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Abstract
Out-of-vocabulary (OOV) terms present a significant challenge
to spoken term detection (STD). This challenge, to a large ex-
tent, lies in the high degree of uncertainty in pronunciations of
OOV terms. In previous work, we presented a stochastic pro-
nunciation modeling (SPM) approach to compensate for this
uncertainty. A shortcoming of our original work, however, is
that the SPM was based on a joint-multigram model (JMM),
which is suboptimal. In this paper, we propose to use con-
ditional random fields (CRFs) for letter-to-sound conversion,
which significantly improves quality of the predicted pronun-
ciations. When applied to OOV STD, we achieve consider-
able performance improvement with both a 1-best system and
an SPM-based system.
Index Terms: speech recognition, spoken term detection, con-
ditional random field, joint multigram model

1. Introduction
As defined by NIST in 2006 [1], spoken term detection (STD)
aims to provide for the searching of large quantities of audio
without the need for reprocessing the audio signal every time a
query is performed. Partly due to the series of evaluations orga-
nized by NIST, STD has attracted significant interest, including
[2, 3, 4, 5, 6].

Unlike conventional keyword spotting, STD is an open-
vocabulary task and must therefore cope with queries contain-
ing out-of-vocabulary (OOV) terms. For example, in the search-
ing of broadcast news or educational material, a task that we
are addressing through the ACAV project1, queries may con-
tain OOV entity names or technical terms, which can present
a significant challenge. The usual approach to detecting OOV
terms employs subword units which searches for subword rep-
resentations of the search terms that are obtained from letter-
to-sound (LTS) conversion. A potential problem with the sub-
word approach, however, is that no special acoustic and linguis-
tic properties of OOV terms are taken into account, which leads
to much worse detection performance for OOV terms than for
in-vocabulary (INV) terms. It is a reasonable hypothesis that
the detection performance for OOV terms can be improved by
compensating for the OOV special properties.

One such property is the high degree of pronunciation un-
certainty. Different from INV terms, pronunciations of OOV
terms are unknown, which leads to reduced familiarity or stan-
dardization in their pronunciation, resulting in additional uncer-
tainty in pronunciations which we refer to as lexical deviation.

1“Collaborative Annotation for Video Accessibility” (ACAV) is a
project supported by the French Ministry of Industry (Innovative Web
call) that aims to develop a collaborative annotation tool for the manual
correction of automatically derived transcriptions and for the enriching
of content with semantic metadata.

It is distinctly different from acoustic variation and therefore
cannot be fully compensated for by commonly employed soft
matching techniques.

In previous work we presented a stochastic pronunciation
modeling (SPM) approach to deal with lexical deviation [7].
This approach involves the searching of all possible pronunci-
ations of OOV terms generated according to a stochastic pro-
nunciation model; this amounts to treating the pronunciation as
a hidden variable, and integrating it out. A potential problem
in the original work lies in the use of a joint-multigram model
(JMM) to implement SPM. As we will see in the next section,
the JMM-based LTS conversion is sub-optimal for pronunci-
ation prediction, and leads to sub-optimal STD performance.
This paper reports our efforts to use a conditional random field
(CRF) both for LTS conversion and for SPM. In contrast to
JMMs, the CRF is a conditional model and performs global in-
ference thus it is better suited to LTS conversion. Of greater im-
portance is the ability of CRFs to generate higher quality n-best
predictions than JMMs, which provides a better pronunciation
model to implement SPM.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present the CRF-based approach to LTS conversion,
and then show its application to implement SPM in Section 3.
Experimental work is reported in Section 4 and some conclu-
sions and future work are discussed in Section 5.

2. Pronunciation prediction using CRFs
LTS conversion has been studied for many years, mostly in
the context of text-to-speech (TTS) for OOV word synthesis.
Most state-of-the-art LTS conversion systems resort to a model-
based approach, which learns phonological rules from represen-
tative exemplars and represents them through statistical models,
such as artificial neural networks [8], hidden Markov models
(HMMs) [9], classification and regression trees (CARTs) [10]
and joint-multigram models (JMMs) [11].

In this work, we investigated the use of CRFs to tackle the
LTS conversion task. A CRF is a sequence modeling framework
that models the conditional probability distribution of a label se-
quence given an observation sequence. As a discriminative and
conditional model, CRFs are a powerful tool for labeling and
segmenting sequential data, and have received much interest in
a wide range of research fields, e.g. text processing [12], bioin-
formatics [13] and speech recognition [14].

Compared to existing approaches, CRFs have several char-
acteristics that make them more suitable for the LTS conversion
task. First, the CRF is a conditional model and thus relaxes
the conditional independence assumption that is required by
generative models such as HMMs to make inference tractable;
second, CRFs infer entire label sequences, which is different
from the piece-wise inference implemented by other conditional



models such as decision trees and artificial neural networks;
third, the CRF is a discriminative model and thus does not
need to model the joint probability distribution of observations
(graphemes) as we have to with JMMs. Finally, the CRF loss
function is convex, which guarantees convergence to the global
optimum [15].

To apply CRFs to LTS conversion, we treat word spellings
(grapheme sequences) as observations and pronunciations
(phoneme sequences) as labels. The task of LTS conversion
thus amounts to assigning an optimal label sequence given the
entire observation, a problem to which CRFs are ideally suited.
According to the definition given by Lafferty et al. [15] and
when applied to such a task, the CRF can be formally written as
follows:

P (Q|G) =
1

Z(G)
exp{

K∑
k=1

λkFk(Q,G)}, (1)

whereG is the spelling (grapheme sequence) of the word whose
pronunciation we seek,Q is a candidate pronunciation, Fk is the
k-th aggregated feature, and λk is a factor to scale its contribu-
tion to the global probability. Z(G) is a normalization quantity
given by:

Z(G) =
∑
Q

exp{
K∑

k=1

λkFk(Q,G)}. (2)

Considering the Markov assumption, the undirected graph
of the CRF is separated into cliques, each of which contains
two consecutive phonemes and the entire grapheme sequence.
Therefore, the aggregated featureFk(Q,G) can be factored into
feature functions of cliques, given by:

Fk(Q,G) =

n−1∑
j=1

{fk(Qj , Qj−1, G, j)}, (3)

where fk(Qj , Qj−1, G, j) is the k-th feature function of the j-
th clique, and n is the length of the grapheme sequence.

A commonly used family of features are binary functions
that return binary values by examining the graphemes and
phonemes at various positions in the clique. For example, the
following feature function returns a non-zero value if and only
if the current and the previous graphemes are H and I respec-
tively, and the current phoneme is /i/.

f(Qj , Qj−1, G, j) =

{
1 Gj−1 = H Gj = I Qj = /i/

0 otherwise

}
.

(4)
A practical problem when building the CRF-based LTS

conversion system is that the phoneme and grapheme sequences
of a word are often of different length, which is inconsistent
with the CRF structure. To solve this problem, an empty sym-
bol can be inserted into the original sequence so that 1-to-1
alignment is achieved. This can be conducted manually; here
we chose an automatic approach that aligns the phoneme and
grahpeme sequences based on a joint-multigram model whose
grapheme and phoneme components consist of 1 symbol at
most.

To examine performance of the CRF-based LTS conver-
sion, we conducted our experiments on the dictionary used by
the AMI RT05s LVCSR system [16], with 36575 words ran-
domly selected for training, 4064 words for parameter tuning
and 8000 words for evaluation. The CRF++ v0.52 toolkit [17]
implemented by Taku Kudo at NTT Communication Science
Laboratories in Japan was used to train the CRF model and per-
form the test.

To evaluate the proposed CRF-based approach, we com-
pare it to a JMM-based baseline system which was reported
to give the best performance among other conventional models
[18]. For the CRF-based system, a range of context configu-
rations were examined. For example, (−2,+2) indicates that
the feature function (Equation 3) covers 2 graphemes before
and after the current position. Results are presented in terms of
word error rate (WER) and are shown in Table 1. We observe
that prediction accuracy of the CRF-based system increases
rapidly as the context increases (67.6% to 25.4% WER). The
best performance was achieved with the 4-grapheme context,
i.e. (−4,+4); broader contexts were prohibited by memory
limitations. Moreover, we see that the (-4,+4) CRF-based ap-
proach achieves much better performance than the JMM-based
approach (25.4% cf. 31.3% WER). A pair-wise t-test shows
that the performance improvement with the CRF over the JMM
is highly significant (p < 10−14). This result supports our hy-
pothesis that a global, conditional model such as the CRF is
well suited to the task of LTS conversion.

3. CRF-based stochastic pronunciation
modeling

We assume that degradations in STD performance caused by
OOV terms are partly due to the inherent high variability in
their pronunciations, to a large extent arising from lexical de-
viation. In [7] we proposed an SPM approach to compensate
for the lexical deviation. This approach considers all possible
pronunciations of OOV terms, and assigns to each putative de-
tection a composite confidence according to:

c(d) = γclat(d) + (1− γ)cpron(d), (5)

where d denotes a putative detection and c(d) denotes the as-
sociated confidence. clat(d) is the lattice-based detection con-
fidence, cpron(d) is the pronunciation confidence given by a
stochastic pronunciation model, and γ is a factor for linear in-
terpolation.

In the original work [7], SPM was implemented using
a JMM. JMMs are a powerful means of determining n-best
predictions and can compute their posterior probabilities eas-
ily, which provides the pronunciation confidence cpron(d) re-
quested by SPM, giving

cpron(d) = Pjmm(Qd|Gd) (6)

where Qd is the pronunciation based on which d is detected,
and Gd is the word spelling of the term that d belongs to.

A potential problem of JMM-based SPM is that the pronun-
ciation confidence (posterior probability Pjmm(Qd|Gd)) is de-
rived from joint probabilities applying the Bayesian rule. This
calculation is usually based on lattices that are generated by
the decoding process, and are thus potentially inaccurate. In
contrast, CRFs compute the posterior probability of each candi-
date from the model, which is comparatively more accurate and
straightforward.

Model WER (%)
JMM 31.3
CRF (-1,+1) 67.6
CRF (-2,+2) 40.9
CRF (-3,+3) 29.7
CRF (-4,+4) 25.4

Table 1: The LTS result of 1-best prediction using the JMM and
CRF.
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Figure 1: Result of n-best predictions with the JMM and CRF.

To compare the quality of CRF-based and JMM-based
SPM, we examine the quality of n-best predictions provided
by CRFs and JMMs. The experiment was conducted under
the same conditions as in the previous section, except that n-
best pronunciations were predicted. The results are evaluated
in terms of n-best WER, i.e. the proportion of the words for
which none of the n-best predictions is correct. Figure 1 shows
the results, where the number of predictions n varies from 1 to
50. We see that for lower values of n, the CRF-based approach
provides a higher quality n-best list than does the JMM-based
approach.

With CRF-based n-best prediction Equation 6 is replaced
by:

cpron(d) = Pcrf (Qd|Gd), (7)

where Pcrf (Qd|Gd) is given by the CRF-based LTS conversion
according to Equation 1.

4. Experiments
In this section, we apply the CRF-based LTS conversion to
OOV spoken term detection, which can be either 1-best STD
systems based on 1-best pronunciation prediction, or SPM-
based STD systems based on n-best pronunciation predictions.

The experiments were conducted on meeting speech
recorded from individual headset microphones (IHM), and fo-
cused on OOV terms in English, using phoneme-based ASR and
STD systems. 482 search terms were carefully selected as OOV
terms and were removed from both ASR and STD dictionaries,
in addition to all materials used for acoustic model (AM) and
language model (LM) training. After the OOV purge, there re-
main a total of 2736 occurrences of OOV terms in the evaluation
data.

The AMs and LMs were trained on the corpora used by
the AMI RT05s system [16]. After the OOV purge, there were
80.2 hours of speech for AM training and 521M words of text
for LM training. The RT04s development dataset was used for
development work. Evaluation work was performed with the
RT04s and RT05s evaluation datasets and a new meeting cor-
pus recorded recently at the University of Edinburgh through
the AMIDA project. This amounts to 11 hours of speech and
there is no overlap between the data used for development and
evaluation.

HTK was used to train acoustic models and conduct
phoneme decoding; the SRI LM toolkit was used to train
phoneme n-gram models. Term detection was implemented
with the Lattice2Multigram tool [6] provided by the Speech

Processing Group at the Brno University of Technology. Term-
dependent normalization was applied to improve decision qual-
ity, as described in [19]. STD performance is reported in terms
of average term-weighted value (ATWV) [1]; detection error
trade-off (DET) curves are also used to show behavior at differ-
ent hit/FA ratios. The best ATWV that can be obtained with an
optimal threshold is denoted as max-ATWV[1]. More informa-
tion about the experimental system can be found in [20].

4.1. CRF-based LTS conversion

We first applied CRF-based LTS conversion to OOV STD, i.e.
employing the CRF model to predict 1-best pronunciations for
each OOV term. Results are reported in Table 2 in terms of
ATWV and max-ATWV. The first line presents results for the
JMM-based system and the second line presents corresponding
results for the CRF-based system. The CRF-based system gives
marginally better STD performance than the JMM-based sys-
tem (0.2761 cf. 0.2887), but the improvement is not statistically
significant (a t-test gives p ≈ 0.2).

Model ATWV max-ATWV
JMM 0.2761 0.2770
CRF (-4,+4) 0.2887 0.2947
JMM+CRF 0.3279 0.3280

Table 2: STD performance with 1-best pronunciation predic-
tion, using JMM and CRF-based LTS conversion, as well as
their detection combination.

Considering that JMMs and CRFs model the spelling-to-
pronunciation relationship in different ways, they are likely to
be complementary. To verify this conjecture, we conducted a
third experiment where the detections hypothesized by the JMM
and CRF-based systems are combined as proposed in [21]. Re-
sults are presented in the third line of Table 2. It can be seen
that the combination leads to a considerable improvement in
performance. A t-test shows that the improvement is highly
significant (p < 0.001).

4.2. CRF-based SPM

In the second set of experiments, we seek to assess the utility of
CRFs for SPM. Results are presented in Table 3, again in terms
of ATWV and max-ATWV. They clearly show that the CRF-
based system considerably outperforms the JMM-based system,
suggesting that CRFs provide a higher quality pronunciation
model for SPM than do JMMs. A t-test shows that this improve-
ment is weakly significant (p < 0.05). Unfortunately, when we
tried to combine the detections from both systems in this case,
we did not observe any gain in performance, indicating that the
complementarity between JMM and CRF approaches does not
play an important role in SPM-based systems. Further analy-
sis shows that the combined system leads to increases in false
alarms which degrade overall performance.

Model ATWV max-ATWV
JMM SPM 0.3153 0.3303
CRF SPM 0.3352 0.3603
JMM+CRF 0.3253 0.3451

Table 3: The STD performance with SPM, based on the JMM
and CRF, as well as their detection combination.

Figure 2 shows the DET curves of the 1-best and SPM-
based STD systems using both JMM and CRF models for LTS
conversion. The CRF-based approach performs as well as the
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Figure 2: DET curves of 1-best and SPM-based STD systems,
for JMM and CRF-based approaches. The decision point on
which the reported ATWV resides is indicated with an ’x’ on
each curve.

JMM-based approach over most of the operating region but
leads to superior performance for FA probabilities in excess of
0.005 (bottom right of Figure 2) i.e. where the number of cor-
rectly detected OOV terms is the greatest, as is often preferred
in information retrieval tasks.

5. Conclusions
The contributions of this paper are two-fold: first we propose a
novel CRF-based approach to LTS conversion, second we ap-
ply the new LTS model to OOV spoken term detection. We
show that CRFs provide significantly better performance than
JMMs when applied to LTS conversion, and that they substan-
tially improve performance of OOV term detection when ap-
plied to STD, with either the 1-best system or the SPM-based
system.

Future work includes the application of CRFs to the detec-
tion process directly, so that context information can be inte-
grated and utilized for term search and confidence estimation.
Through the ACAV project, we are also working to integrate
the approach to help transcribe and index a huge volume of mul-
timedia data hosted and shared on the Dailymotion2 platform.
Content will be rendered in various accessibility scenarios in-
cluding those of broadcast news and educational contexts where
OOV terms occur frequently.

6. Acknowledgements
This work was carried out while Dong Wang was a Fellow on
the EdSST interdisciplinary Marie Curie training programme at
CSTR, University of Edinburgh. This work used the Edinburgh
Compute and Data Facility which is partially supported by
eDIKT, and has been partially supported by the French Ministry
of Industry (Innovative Web call) under contract 09.2.93.0966,
“Collaborative Annotation for Video Accessibility” (ACAV).

7. References
[1] NIST, The spoken term detection (STD) 2006 evaluation plan,

10th ed., National Institute of Standards and Technology (NIST),

2http://www.dailymotion.com/

Gaithersburg, MD, USA, September 2006. [Online]. Available:
http://www.nist.gov/speech/tests/std

[2] J. Mamou and B. Ramabhadran, “Phonetic query expansion for
spoken document retrieval,” in Proc. Interspeech’08, Brisbane,
Australia, September 2008, pp. 2106–2109.

[3] D. Can, E. Cooper, A. Sethy, C. White, B. Ramabhadran, and
M. Saraclar, “Effect of pronunciations on OOV queries in spoken
term detection,” in Proc. ICASSP’09, Taipei, Taiwan, April 2009,
pp. 3957–3960.

[4] M. Akbacak, D. Vergyri, and A. Stolcke, “Open-vocabulary spo-
ken term detection using graphone-based hybrid recognition sys-
tems,” in Proc. ICASSP’08, Las Vegas, Nevada, USA, March
2008, pp. 5240–5243.

[5] D. Vergyri, I. Shafran, A. Stolcke, R. R. Gadde, M. Akbacak,
B. Roark, and W. Wang, “The SRI/OGI 2006 spoken term detec-
tion system,” in Proc. Interspeech’07, Antwerp, Belgium, August
2007, pp. 2393–2396.
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