scheduler:

Γub
n = max

un=1...U
{Gun,n}Pmax/σ2 (7)

Lower bound: A lower bound (lb) on the optimal rate (in
the presence of interference)C(U∗,P ∗) can be derived by re-
stricting the domain of optimization. Namely, by restricting the
power allocation vector to full powerPmax in all transmitters,
we have

C(U∗,P ∗) ≥ Clb (8)

where

Clb = C(U∗
FP ,Pmax) (9)

and whereU
∗
FP denotes the maximum rate scheduling

vector when assuming full power everywhere. This scheduling
vector is defined by

U
∗
FP = arg max

U∈Υ
C(U ,P max), (10)

Note that the user selected in then-th cell, designated by
[U∗

FP ]n, is found via:

[U∗
FP ]n = arg max

U∈Υ

{Gun,n}Pmax

σ2 +
∑N

i6=n Gun,iPmax

(11)

The SINR corresponding to the selected user, denoted by
Γlb

n , is therefore given by:

Γlb
n = max

un=1...U

{Gun,n}Pmax

σ2 +
∑N

i6=n Gun,iPmax

(12)

Finally the lower bound on rateClb may be rewritten as:

Clb =
1

N

N
∑

n=1

log
(

1 + Γlb
n

)

. (13)

B. Distributed vs. centralized scheduling

For large networks, it is important that scheduling algo-
rithms can operate on a distributed mode, that is, the choiceof
the optimal user set should be done by each cell on the basis of
locally available information only. This is in principle difficult
task because the achievable rates observed in different cells
are coupled together through the interference terms. Therefore
a crucial question is how much performance can one reach
by sticking to power control and scheduling algorithms that
only require local CSI? This problem is a difficult one in
the general case, but some light is shed in some asymptotic
cases. A first step in this direction consists in noting that if
the scheduler is based on maximizing the upper bound of
network sum-rate given by (6), then each cell only needs
to know the realization of the direct gainGun,n, and the
scheduler is trivially distributed. Alternatively, to obtain a
scheduler maximizing the lower bound of rate given by (13),

each cell must collect the worst case SINR for each of its users.
The worst case SINRs are computed during e.g. a common
preamble phase where all APs are asked to transmit pilot or
data symbols at full power. This makes the scheduler of (11)
also distributed. Note that "worst case" is here understoodin
terms relative to the power control policy, not the scheduler.

C. Channel models

We now detail our assumptions regarding the fading and
path loss models. Some of these assumptions are mainly
technical, serving to simplify the analysis but could be relaxed
without altering the fundamental results, as discussed later. As
mentioned above we assume a cellular network where APs are
regularly located with cell radiusR. In this sense, the cells are
assumed to be circular with each base being at the center of
it, although this assumption is not critical to this study (i.e.
similar conclusions can be obtained for hexagonal cell etc.) as
explained below.

The basic channel model consists in the product between a
variable representing the path loss and a variable representing
the fast fading coefficient: LetGun,i = γun,i|hun,i|

2, un =
1 . . . U, i = 1 . . . N be the set of power gains whereγun,i is
the path loss between userun (selected in celln) and the
access point in celli. hun,i is the corresponding normalized
complex fading coefficient. A generic path loss model is given
by [22]:

γun,i = βd−ǫ
un,i (14)

whereβ is scaling factor,ǫ is the path loss exponent (usually
with ǫ > 2), and dun,i is the distance between userun and
AP i.

Note that we assume as preamble a user-to-AP assignment
strategy resulting in all users being served by the AP with
the smallest path loss. This means, as is usually the case in
current network design, that the AP assignment operates on a
time scale which is not fast enough to provide diversity against
fast fading.

We consider in turn two basic user location scenarios, and
a hybrid one. As it will be made clear later, the user location
scenario has significant impact on the analysis of the network
sum-rate. In the first scenario, denoted assymmetric network,
all users served by a given AP are assumed to be located at the
same distance from that AP. This idealized situation results in
all users experiencing the same average signal-to-noise ratio
(SNR), an assumption often made by previous authors in this
area, and for which several interesting results of the existing
literature can be reused. This scenario is illustrated in Fig.2.

In the second, more realistic, scenario, denoted simply as
non symmetric network, the users are located randomly over
a cell given by a disk of radiusR around each of the serving
APs. Finally, a hybrid scenario mixing the two scenarios above
is discussed later in the paper.

Note that the actual cell shape will not be a disk in reality.
However we argue that, when it comes to studying the scaling
laws of network sum-rate with maximum-rate user scheduling,
the actual shape taken by the cell borders has in fact little
impact on the result. The main reason is that since the user’s
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Fig. 2. A two-cell idealized symmetric network diagram example. Direct
and interfering links toward the scheduled user (black) areindicated in solid
and dashed arrows respectively. In this idealized case, users a located over a
circle, a fixed distance away from their access point.

direct links is subject to a location dependent path loss, the
distance to the serving AP will affect its chances of being
selected by the scheduler. As a consequence the users located
in the inner region of the cell (i.e. close to the access point)
bear the vast majority of the traffic and are the drivers for
the rate scaling laws. Therefore an accurate modeling for the
location of cell-edge users is unimportant here.

V. NETWORK SUM-RATE: SCALING LAWS

A. Capacity scaling with largeU in symmetric network

We analyze the scaling of rateC(U∗,P ∗) via the scaling of
the boundsClb andCub, with increasingU . We just focus on
the performance in celln, as other cells are expected to behave
similarly under equal number of usersU and isotropic con-
ditions throughout the network. For the symmetric network,
users experience an equal average SNR, thusγun,n = γn is a
constant independent of the user index.

Interestingly, for this particular case, we show we can reuse
extreme value theory results [23] developed specifically inthe
context of single cell opportunistic beamforming [15], [16]
and transposed here to the case of networks with multicell
interference. For the case asymmetric network, specific results
are developed in later sections.

First, the following results provide insight into the
interference-free scaling of SINR and rates respectively.

1) Scaling laws for interference-free case:The
interference-free multicell rate scaling boils down to
studying the scaling in each cell independently. Further
assuming an isotropic network (i.e. all cells experience the
same channel statistics) we can simplify the analysis by
exploiting known results on single cell rate scaling, as done
below.

Lemma 1:Let Gun,n = γun,n|hun,n|
2, un = 1 . . . U, n =

1 . . . N , whereγun,n = γn. Assume|hun,n|
2 is Chi-square

distributed with 2 degrees of freedom (χ2(2)) (i.e. hun,n is
a unit-variance complex normal random variable). Assume
the |hun,n|

2 are independent and identically distributed (i.i.d.)
across users. Then for fixedN and U asymptotically large,
the upper bound on the SINR in celln scales like

Γub
n ≈

Pmaxγn

σ2
log U (15)

where the symbol≈ means that the ratio of the left hand side
and right hand side terms converges to one almost surely, as
U goes to infinity.

Proof: This result is a reuse of a now well known result
for single cell opportunistic scheduling. This states thatthe
maximum of U i.i.d. χ2(2) random variables behaves like
log U for large U . See for instance [15], itself building on
classical extreme value theory results [23]. We omit the proof
here and refer the readers to these references.

From the SNR scaling, we obtain the scaling of the
interference-free rate shown in (6). This is stated in the
following theorem, again building on known single cell results
but stated here for convenience, with our own notations:

Theorem 1:Let Gun,n = γun,n|hun,n|
2, un = 1 . . . U, n =

1 . . . N , where γun,n = γ. This means that all cells are
assumed to enjoy an identical link budget. Assume|hun,n|

2

is Chi-square distributed with 2 degrees of freedom (χ2(2)).
Assume the|hun,n|

2 are i.i.d. across users. Then for fixedN
and U asymptotically large, the average of the upper bound
on the network sum-rate scales like

E(Cub) ≈ log log U (16)

where the expectation is taken over the complex fading gains.
Proof: Under isotropic network conditions, we have from

(6):
E(Cub) = E

(

log
(

1 + Γub
n

))

(17)

Once the scaling ofΓub
n is obtained, the scaling of the

expected value oflog(1 + Γub
n ) is readily obtained from

published results in the context of single cell maximum rate
user scheduling, found in [15], [16] among others. For a
detailed proof, see e.g. [16], Theorem 1.

2) Scaling laws for full-powered interference case:We
now turn to the behavior of interference limited networks by
exploring the lower bounds given for SINR and rates. The
initial intuition would be that the analysis of the lower bound
given in (12) provides us with a very pessimistic view of the
network performance as it assumes interference coming at full
power from every AP in the network. The interesting aspect
behind our findings below is that it is not. In fact the negative
impact of interference at the user on network sum-rate can be
made arbitrarily small while not sacrificing transmission rates
to the assigned APs, as shown per the following theorems. In
the results below, remember we assume each user is assigned
to a serving AP which is the one with minimum path loss.
As a consequence, since the region of coverage under study
is limited to a disk of radiusR around the serving AP, the
distance between a user and any interfering AP is greater than
R. As a result we have from (14):

Gun,i ≤ βR−ǫ|hun,i|
2 for any i 6= n (18)

The lemma below gives the scaling law for the worst case
SINR (12).

Lemma 2:Let Gun,i = γun,i|hun,i|
2, un = 1 . . . U, n =

1 . . . N , whereγun,n = γn, γun,i = βd−ǫ
un,i for i 6= n. Assume
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|hun,i|
2 is Chi-square distributed with 2 degrees of freedom

(χ2(2)). Assume the|hun,i|
2 are i.i.d. across users, cells. Then

for fixed N and U asymptotically large, the lower bound on
the SINR in celln scales like

Γlb
n ≈

Pmaxγn

σ2
log U (19)

Proof: To obtain this result, one uses the fact that users
in cell n are served by their closest AP. Following (18),
an upper bound on the interference power then given by
∑N

i6=n βR−ǫ|hun,i|
2Pmax. This gives a further lower bound

on Γlb
n given by

Γlb
n ≥ Γlb2

n (20)

whereΓlb2
n is corresponds to the SINR assuming pessimisti-

cally that all sources of interferences are located on the edge
of the cell of interest, calculated by:

Γlb2
n = γnPmax max

un=1...U
ωun

(21)

whereωun
denotes the normalized SINR at userun:

ωun
=

|hun,n|
2

σ2/Pmax + βR−ǫ
∑N

i6=n |hun,i|2
(22)

The scaling law ofΓlb2
n is also that ofωun

, which is the ratio
of a Chi-square (2 degrees of freedom) distributed variableand
the sum of a fixed noise term and a Chi-square (2N-2 degrees
of freedom) variable. Thus the scaling ofωun

is similar
to the scaling of the SINR in the single cell opportunistic
beamforming problem withN antennas at the transmitter,
studied in [16]. In there, the SINR is the ratio of a direct
beam power and a noise plusN − 1 interfering beam power
term. In particular we can find its distribution as:

FW (ω) = 1 −
e−

ωσ
2

Pmax

(1 + ωβ(N − 1)R−ǫ)N−1
(23)

([16], Lemma 4) shows that the SINR then scales likelog U .
This gives in our context:

Γlb2
n ≈ Pmaxγn log U/σ2 (24)

Note that the scaling above is identical to the one reported for
the interference-free case (15).

Thus,Γlb
n is bounded above and below by two expressions

(respectively the interference-freeΓub
n andΓlb2

n ) which exhibit
the same scaling law. ThereforeΓlb

n must satisfy itself the same
scaling law.

The following theorem gives the scaling law for the lower
bound on rate for an isotropic network.

Theorem 2:Let Gun,i = γun,i|hun,i|
2, un = 1 . . . U, n =

1 . . . N , whereγun,n = γ, γun,i = βd−ǫ
un,i for i 6= n. Assume

|hun,i|
2 is Chi-square distributed with 2 degrees of freedom

(χ2(2)). Assume the|hun,i|
2 are i.i.d. across users, cells. Then

for fixed N and U asymptotically large, the average of the
lower bound on the network sum-rate scales like

E(Clb) ≈ log log U (25)

Proof: From the result in Lemma 2, this result is proved in
a way identical with that of ([16], Theorem 1). Therefore the
proof is omitted here for space considerations.

From bounding arguments and from theorems 1 and 2
above, the following conclusion is now obtained:

Theorem 3:Let Gun,i = γun,i|hun,i|
2, un = 1 . . . U, n =

1 . . . N , whereγun,n = γn, γun,i = βd−ǫ
un,i for i 6= n. Assume

|hun,i|
2 is Chi-square distributed with 2 degrees of freedom

(χ2(2)). Assume the|hun,i|
2 are i.i.d. across users, cells. Then

for fixed N and U asymptotically large, the average of the
network sum-rate with optimum power control and scheduling
scales like

E(C(U∗,P ∗)) ≈ log log U (26)
Proof: The result is readily obtained from writing:

E(Clb) ≤ E(C(U∗,P ∗)) ≤ E(Cub) (27)

Then, invoking (25) and (16) exhibiting the same scaling law,
we obtain a similar law in (26).

Theorems 1 and 2 suggest that, in a multicell network
with symmetric users, the rate obtained with optimal multicell
scheduling in both an interference-free environment and an
environment with full interference power have identical scaling
laws in log log U . This result bears analogy to the results by
[16] which indicate that in a single cell broadcast channel
with random beamforming and opportunistic scheduling, the
degradation caused by inter-beam interference tends becomes
negligible when the number of users to choose from becomes
large. Here the multicell interference becomes negligiblebe-
cause the optimum scheduler tends to select users on an
instantaneous basis who have both a strong direct link to their
serving AP andsmall interfering links from surrounding APs.
Interestingly, the minimization of the multicell interference
term should take away some degrees of freedom in choosing
the users with best direct links, however not sufficiently soto
affect the overall rate scaling.

Another interpretation of this result is in terms of our
ability to find distributed scheduling schemes for maximizing
the network sum-rate. The optimal multicell scheduler and
power control solution would be hard to implement in practice.
However from the observations above, a simple scheme based
on each cell measuring the worst case SINR of each of its users
(during e.g. a preamble) and selecting the users with the best
worst case SINR as per (12), will result in an quasi optimal
behavior asymptotically (again, from a scaling perspective).
Such a scheme does not require any exchange of information
between the cells and the worst case SINR can be measured
in one shot by each user and fed back to its serving AP.

These results come as a complement to previously reported
findings [24], [18] which propose a near optimal power
allocation scheme, for fixed number of users, where a fraction
of the transmitters are selected to be turned off while the rest
operate at full power. It was observed experimentally [24]
there that the fraction of off cells would go to zero when the
number of users grows large. Thus in a network with full reuse
and greedy user scheduling, the optimal power control policy
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should be for all cells to operate at the power constraint. The
analysis of scaling of rates provides a theoretical justification
to this intuitive result.

We now turn to a non symmetric network where users can
experience different average SNR values depending on their
position and conduct a similar analysis. However we will see
that different capacity scaling rates are obtained compared with
the symmetric network case.

B. Capacity scaling with largeU in non symmetric network

We assume the path loss is determined by the user’s distance
to the emitting AP, both serving and interfering. We consider a
uniform distribution of the population in each cell. Thusdun,n

(distance between userun and its serving AP) is a random
variable with non uniform distributionfD(d). For a cell radius
R, we find easily:

fD(d) = 2d/R2, d ∈ [0, R] (28)

Further, the random processdun,n can be considered i.i.d.
across users and cells, if users in each cell are dropped
randomly in each disk2 AssumingR = 1 for normalization,
the distribution ofγun,n = βd−ǫ

un,i is given by (details omitted
here):

fγ(g) =

{

2
ǫ
( g

β
)−

2

ǫ
1
g

with g ∈ [β,∞)

0 with g /∈ [β,∞)
(29)

In order to get upper and lower bounds on performance, we
are interested in the behavior of the following extreme values
of product of independent random variables:

max
un=1...U

γun,n|hun,n|
2 for the interference-free case and

max
un=1...U

γun,nωun
for the full-powered interference case

whereωun
is again defined as per (22).

1) Extreme values of heavy-tail random variables:The
distribution of γun,n shown in (29) is remarkable in that
it differs strongly from fast fading distributions, due to its
heavy tailbehavior. Tail behavior clearly plays a fundamental
role in shaping the limiting distribution of the maximum
value, hence also the scaling of rate. Note that heavy tail
is also observed inlarge scale fading models such as log
normal shadowing for instance. In order to study the extreme
value of a product of random variables involving one heavy
tailed variable, we need first to review the properties of so-
called regularly varyingrandom variables. See e.g. [23] for a
definition of such variables, restated below:

Definition 3: A random variableX, with distribution (cdf)
given by FX(x), is said to be regularly varying (at∞) with
exponent−a if and only if:

1 − FX(x)

1 − FX(tx)
→ ta when x → ∞ (30)

The lemma below shows how the definition above applies
to our situation:

2The considered coverage region can be assimilated with the inside area of
each disk, in a disk-packing region of the 2D plane. Users dropped outside
the disks can dropped from the analysis, as these will not affect the scaling
law.

Lemma 3:Let X = γun,n. X is regularly varying with
exponent− 2

ǫ
.

Proof: A direct application of the definition above, with a
distribution obtained from (29):

FX(x) = 1 −
(x

β

)− 2

ǫ x ≥ β. (31)

An interesting aspect of regularly varying distributed ran-
dom variable (R.V.) is that they are stable with respect to mul-
tiplication with other independent R.V. with finite momentsas
pointed out by the following theorem shown by Breiman [25]:

Theorem 4:Let X and Y be two independent R.V. such
that X is regularly varying with exponent−a. AssumingY
has finite momentE(Y a), then the tail behavior of the product
Z = XY is governed by:

1−FZ(z) = E(Y a)(1−FX(z))(1+o(1)) whenz → ∞ (32)
The idea behind this theorem is that when multiplying a

regularly varying R.V. with another one with finite moment,
one obtains a heavy tailed R.V. whose tail behavior is similar
to the first one, up to a scaling. In other words, heavy tail
behavior tends to dominate over other distribution.

We now apply this result toX = γun,n and Y given by
Y = |hun,n|

2 for the interference free case andY = ωun
for

the full-powered interference case, respectively. Note that in
both cases,Y has finite moments. The tail behavior ofZ =
XY can then be characterized by the following lemma:

Lemma 4:Let X = γun,n be a R.V. with distribution given
by (29). LetY be an independent R.V. such thatE(Y

2

ǫ ) < ∞.
Then the tail ofZ = XY is governed by:

1 − FZ(z) = E(Y
2

ǫ )

(

β

z

)
2

ǫ

(1 + o(1)) whenz → ∞ (33)

Proof: A direct application of Theorem 4 using the distri-
bution of X shown in (31).

The lemma above indicates that the tail behavior of the
distribution ofX = γun,n, characterized by Lemma 3, carries
over to that of the productZ = XY . As a consequence,Z is
also regularly varying with the same exponent− 2

ǫ
.

We now complete our study by reviewing existing results
on the extreme value of regularly varying R.V. Following
[23], a regularly varying variable can be classified to be of
Frechettype. Extreme values of Frechet (or regularly varying)
variables are characterized by use of the Gnedenko theorem,
given in appendix I. For comparison, note that the random
variables involved in the analysis of previous sections (Sec.V-
A and therein), belong to the so-called Gumbel category. In
our context, we have the following result:

Lemma 5:Let Zun
= γun,nY whereY is a R.V. with finite

moments, independent ofγun,n. Then we have:

lim Pr{ max
un=1...U

Zun
≤ βE(Y

2

ǫ )
ǫ

2 U
ǫ

2 t} = e−t
−

2

ǫ ∀t > 0,

(34)
whenU → ∞.
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Proof: We invoke Gnedenko’s theorem [26] given in ap-
pendix I. It is easy to find thataU = βE(Y

2

ǫ )
ǫ

2 U
ǫ

2 whereaU

is defined in the appendix.

2) Scaling law for interference-free case:The inequality in
(5) allows us to characterize the scaling law of rate. Although
a characterization in terms similar to those of previous section
(i.e. finding a scaling lawl(U) for the SINR, such that the ratio
of the SINR andl(U) converges towards 1 whenU → ∞)
may possible when analyzing the rate, such a task is not easy
and mathematically involved. Using existing extreme value
theoretic tools, we proceed in two steps. First we analyze
the wide-sense scaling of SINR in a way that allows us to
directly exploit Lemma 5, where the notion of wide-sense
scaling is defined precisely. In the second step we proceed to
characterize the scaling of rate, this time in the conventional
sense of scaling used earlier in this paper, so we can still make
key interpretations.

The theorem below gives the wide sense scaling law of
SINR for the interference-free case in a non symmetric net-
work. First we give the following definition of wide sense
scaling:

Definition 4: Let U ≥ 0. Let g(U) be a random variable
whose distribution depends on parameterU . Let l(U) be a
deterministic function ofU . g(U) is said toscale asl(U) in
the wide sense, which is denoted byg(U) ∼ l(U), U → ∞
when

Pr(g(U) > v(U)) → 0, whenU → ∞

Pr(g(U) < w(U)) → 0, whenU → ∞

(35)

for any two functionsv(U) andw(U) such that l(U)
v(U) → 0

and w(U)
l(U) → 0, respectively.

Note that this notion of scaling can be interpreted asg(U)
grows neither significantly faster thanl(U), not does it grow
significantly slower thanl(U). A typical application of wide
sense scaling is thatg(U) and any other function of the type
g(U)O(U) have the same wide sense scaling law.

Theorem 5:Let hun,n, un = 1 . . . U be i.i.d. Gaussian dis-
tributed unit-variance random variables. Assuming thatγun,n

is i.i.d., distributed as per (29), forn = 1 . . . N . Then for
fixed N andU asymptotically large, the interference-free SNR
scales in the wide sense like:

Γub
n ∼ U

ǫ

2 (36)
Proof: Let v(U) be any function growing faster than

U
ǫ

2 , i.e. such thatlimU→∞ U
ǫ

2 /v(U) = 0. Then let t =
v(U)/(βE(Y

2

ǫ )
ǫ

2 U
ǫ

2 ). From Lemma 5 we have that

Pr{ max
un=1...U

Zun
≤ v(U)} → lim

U→∞
e−t

−

2

ǫ = 1 (37)

Equivalently, we have that Pr(maxun=1...U Zun
> v(U)) → 0.

Similarly, we can prove that any functionw(U) growing
slower thanU

ǫ

2 will be such that Pr{maxun=1...U Zun
<

w(U)} → 0. Thusmaxun=1...U Zun
scales asU

ǫ

2 in the wide
sense.

From the wide sense scaling of SNR above, we can infer the

conventionalscaling law for the upper bound on rateE(Cub),
as shown per the theorem below:

Theorem 6:Let hun,n, un = 1 . . . U be i.i.d. Gaussian dis-
tributed unit-variance random variables. Assuming thatγun,n

is i.i.d., distributed as per (29), forn = 1 . . . N . Then for fixed
N andU asymptotically large, the interference-free rate scales
like (i.e. the ratio of the two quantities converges to 1 almost
surely):

E(Cub) ≈
ǫ

2
log U for largeU (38)

Proof: See appendix II.

We now proceed to determine the scaling laws in the case
of full-powered interference.

3) Scaling law for full-powered interference case:We can
derive the scaling laws for the lower bound of SINR and
rate by following a strategy similar to Sec.V-B.2, simply by
replacing the R.V.|hun,n|

2 by the R.V.ωun
which also has

bounded moments. We obtain the following result:
Theorem 7:Let hun,i, un = 1 . . . U, i = 1 . . . N be i.i.d.

Gaussian distributed unit-variance random variables. Assum-
ing thatγun,n is i.i.d., distributed as per (29), forn = 1 . . . N .
Then for fixedN andU asymptotically large, the lower bound
on SINR scales in the wide sense like:

Γlb
n ∼ U

ǫ

2 (39)
Proof: We use the same proof as for Theorem 5, withX =

γun,n but this timeY = ωun
.

Finally, from Theorem 7, we infer that the upper bound
on rate for a non symmetric network exhibits anconventional
scaling law defined as:

E(Clb) ≈
ǫ

2
log U (40)

The proof for (40) is identical to that of Theorem 6 in
Appendix II, but simply replacingY with ωun

, which clearly
does not change the scaling.

Remarkably, as in the case of the symmetric network, the
results above (38) and (40) suggest that multicell interference,
no matter how strong, does not affect the scaling of the
network sum-rate, if enough users existand rate-optimal
scheduling is applied. Furthermore, by virtue of the upper
bound and lower bound exhibiting the same scaling law in
(38) and (40) respectively, the rate under optimal scheduling
and power allocation must behave like

C(U∗,P ∗) ≈
ǫ

2
log U (41)

Two remarks are in order. First, in the symmetric network
case, a suboptimal but fully distributed resource allocation
based on constant (full) power transmission at all transmitters
and scheduling policy based on (11) will actually result in the
best possible scaling law of sum-rate for the network. Second,
we observe that we obtain a much greater rate growth than in
the case of the symmetric network. This is due to the amplified
multiuser diversity gain due to the presence of unequal path
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loss across the user locations in the cell. This results froma
scheduler which, in a quite unfair fashion admittedly, tends to
select users closer to the access point as more users are added
to the network.

C. Discussion on channel models and exclusion area around
the AP

Interestingly, the theory on regularly varying variables stip-
ulates that multiplication of the path loss variables by any
small scale fading variable with finite moments will preserve
its heavy tail behavior. This means that our result shown in
(41) is in fact valid for a wider class of fading channel models,
such as Nakagami, Rice, etc. On a different note, one may
wonder how close users can be assumed to get to the access
point in practice. Let us imagine that a small disk of exclusion,
with the AP at its center, prevents users to getting too close
to the AP. As a by product, the disk also serves the purpose
of maintaining the validity of the path loss model, which may
not be reasonable in the close vicinity of the AP. In this case,
one may expect two successive regimes for the rate scaling
asU grows. In the first regime, when the number of users is
still moderate, the scaling is dominated by the path loss effect,
with a behavior such as shown in (41). In the second regime,
when enough users are already accumulated near the exclusion
circle, it is the turn of the tail behavior of small scale fading to
dominate and the scaling will be characterized by (26). This
situation is investigated briefly in one simulation example.

As the growth would be ultimately limited by that the tail of
the small-scale random fading in practical situations, onemay
also wonder how accurately Chi-square distributions model
reality in real-world wireless channels. Clearly, this discussion
is inherent in all previous studies dealing with scaling laws and
asymptotic performance analysis. Nevertheless it is important
to keep in mind the basic law of power preservation which
indicates that no matter how many users are considered, the
most favorable users cannot receive more power than what
was actually transmitted. This simple fact will impose a hard
limit on the SNR which in turn limits the domain of validity
of our scaling in terms of the number of usersU . Although
we believe a specific analysis of the validity domain will rely
on yet unexplored channel model properties (tail properties of
the pdf are less explored than the behavior near zero which
characterize outage) and is outside the scope of this paper,it
remains clear that this domain is wide enough for the analysis
to be meaningful since the power preservation limit is reached
only when the small scale fading is in the order of the inverse
of path loss, which would require very large fading coefficients
in practice (several tens of dB).

VI. N UMERICAL EVALUATION

We validate the asymptotic behavior of the multicell sum
rate whenU grows large with Monte Carlo simulations. We
use a network withN = 4 cells, unit cell radius and the
following parametersβ = 1/16, ǫ = 4, Pmax = 1, σ2 = 0.02.
I.i.d. flat Rayleigh fading is considered in addition to the
path loss based power decay. We consider three scenarios for
user location, as mentioned previously in this paper. First, we

consider cells with users located on a circle with distance 0.5
away from the AP (symmetric network). Then we consider a
non symmetric distribution of average SNR by drawing users
randomly in the cell. Finally we consider an hybrid scenario
where users are drawn uniformly randomly over the cell but
kept outside an exclusion disk of radius 0.1 around the AP. In
all cases, we evaluate the upper and lower bound on per-cell
data rates (see Fig.3, Fig.4, Fig.5 and observe the identical rate
growth of the lower and upper rate bounds. This also shows
that the rate obtained with exhaustive user and power level
selection also has the same growth rate. The observed rate
growth in log log U for the symmetric network and inlog U
for the non symmetric network confirms our earlier theoretical
claims. In Fig.5, we observe a scaling behavior with two
distinct regimes with alog U in the moderate number of users
U andlog log U for high number of users, thus confirming our
intuition for what could happen in a realistic network.

VII. C ONCLUSIONS

We present an extreme value theoretic analysis of network
sum-rate for maximum sum rate multicell power allocation and
user scheduling. We derive scaling laws of rates when the num-
ber of users per cell grows large, both in cases where the users
have same average SNR and path loss dependent SNR. We
show that in both cases, 1-the effect of intercell interference on
rate scaling tends to be negligible asymptotically, and 2-should
intercell interference be considered, an asymptotically optimal
allocation procedure is given based on full power allocation at
all transmitters, which is furthermore completely distributed.
We show that the growth of rates is exponentially faster in the
case of a system with unequal distance-based average SNR.
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Fig. 3. Scaling of upper and lower bounds of rate versusU for a symmetric
network (N = 4). The observed scaling for both curves is inlog log U .

APPENDIX I

The following theorem is due to Gnedenko [26] and states
the following property for regularly varying distributions:

Theorem 8:Let Zi an i.i.d. random process. ThenZi has a
regularly varying distribution with exponenta if and only if

lim Pr{ max
i=1...U

Zi ≤ aU t} = e−t−a

∀t > 0 whenU → ∞

(42)
whereaU is a sequence such that1 − FZ(aU ) = 1

U
.
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APPENDIX II

From Lemma 5 we have that

lim Pr{Γub
n ≤ βE(Y

2

ǫ )
ǫ

2 U
ǫ

2 t} = e−t
−

2

ǫ ∀t > 0, whenU → ∞
(43)

Since the SNRΓub
n is growing large in each cell by virtue of

Theorem 5, the rate can be approximated by:

Cub ≈
1

N

N
∑

n=1

log Γub
n . (44)

whenU grows large. From (43), we write

lim Pr{log Γub
n ≤ log(βE(Y

2

ǫ )
ǫ

2 )+log t+
ǫ

2
log U} = e−t

−

2

ǫ ,

(45)
∀t > 0, whenU → ∞. Now, takingt = log U we infer that

log Γub
n ≤ log(βE(Y

2

ǫ )
ǫ

2 ) + log log U +
ǫ

2
log U (46)

almost surely whenU → ∞.
On the other hand, takingt = 1/ log U , we obtain that

log Γub
n ≥

ǫ

2
log U−log log U} almost surely whenU → ∞

(47)

From (46) and (47), we conclude that

log Γub
n

ǫ
2 log U

→ 1 almost surely when U → ∞ (48)

From the isotropy of the network, this shows thatCub (anda
fortiori its average) scales asǫ2 log U .
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