
1

Online Data Backup: a Peer-Assisted Approach
Laszlo Toka∗†, Matteo Dell’Amico∗, Pietro Michiardi∗

{laszlo.toka, matteo.dell-amico, pietro.michiardi}@eurecom.fr
∗ Eurecom, Sophia-Antipolis, France † Budapest University of Technology and Economics, Hungary

Abstract—In this work we study the benefits of a peer-
assisted approach to online backup applications, in which spare
bandwidth and storage space of end-hosts complement that of an
online storage service. Via simulations, we analyze the interplay
between two key aspects of such applications: data placement and
bandwidth allocation. Our analysis focuses on metrics such as the
time required to complete a backup and a restore operation, as
well as the storage costs.

We show that, by using adequate bandwidth allocation policies
in which storage space at a cloud provider can be used tem-
porarily, hybrid systems can achieve performance comparable
to traditional client-server architectures at a fraction of the
costs. Moreover, we explore the impact of mechanisms to impose
fairness and conclude that a peer-assisted approach does not
discriminate peers in terms of performance, but associates a
storage cost to peers contributing with little resources.

I. INTRODUCTION

Backup is a well-known nuisance for any computer user. To
protect themselves from the risk of losing their valuable data,
individuals and organizations have to undergo a tedious, and
sometimes expensive, process. Especially for home systems,
backup is far from being a solved problem from a practical
standpoint. The need for manual operations such as connecting
and disconnecting hard drives or burning optical media often
results in users neglecting or forgetting to backup their data.
For users that are willing to pay an additional cost, there are
systems that perform backup without requiring user interven-
tion, e.g. [5], but even these solutions have the shortcoming
of residing in the same place the original data is. Hence, an
event such as theft, fire or flood will cause the loss of both
the original data and its backup.

A convenient solution to these problems is represented by
cloud storage systems (e.g., Dropbox [2]) which transparently
synchronize, when machines are connected to the Internet, the
local copy of data with a remote one residing at a datacenter.
The success of this approach is undeniable: Dropbox passed in
2010 the milestone of 4 million registered users [4]. However,
even if they are undeniably useful, these applications are not
free from shortcomings. The backed up data is outsourced
to a single company, raising issues about data confidentiality
and risk of data loss (the case of Carbonite is emblematic
[3]); indeed, companies offering a storage service do not
generally offer formal guarantees about their data availability
and reliability.

The most significant limitation of current on-line backup
applications, though, is cost: bandwidth and storage are ex-
pensive, resulting in companies not being able to offer for
free more than few gigabytes of storage space. This trend will
reasonably hold in the future since datacenter costs are largely

due to energy (power and cooling) and personnel costs rather
than hardware costs [7].

To obtain lower costs, it is natural to look at available
resources at the edge of the Internet, by exploiting unused
disk space and bandwidth at end-users’ machines. Several
approaches propose to exploit these resources to build peer-to-
peer storage applications, where the goal is to provide random
access to individual files with a small latency and availability
guarantees; these systems can also be used to backup data.
However, obtaining reliable storage by exploiting resources
of unreliable machines is very difficult, if not sometimes
practically impossible [10].

In contrast, we explicitly focus on backup applications
and derive application requirements tailored to this specific
setting. A backup application is effective if users are able to
complete backup and restore operations within a reasonable
time window. Backup data is accessed only in case of end-
host failures (e.g. disk crash), which require to recover the
whole set of backup files.

In this scenario, it is tempting to think that a pure peer-
to-peer architecture would be an ideal solution to eliminate
the costs of a cloud-based backup application. However, we
show that there are frequent cases in which the resources that
peers contribute to the system are simply not sufficient to
guarantee that all users will be able to complete their backups
in a reasonable amount of time, if ever.

In this work we make the case for an hybrid approach that
we call peer-assisted: storage resources contributed by peers
and sold by datacenters coexist. We focus on two key elements
of such a system, data placement and bandwidth allocation,
and study their impact on performance measured by the time
required to complete a backup and a restore operation and the
end-users’ costs.

The main contributions of this work are summarized in the
following.

• We show that, by using adequate bandwidth allocation
policies in which storage space at a cloud provider is
only used temporarily, a peer-assisted backup application
can achieve performance comparable to traditional client-
server architectures with substantial savings.

• We explore the impact of data placement policies on
system performance and fairness, and conclude that pure
peer-to-peer systems may work only in particular settings
and that fairness (in terms of resources obtained and
contributed to the system) has a price that we measure
by the monetary cost supported by end-users.

• We evaluate the effects of skewed storage demand and
resource contribution, and conclude that the system archi-



2

tecture we propose copes well with peer heterogeneity.
• We evaluate the effects of the system scale and show that

a peer-assisted backup application imposes a limited load
on storage servers even when the number of peers in the
system grows.

• We show that state-of-the art coding techniques used
to ensure data availability at any point in a peer’s life-
time impose high data redundancy factors, which can be
lowered without affecting in a sensible way the ability of
peers to restore their data in case of a failure.

The remainder of the paper is organized as follows. In
Sec. II we overview the literature on P2P storage applications
and emphasize the key differences with respect to our work. In
Sec. III we present an overview of our system, the assumptions
we made and the techniques we developed in this work.
Sec. IV illustrates our methodology and evaluation set-up, and
Sec. V summarizes our main results. We conclude in Sec. VI.

II. RELATED WORK

Most of the research in peer-to-peer storage focuses on the
design of general-purpose storage systems that provide most
of the features usually given by traditional file systems. A
significant amount of work has been devoted to implementing
systems with low latency, consistency guarantees for multiple
readers and writers, elaborate security policies, efficient data
look-up, and anonymity for data publishers and readers; for a
review of such solutions we refer to [15], [13, Chapter 2].

In a backup system, many of the aforementioned issues
can be ignored or solved easily. Access latency is largely not
an issue since backup data is only read in case of a restore
operation. Additionally, efficient techniques to perform fast
look-up of individual backup files are unnecessary: a restore
operation can be completed with the simple knowledge of
remote locations where backup data has been stored. Data can
be assumed to have a single owner authorized to read and
write it, hence access control can be achieved with standard
cryptographic techniques.

Many works devoted to peer-to-peer backup target the
almost Herculean task of backing up the entire contents of
a hard drive, including operating system files. These works
propose convergent encryption, a technique to achieve data
summarization that avoids storing multiple times pieces of data
that are common to many users [8], [11], [16]. In the context
of our work, whereby users specify a subset of their important
data to backup, the number of overlapping data fragments
that could be summarized is plausibly very little. In addition,
convergent encryption is susceptible to various attacks on data
privacy [23].

Wuala [6] is a peer-assisted social storage service. In Wuala,
a full copy of the data is stored on a central server while
(encoded) fragments are “cached” on peers in order to save
on server bandwidth costs [14]; conversely, in our architecture,
since long term storage costs dominate the costs of bandwidth,
we aim at reducing the amount of data stored in the central
server by using storage capacity of other peers.

FS2You [20] is a peer-assisted system that provides tempo-
rary storage and seeding for files in a BitTorrent-like content

distribution system. FS2You does not guarantee data persis-
tence; while its goal is to minimize bandwidth costs, we focus
instead on minimizing the storage costs that will be dominant
in the long run for a storage system.

A lot of attention has been devoted to the study of incentive
mechanisms for P2P storage applications [12], [18], [16]. In
general, the idea is to impose system fairness in terms of
storage resources: any peer should offer an amount of local
storage space proportional to the load imposed on the system.
Previous works [21], [19], [22] show that it is possible to
design embedded incentive mechanisms for peers to contribute
resources to the system without requiring additional compo-
nents such as virtual currency or reputation-based schemes.
In this work, we go beyond discussing the feasibility of such
approaches and study the effects a symmetric selective data
placement policy [22] on system performance and costs.

III. SYSTEM OVERVIEW

In this Section we present the design of our peer-assisted
backup application. We discuss the assumptions we make
throughout this paper and outline our approach to solve the
problem of data availability. We then set off to explore the
key issues of a peer-assisted backup system: i) how to allocate
bandwidth and schedule upload slots and ii) how to select
remote locations that store data fragments.

In this work we compare our peer-assisted design with pure
peer-to-peer and client-server architectures in which backup
data is uploaded, respectively, only to peers and to a storage
server. For simplicity, in the remainder of the paper we refer to
a single storage server, e.g. operated by an individual storage
cloud provider. In practice, our approach accepts multiple
storage servers, i.e., backup data can be uploaded to more than
one cloud storage provider. We take a trace-driven, simulation-
based approach to evaluate and compare the performance
of these alternative architectures: our methodology allows
experiments with realistic inputs which take into account a
fine-grained representation of the mechanisms we designed.

A. System and Application Assumptions

In this work we build upon the approach taken by Dropbox
[2], and assume users to specify one or more local folders
containing important data to backup. We also assume that data
selected for backup is available locally to a peer. This is an
important trait that distinguishes backup from storage applica-
tions, in which data is only stored remotely. As a consequence,
data maintenance, i.e., making sure that a sufficient number of
data fragments are available at any point in time and reacting
by generating new fragments when remote peers fail or leave,
is greatly simplified.

We assume peers to contribute with non-negligible storage
capacity to the system, with ADSL-like bandwidth capacity,
and several hours of continuous uptime per day. As we show in
our results, nodes contributing with too little resources either
exact a high toll in terms of storage capacity of other peers
or, when incentive mechanisms are in place, they are not able
to sustain by themselves a working system and require the
presence of server-based storage.



3

In this work, we assume the datacenter hosting the storage
service to offer ideal reliability and availability guarantees and
to charge end-users for bandwidth and storage.

Furthermore, we assume the presence of a centralized
component, similar in nature to that of the “tracker” in the
BitTorrent terminology. The Tracker1 is in charge of member-
ship management, i.e., it maintains a list of peers subscribed to
the backup application. Hence, the tracker can bootstrap a new
peer with a list of other peers susceptible to store her backup
data. The Tracker also implements an additional component
used to monitor the online behavior of a peer: the list of peers
in the system is enriched by a measure of the fraction of time
a given peer is online.

B. Data Availability

The problem of storing data on remote peers with an
intermittent online behavior has received ample attention in
the past [9]. When data is lost, due to an unpredictable event
such as a disk crash, it is important for a peer to be able to
restore it, and that the time to complete this operation to be
short. For this reason, data availability, i.e., the probability to
recover enough fragments to reconstruct the original data from
remote peers at any point in time, needs to be achieved and
maintained throughout a peer’s lifetime.

In our work, peers store their data in encrypted backup
objects of a fixed size S. Backup objects are divided in k
fragments of size S/k, that we label original blocks. Before
uploading data fragments to remote peers, the original k blocks
are encoded using erasure coding: we call these new fragments
encoded blocks. A peer may upload s original blocks to the
storage server, which is assumed to be always online.

Hence, the number of encoded blocks to upload to remote
peers can be derived as follows. We consider the probability
of each peer being online as an independent event with
probability a (termed peer availability), and we aim for a data
availability target value t. Therefore, we store on remote peers
the number of fragments p(s) defined as:

p(s) = min

{
x ∈ N

∣∣∣∣∣
(

x∑
i=k−s

(
x

i

)
ai(1− a)x−i

)
≥ t

}
(1)

The redundancy rate r = s+p(s)
k represents the ratio

between the quantity of data stored in the system (remote peers
and storage server) and the original size of unencoded data.
Suppose that a peer decides to store backup fragments on a
remote server only: in this case, p(s) = 0 and s = k, thus
the redundancy factor r = 1. Instead, assume a peer to store
backup data on remote peers only: in this case s = 0 and p
can be derived by the normal approximation to the binomial in
Eq. 1 (see for example [9]). Our bandwidth allocation policy,
described in the next Section, allows to explore the space
between the two extreme cases illustrated above.

We note that, for Eq. 1 to hold, encoded fragments must be
stored on distinct remote peers, because otherwise the failure
of a single machine would imply the contemporary loss of
many fragments, thereby resulting in a higher probability of

1In practice, a tracker can be easily distributed using a DHT approach.

data loss. On the other hand, since the datacenter is considered
to be always online, any number of fragments can be stored
on the data center.

Since we assume every peer in the system to hold a local
copy of the data that is backed up, we simplify data mainte-
nance by letting peers take care of regenerating and uploading
a new encoded block whenever a remote peer holding their
data crashes.

C. Bandwidth Allocation

In this work, we target typical users that connect to the
Internet through ADSL: upload bandwidth is a scarce resource
that calls for bandwidth allocation policies to optimize its
usage. Upload capacity is used to back up local data, for data
maintenance and for serving remote requests for data restore.

In our system, a bandwidth scheduler is triggered at regular
intervals of time. Restore slots are given the highest priority to
ensure that crashed peers are able to recover their data as soon
as possible. Backup slots are treated as follows. By default, we
employ an opportunistic allocation that prioritizes uploads to
online peers rather to the storage server, with the goal of saving
on storage cost. When multiple slots that satisfy this constraint
are available, we prioritize pending fragment uploads that are
closest to completion. As an alternative, we also study the
effects of a pessimistic allocation aiming at minimizing the
time to backup data: in this case, all the upload slots are
devoted to send backup fragments to a storage server.

Since remote peers exhibit an intermittent online behavior,
our bandwidth allocation aims at completing as soon as
possible the transfer of data fragments to remote peers (both in
restore and backup operations). Hence, we dedicate the whole2

capacity to a single upload slot; if a single data transfer does
not saturate the upload bandwidth and the backup operation is
not finished, the surplus is used to transfer backup fragments
to the storage server. A similar technique has also been proved
effective in P2P content distribution applications [17].

A data backup operation is successful when s fragments
have been uploaded to the storage server and p(s) fragments,
as defined in Eq. 1, have been uploaded to remote peers,
ensuring the required target data availability. For example,
assume k = 32 original blocks of which s = 15 are stored on
the storage server, and x = 20 encoded blocks are currently
stored on remote peers. If x ≥ p(s), the backup operation
is considered successful. Otherwise a new backup fragment
is uploaded to a remote peer or to the storage server: in the
first case, the number of encoded blocks becomes x = 21; in
the second case, the number of original blocks stored on the
server becomes s = 16, resulting in a lower value for p(s).
This process continues until x reaches p(s).

Since long-term storage on a server is costly, we introduce
an optimization phase that begins after a successful backup:
peers attempt to offload the storage server by continuing to
upload additional encoded blocks to remote peers. Storage
servers are used as a temporary storage to meet the availability

2In practice, to use the full nominal rate of the uplink, one must also
consider some under-utilization introduced by TCP’s congestion control
mechanism.



4

target as soon as possible. Once the number of additional
encoded blocks stored on remote peers reaches the p(s) value
of Eq. 1, the used storage space on the server gets gradually
reclaimed. In practice, during the optimization phase a random
backup fragment stored on the server is flagged for deletion;
subsequently, a peer uploads one encoded block to a remote
peer and checks if the number of remotely-stored fragments
x is at least p(s−1). If this condition is satisfied, the original
block marked for deletion can be safely removed from the
server, otherwise the upload of encoded blocks to remote peers
continues until x reaches p(s− 1).

Data maintenance operations work as follows: once the
local peer detects a remote peer failure, the number of re-
motely stored fragments x has become lower than p(s). This
is equivalent to a situation where the backup is again not
completed, and handled according to the upload bandwidth
allocation policy. When using the opportunistic strategy, a new
backup fragment is generated locally and is re-scheduled to be
uploaded to a (possibly different) remote peer, or to the remote
server if no remote peer is available. With the pessimistic
strategy, a new fragment gets transferred immediately to the
storage center, and possibly reclaimed afterward during the
optimization phase.

Our download bandwidth allocation policy prioritizes data
restore operations on crashed nodes to storing backup fragment
for other peers. Indeed, a restore operation is critical as data
fragments on remote peers can get lost in case of failures.

Download bandwidth allocation depends on whether data
fragments are downloaded from the storage server (i.e., during
restore operations) or from remote peers. In our work we
assume that restoring one or more fragments from a storage
server saturates the downlink of a peer. When data fragments
are downloaded from remote peers we avoid over-partitioning
the downlink of a peer by imposing a limit on the number of
parallel connections: as a consequence the risk of very slow
data transfers is mitigated.

D. Data Placement

Data placement amounts to the problem of selecting the
remote location that will store backup fragments.

In many P2P storage systems, data fragments are randomly
placed on remote peers using a DHT-based mechanism. Since
our focus is on backup applications, a look-up infrastructure
is not needed. Indeed, a restore operation requires locating
a sufficient number of fragments to obtain the original data,
hence the only information a peer needs is the list of remote
peers currently storing backup fragments. This information is
provided by the Tracker.

In our work, we study the impact on system performance
of two data placement policies:

• Random: backup fragments are placed on random remote
peers with enough available space and that are not already
storing another backup fragment for the same peer.

• Symmetric Selective: peers adopt a “tit-for-tat”-like policy
and accept to store a (single) fragment for a remote
peer only if reciprocity is satisfied. In addition, peers
are partitioned into “clusters” depending on their online

behavior. Peers upload backup fragments exclusively to
remote peers within the same cluster.

As discussed in Sec. II, the quest against “free-riders” can
be pursued with complex mechanisms based on reputation and
virtual currency. Previous works [21], [19], [22], have studied
alternative incentive schemes for P2P storage applications with
selfish peers and have shown, with game theoretic tools, the
existence of equilibrium strategies motivating users to increase
their online time and local storage dedicated to the system.

Inspired by those works, we implement the Symmetric
Selective data placement policy for its simplicity and because
it does not require any additional layer to enforce peer cooper-
ation. When the Symmetric Selective policy is used, data avail-
ability is computed using a modified Eq. 1: the average online
availability of peers is computed for each cluster. Clustering
based on the online availability of a peer is performed by the
Tracker, which constantly monitors the intermittent behavior
of the subscribers of the backup application.

IV. EVALUATION METHODOLOGY

In this Section we describe the methodology we used
to evaluate our peer-assisted backup system and compare it
to alternative schemes based on purely centralized and P2P
designs respectively. For brevity, in the remainder of this paper
we label the three backup applications as follows: DC stands
for the centralized approach, P2P indicates the peer-to-peer
application and PA stands for the peer-assisted design.

We implemented a custom, flow-level simulator based on a
fluid model of TCP in which different (eventually) competing
flows receive equal shares of a link’s capacity. Network
connectivity is modeled at the access level only: an end-to-end
link between two peers has uplink and downlink bottlenecks
while no network bottlenecks are simulated.

Next, we describe the two main datasets we used to charac-
terize the peers in our system: the bandwidth distribution and
the online behavior datasets.
Bandwidth distribution: uplink and downlink capacities of
peers in our system are obtained by sampling a real bandwidth
distribution collected over more than 300,000 unique Internet
hosts for a 48 hour period from roughly 3,500 distinct ASes
across 160 countries3. Fig. 1(a) depicts the cumulative dis-
tribution of uplink capacity we randomly assigned to peers;
downlink capacity is derived by the uplink distribution scaled
by a constant multiplicative factor equal to 4, which is repre-
sentative of a typical asymmetric residential Internet access.
Online behavior: monitoring the raw online activity of Inter-
net hosts is a difficult operation. In this work we focus on a
specific application that we deem relevant for our context. We
used traces collected over a period of more than 6 months for
roughly 10,000 users of a popular Internet messaging applica-
tion in Italy4. Fig. 1(b) illustrates the cumulative distribution
of peer availability computed as the number of hours per day
a user is online, where we filtered sporadic users with low

3Raw measurement data has been collected using an opportunistic technique
that exploits control messages of the BitTorrent protocol. We thank M. Piatek
for providing the original trace.

4One of the authors of this work is an administrator of the messaging server
and has access to user activity logs.



5

availability values. For example, a user online for 6 hours per
day will have 0.25 availability.

In this work, the availability a assigned to a peer is obtained
by randomly sampling the distribution in Fig. 1(b). Online and
offline periods of a peer with availability a are instead taken
randomly from exponential distributions with expected lengths
respectively 24a and 24(1− a) hours, yielding an average of
one connect/disconnect cycle per day; at the beginning of the
simulation each peer is considered to be offline.
Peer deaths: we simulate peer deaths as follows. In our
system a peer is considered dead when her hard-disk crashes.
Such peers never leave definitively the system: the underlying
assumption is that those peers will come back online to recover
their data. Disk crash events happen within a period of time
defined by an exponential distribution with expected time
equals to the simulation duration; after a disk crash, peers
stay online until the restore operation is completed, then they
return to their usual online behavior. The rate of peer deaths
is chosen to be extremely stressful for our system: in average
a peer will crash at least once during a simulation run.
The storage server: in this work, a storage server is assumed
to be an element of a datacenter, exposed to Internet users
through a simple (e.g. HTTP) interface allowing to put, get and
delete data objects. This is the case for a cloud storage service
such as Amazon S3 [1]. In our simulations we model an
ideal storage server hosted in an over-provisioned datacenter:
storage space and uplink/downlink bandwidth are unlimited.
Availability and durability of data stored in such servers are
also ideal: the storage server is never offline and never fails.

A. Simulation parameters

We now define the simulation parameters we used in our
evaluation. It is outside of the scope of this paper to examine
the whole parameter space, hence we include here a set of
parameters yielding the most insightful results. Simulation
results correspond to a collection of 10 simulation runs.

Our simulations cover a period of 97 days. We simulate a
system composed of 870 peers, each requesting to backup a
total of 10 GB of data. Each backup object is divided into
k = 32 fragments before applying redundancy, resulting in a
fragment size of 320 MB. In this work we assume that peers
dedicate 50 GB of local space to host backup fragments of
remote peers.

The parameters that govern the behavior of bandwidth
allocation is set as follows: scheduling decisions are taken at
regular intervals of 5 minutes in order to always have decisions
based on a recent sample of peer availabilities. The number of
parallel download slots that are activated by a peer is computed
according to the following expression: max

(
4,
⌊
di/d

⌋)
, where

di is the downlink capacity of a peer and d is the average
download capacity of the system.

With regard to data placement, the symmetric selective
policy requires the definition of cluster granularity. When this
placement strategy is used, peers are clustered according to
their availability, i.e., the fraction of time they spend online.
The granularity of each cluster is obtained by rounding the
value of peer availability by multiples of 0.1.

Availability 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Red. rate 4.87 3.55 2.76 2.22 1.83 1.53 1.28

Cluster size 554 108 66 36 28 22 56

TABLE I
REDUNDANCY RATES FOR SYMMETRIC SELECTIVE DATA PLACEMENT.

Finally, redundancy rates are computed as follows. The data
availability target is set to t = 0.99. When the random data
placement policy is used, the redundancy rate is computed
based on the system-wide average peer availability. In this
case, the redundancy rate is set to r = 3.47. Instead, the
symmetric selective data placement requires to compute a per-
cluster redundancy rate, which is summarized in Tab. I when
s = 0. Additionally, we include information on the number of
peers that belong to each cluster, which is computed according
to the distribution of peer availabilities illustrated in Fig. 1(b).

B. Performance Metrics

Prior works on P2P storage usually evaluate system perfor-
mance in terms of access latency of individual files. In this
work we set apart from such metrics and measure the overall
time required to complete a backup and a restore operation on
the whole user data, and the costs for long term storage.

Formally, we define:
• Time To Backup (TTB) is the time needed to complete the

backup of a backup object. A backup is complete when
the number of (possibly encoded) fragments uploaded to
remote peers x and to the storage server s is sufficient to
satisfy the inequality x ≥ p(s).

• Time To Restore (TTR) is the time required to download
at least k backup fragments that are sufficient to recon-
struct the original backup object. We measure the TTR
only for peers that completed the backup operation.

• Costs accounts for the resources used by a peer when
uploading and storing backup fragments in the storage
server. Storage dominates bandwidth costs for long-term
storage; moreover, our system only uses the inbound
bandwidth of the storage server, which is often at low
cost or free [1]. For these reasons, in the following we
will neglect bandwidth costs.

V. RESULTS

A. General Overview of Online Backup Systems

Fig. 2 overviews the performance of three alternative ap-
proaches to online backup applications through the lenses of
the performance metrics defined in Sec. IV-B.

We compare a legacy client-server application where users
store their data solely on a storage server (labeled DC, which
stands for datacenter), a P2P application in which the only
storage resources available are those contributed by the peers
(labeled P2P), and the peer-assisted backup system we discuss
in this work (labeled PA). We include both the opportunistic
and the pessimistic allocation policies illustrated in Sec. III-C,
and use the random data placement policy.

Fig. 2(a) illustrates the cumulative distribution function
(CDF) of TTB values. Clearly, the minimum TTB is achieved



6

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Upload bandwidth [Mbps]

E
m

pi
ric

al
 C

D
F

(a) Upload bandwidth distribution.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Availability of peers

E
m

pi
ric

al
 C

D
F

(b) Peer availability distribution.

Fig. 1. Overview of the datasets that describe peer characteristics in terms of access bandwidth and online behavior.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

TTB [day]

E
m

pi
ric

al
 C

D
F

 

 

DC
PA pessimistic
PA opportunistic
P2P

(a) TTB.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [day]

S
to

ra
ge

 s
er

ve
r 

lo
ad

 [G
B

]

 

 

DC
PA pessimistic
PA opportunistic

(b) Storage costs.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

TTR [hour]

E
m

pi
ric

al
 C

D
F

 

 

DC
PA pessimistic
PA opportunistic
P2P

(c) TTR.

Fig. 2. General overview of the performance of three approaches to online backup applications. A peer-assisted design approaches the performance of a
server-based solution and achieves small long-term storage costs.

by the DC application. Indeed, the redundancy factor is r = 1,
hence only k backup fragments are uploaded to a central
server, which is always available and has infinite inbound
bandwidth. Note that also the peer-assisted application with
pessimistic allocation (PA-pessimistic) achieves a minimum
TTB for the simple reason that, initially, all original backup
fragments are uploaded to the storage server (the line for the
two cases coincide in Fig. 2(a)).

The peer-assisted application with opportunistic allocation
(PA-opportunistic) achieves longer times to backup. Indeed,
s+x(s) > k backup fragments are uploaded to remote peers to
cope with their online behavior. Recall that s is the number of
original blocks initially uploaded to the central server, before
the optimization phase begins.

The P2P application obtains the worst results in terms of
TTB. More than 15% of peers cannot complete the backup
operation, according to the definition we give in Sec. IV-B,
within the simulation time. The very large TTB values are
due to two reasons. Firstly, the redundancy factor that meets
the target data availability is large and so is the amount of
(redundant) backup data to be uploaded to remote peers. Sec-
ondly, the intermittent online behavior of peers may interrupt
data uploads: the bandwidth scheduler enters a time-out phase
when no online remote peer is available to receive data.

Fig. 2(b) depicts the storage costs expressed as a time-series

of the aggregate amount of data located in the storage server5.
The area underlying the curves, multiplied by monetary costs,
and normalized by the simulation time, is an indication of the
aggregate monetary costs end-users must support.

We observe that in the DC application, the amount of stor-
age requested on the datacenter quickly reaches the maximum
value. In the PA application, the cost grows as peers upload
their fragments to the storage server to complete their backups,
and gradually diminishes during the optimization phase. Lower
TTB values in the PA-pessimistic case are counterbalanced
by higher aggregate costs on the datacenter. On the long
run, however, the storage load on the server is very low and
settles to the same value for both opportunistic and pessimistic
allocation. Storage costs do not settle to zero because of the
maintenance operations due to peer deaths.

Finally, Fig. 2(c) shows the CDF of the TTR metric. We
observe that the TTR is much lower than the TTB in all
different backup applications. Again, the minimum TTB is
achieved in the DC case since the storage server is always
online and the downlink capacity of a peer is fully utilized.
While retrieving data stored on remote peers entails a longer
TTR, this quantity remains well within a day in the majority
of cases.

Now, we can draw a first important conclusion: by using
adequate allocation policies in which a storage server is

5Storage costs for the P2P application are zero, hence we do not report
them on the figure.



7

only used temporarily, a peer-assisted backup application can
achieve performance comparable to traditional client-server
architectures at much lower costs. Our results also show that
a P2P application, despite being free of charge, can meet a
reasonable performance only for a small fraction of peers.

B. Data Placement and Cost of Fairness

We now focus on the impact of the data placement policy
on performance, and compare the DC, PA and P2P backup
applications. The DC case is shown for reference, since backup
fragments are constrained to be stored on the storage server.

First, we study the random data placement strategy. Al-
though remote peers are randomly selected, we show results
by the availability class of a peer, i.e., peers are grouped
depending on their online behavior as discussed in Sec. IV-A.

Fig. 3(a) and Fig. 3(b) represent the median TTB as a
function of peer availability class, with and without peer
deaths (because of disk crashes) respectively. Clearly, TTB is
correlated to the availability class: higher online times entail
lower TTB. Comparing the case with and without peer deaths
reveals the sensitivity of the P2P approach to data maintenance
traffic. Instead, the PA application tolerates well peer deaths
because the storage server helps in speeding up repairs.

Fig. 3(c) shows the amount of data stored on peers: for
each availability class, the left boxplot is for the PA case and
the right boxplot is for the P2P case. Random data placement
introduces unfairness: indeed, peers with a larger online time
are more likely to be selected as remote locations to store
backup fragments and their excess capacity is exploited by
peers with low availability. This result motivates the adoption
of the symmetric selective data placement policy, whose goal
is to impose system fairness as explained in Sec. III-D.

Fig. 4(a) shows the CDF of the TTB for PA and P2P
applications. For the PA application, the TTB achieved by
highly available peers decreases, whereas peers with low
availability experience a slightly increased TTB. This trend
is more pronounced for P2P applications. Not only the TTB
can be very large, but a substantial fraction of peers cannot
complete their backup operation: this happens for more than
15% of the cases with a random data placement and for almost
80% of the cases with the symmetric selective policy.

Imposing fairness in a PA application modifies the costs for
end-users, as illustrated in Fig. 4(b). When the symmetric data
placement policy is used, peers with low availability cannot
exploit the excess capacity in the system and are compelled
to store their data on the storage server.

In summary, we justify the system-wide loss in performance
with the notion of cost of fairness. When peers are constrained
to store backup fragments on remote peers with similar online
behavior and are compelled to offer an amount of local storage
space proportional to the amount of (redundant) data they
inject in the system, the excess capacity provided by highly
available peers cannot be exploited. In a P2P application, peers
can suffer a severe loss in performance or eventually cannot
complete their backups. Instead, in a PA application system
fairness translates into higher storage costs for peers with low-
availability, but system performance is only slightly affected.

C. Impact of Fragment Size

As discussed in Sec. III-B, data availability is achieved
through erasure coding, which is a technique adopted both by
the P2P and our PA backup application. Backup data is split
into k equally sized blocks: s blocks are stored on a server
and p(s) blocks are uploaded to distinct remote peers. In this
section we analyze the impact of block size. Fig. 5 illustrates
storage costs, TTB and TTR for k = {8, 32, 128, 512}, result-
ing in fragment sizes of 1280, 320, 80, 20 MB respectively.
Here we focus on the PA application only, when opportunistic
allocation and random data placement policies are used. We
obtain similar results with the symmetric selective policy,
which are omitted due to space constraints.

Fig. 5(a) and Fig. 5(b) clearly illustrate the trade-off be-
tween storage costs and backup times, as a function of
fragment size. On the one hand, small fragments require a
large number of distinct remote peers with free space to hold
encoded blocks. If this condition is not satisfied, opportunistic
allocation allows a peer to send backup blocks to the stor-
age server. Hence, higher storage costs for small fragments.
Maintenance operations exacerbate the need for distinct remote
peers to store encoded fragments: as a consequence, the
optimization phase has little effects on storage costs. On the
other hand, the transmission of large fragments may occupy
many scheduling intervals, hence data transfers are more likely
to be interrupted by the online behavior of remote peers. Only
in these cases the residual uplink capacity is dedicated to
transfer data to the storage server. As a consequence, backup
times are longer but storage costs are drastically reduced.

Data restore times are proportional to the fragment size, as
shown in Fig. 5(c): the larger the fragment size, the longer
the TTR. Larger fragments require less remote peers to store
encoded blocks: as a consequence, the downlink capacity of
a peer involved in a restore operation may not be saturated
because remote peers may be offline.

In summary, the fragment size is a delicate parameter:
its choice depends on the bandwidth distributions of peers,
on scheduling decisions and on the redundancy mechanism
used to achieve data availability. Our experiments indicate
that extreme values achieve conflicting properties in terms of
storage costs and TTB. With respect to the scenarios examined
in this work, k = 32 blocks represent the a good compromise
between costs and backup times.

D. System Scalability and Heterogeneity

We now address two fundamental questions for an Internet
application, i.e., the impact on performance of the system scale
and peer heterogeneity. Here we focus on the PA application
only and report results for opportunistic allocation and random
data placement policies.

Fig. 6 illustrates the average amount of data each peer stores
in the storage server, the average TTB and the average TTR,
as a function of the number of peers in the system. Fig. 6(a)
indicates that as the number of peers grows, the amount of
data each peer stores in the server decreases. Indeed, for larger
scales, the probability of finding enough distinct remote peer
to store backup fragments increases. Fig. 6(b) and Fig. 6(c)



8

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

Availability class

M
ed

ia
n 

T
T

B
 [d

ay
]

 

 

DC
PA opportunistic
P2P

(a) TTB with peer deaths.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

Availability class

M
ed

ia
n 

T
T

B
 [d

ay
]

 

 

DC
PA opportunistic
P2P

(b) TTB with no peer deaths.

0

0.2

0.4

0.6

0.8

1

Availability classes

S
to

ra
ge

 u
til

iz
at

io
n

 0.9 0.8 0.7 0.6 0.5 0.4 0.3

(c) Storage load on peers.

Fig. 3. System performance with random data placement, in terms of median values of TTB and storage load on peers, grouped by availability classes. Note
the impact of maintenance traffic due to peer deaths and the uneven distribution of storage load on peers.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

TTB [day]

E
m

pi
ric

al
 C

D
F

 

 

PA random
PA sym sel
P2P random
P2P sym sel

(a) TTB.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [day]
S

to
ra

ge
 s

er
ve

r 
lo

ad
 [G

B
]

 

 

random
sym sel

(b) Storage costs.

Fig. 4. Comparison between random and symmetric selective data placement. Introducing fairness has a significant impact on the performance of a P2P
design, while it introduces additional costs for a PA application.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [day]

S
to

ra
ge

 s
er

ve
r 

lo
ad

 [G
B

]

 

 

20 MB
80 MB
320 MB
1280 MB

(a) Storage costs.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

TTB [day]

E
m

pi
ric

al
 C

D
F

 

 

20 MB
80 MB
320 MB
1280 MB

(b) TTB.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

TTR [hour]

E
m

pi
ric

al
 C

D
F

 

 

20 MB
80 MB
320 MB
1280 MB

(c) TTR.

Fig. 5. Impact of fragment size on the PA application. The right choice of a fragment size depends on a trade-off between performance and storage costs.

illustrate that both TTB and TTR reach a plateau as the system
scale grows.

We conclude that a peer-assisted architecture is scalable:
storage costs dramatically decrease while backup and restore
times do not increase with an increasingly large number of
peers. It is important to notice that a peer-assisted design over-
comes the typical bootstrap problem of peer-to-peer systems,
which require a critical mass of peers to be fully functional
when the system scale is small.

We now evaluate the behavior of the PA application when
peers are heterogeneous. In a first scenario, we assign a

random amount of backup data to each peer, while we keep the
storage capacity dedicated to the system constant and equal to
50 GB. Conversely, in a second scenario we keep a constant
backup data size equal to 10 GB and randomly assign the
amount of storage space each peer dedicates to others. Backup
data sizes and dedicated storage space are randomly drawn
from a truncated power law with exponential cutoff:

p (x) ∝ x−αe−0.1x

The values of this distribution are normalized to obtain an
average backup size of 10GB and an average offered storage



9

10 100 435 870
0

2

4

6

8

10

12

Number of peers

S
to

ra
ge

 s
er

ve
r 

lo
ad

 p
er

 p
ee

r 
[G

B
]

(a) Storage costs.

10 100 435 870
4

6

8

10

12

14

16

Number of peers

T
T

B
 [d

ay
]

(b) TTB.

10 100 435 870
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of peers

T
T

R
 [d

ay
]

(c) TTR.

Fig. 6. Analysis of the scalability of the PA application. Increasing the system size does not harm performance nor storage costs.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

TTB[day]

E
m

pi
ric

al
 C

D
F

 

 

uniform
α = 0.5
α = 1
α = 2

(a) TTB.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

TTR [hour]
E

m
pi

ric
al

 C
D

F

 

 

uniform
α = 0.5
α = 1
α = 2

(b) TTR.

Fig. 7. Performance of the PA architecture when peers have heterogeneous demands in terms of volume of data to backup.

capacity of 50 GB respectively. In our experiments we vary
the parameter α of the distribution such as: α = {0.5, 1, 2}

A skewed distribution of the backup data size implies
skewed TTB and TTR values, as shown in Fig. 7(a) and
Fig. 7(b). Indeed, the time to upload the necessary number
of backup fragments to remote peers or the storage server
is proportional to the data size. Instead, for constant backup
data sizes and a skewed distribution of the amount of storage
space dedicated to the system, there are no visible effects on
TTB and TTR values. This is due to the presence of a central
server, which absorbs the excess storage demand that cannot
be satisfied by the peers, and the fact that peer have enough
downlink capacity to support backup and restore operations.

E. A Note on Data Availability

The goal of an online backup application whereby data
fragments are stored on unreliable peers with intermittent
online behavior is to ensure data durability.

On the one hand, injecting redundant blocks in the system
allows a restore operation to be successful despite a fraction
of remote peers being offline. On the other hand, we have seen
that backup times, storage and maintenance costs are directly
related to the redundancy factor derived in Eq. 1.

The question we try and address in this Section is whether,
for backup applications, a stringent data availability target
can be relaxed, so as to decrease the redundancy factor
applied to backup data. A small redundancy factor has several

implications. The amount of data to upload to the system
(storage server or remote peers) would approach the original
size of a backup object, resulting in shorter backup times and
lower storage costs. Moreover, few distinct remote peers would
be sufficient to store backup data, benefiting a P2P approach.

Now, assume the lifetime of a peer disk (before crash) to be
an exponentially distributed stochastic variable with average t
(i.e., a peer crashes by time t with probability 1 − e−t/t).
Assume that a node uploads n redundant blocks to remote
peers, of which k are sufficient to restore the original data,
yielding a redundancy factor r = n/k. If maintenance is not
done, data is lost when more than n− k peers die. Therefore,
the data loss probability can be expressed as follows:

n∑
i=n−k+1

(
n

i

)(
1− e−t/t

)i (
e−t/t

)n−i
.

Fig. 8 illustrates the data loss probability as a function of
time and redundancy rate, when the average death rate in the
system is t = 90 days: in average, every peer crashes once
during a simulation run. In the figure, each line corresponds to
a different value of data loss probability. We observe that even
low redundancy rates are sufficient to ensure data availability
for a long period of time, which is considerably larger than
the time required to complete a restore operation.

This result leads us to the following considerations. A high
redundancy factor allows lazy data maintenance mechanisms:
it is not necessary to respond promptly to a peer death since



10

data durability is not at stake. Even if their disks crash, peers
have plenty of time to restore their data.

Alternatively, the performance of a backup application can
be improved by adopting a different encoding strategy. Instead
of fixing a data availability threshold using Eq. 1, it could be
sufficient to introduce the necessary amount of redundant data
in the system to ensure that any restore operation is completed
successfully. Our current research agenda includes a different
approach to data encoding based on rate-less codes combined
with a mechanism to estimate the TTR based on the number
of redundant blocks injected in the system.

VI. CONCLUSION

In this work, we made the case for a peer-assisted design to
online backup applications, that complements the current land-
scape of P2P backup/storage applications and online storage
services offered by could providers.

We showed that there is an ample space to explore between
client-server and P2P architectures. On the one hand, client-
server applications exhibit high performance in terms of the
time required to complete backup and restore operations,
which comes at a large monetary costs for long-term storage.
These costs can be sunk to zero with a P2P approach, with an
inevitable and severe loss in performance.

Our experiments showed that, with adequate bandwidth
allocation policies in which storage space at a cloud provider
is only used temporarily, a peer-assisted design can achieve
performance comparable to client-server architectures at a
fraction of the costs.

As we target an application for Internet users in the wild, we
studied the effects of data placement strategies with embedded
incentive mechanisms to foster cooperation and concluded that
imposing fairness comes at a cost. For a P2P design, the price
to pay is that a large fraction of users may be excluded from
taking part to the system since backup and restore operations
do not complete. Instead, in a peer-assisted application, the
impact of system-wide fairness on performance is negligible
and all peers are able to save and retrieve their data. However,
peers that contribute little with local resources are compelled
to pay higher storage costs.

We also covered two important aspects of our peer-assisted
design: the impact of system scale and peer heterogeneity.
We concluded that a peer-assisted architecture can handle a
large pool of users, and that a larger system size implies lower
storage costs. Furthermore, peer heterogeneity has marginal
effects on system performance.

Finally, we showed that state-of-the art coding techniques
used to guarantee data availability at any point in a peer’s
life-time impose high data redundancy factors, which can
be lowered without affecting the system performance. This
paves the way for alternative coding techniques based on the
expected time required to restore data rather than the typical
availability threshold, which we will explore in our future
work. Additionally we will extend the set of results presented
in this work by studying the effects of correlation in the online
behavior of peers.

0 10 20 30 40 50 60 70 80 90
Time without maintenance [day]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Re
du

nd
an

cy
 ra

te

50%

10%

1%

0.1%
0.01%

0.0
01

%

0.0001%

Fig. 8. Data loss probability as a function of redundancy rate. The x-
axis represents the time elapsed from a successful backup operation, with
artificially disabled data maintenance.

REFERENCES

[1] http://aws.amazon.com/s3/.
[2] http://dropbox.com/.
[3] http://tcrn.ch/dABxRn.
[4] http://techcrunch.com/2010/01/20/dropbox-4-million-user/.
[5] http://www.apple.com/timecapsule/.
[6] http://www.wuala.com/.
[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-

ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, University of California, Berkeley, 2009.

[8] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pstore: A secure peer-to-
peer backup system. Technical Report MIT-LCS-TM-632, MIT, 2001.

[9] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability.
In Proc. of USENIX IPTPS, 2003.

[10] C. Blake and R. Rodrigues. High availability, scalable storage, dynamic
peer networks: pick two. In Proc. of HOTOS, Berkeley, CA, USA, 2003.
USENIX Association.

[11] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup
cheap and easy. ACM SIGOPS Operating Systems Review, 36:285–298,
2002.

[12] L. P. Cox and B. D. Noble. Samsara: honor among thieves in peer-to-
peer storage. In Proc. of ACM SOSP, pages 120–132, New York, NY,
USA, 2003. ACM Press.

[13] A. Duminuco. Data redundancy and maintenance for peer-to-peer file
backup systems. PhD thesis, TELECOM ParisTech, October 2009.

[14] D. Grolimund. Wuala - a distributed file system. Google TechTalks
video, http://www.youtube.com/watch?v=3xKZ4KGkQY8, 2007.

[15] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell. A
Survey of Peer-to-Peer Storage Techniques for Distributed File Systems.
In Proc. of ITCC, page 213. IEEE Computer Society, 2005.

[16] M. Landers, H. Zhang, and K. L. Tan. PeerStore: better performance by
relaxing in peer-to-peer backup. In Proc. of IEEE P2P, pages 72–79.
IEEE Computer Society Washington, DC, USA, 2004.

[17] N. Laoutaris, D. Carra, and P. Michiardi. Uplink allocation beyond
choke/unchoke: or why divide does not always conquer best. In Proc.
of ACM Conext, 2008.

[18] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A
cooperative internet backup scheme. In Proc. of USENIX ATEC, page 3,
Berkeley, CA, USA, 2003. USENIX Association.

[19] L. Pamies-Juarez, P. Garcia-Lopez, and M. Sanchez-Artigas. Rewarding
stability in peer-to-peer backup systems. In Proc. of IEEE ICON, 2008.

[20] Y. Sun, F. Liu, B. Li, B. Li, and X. Zhang. FS2You: Peer-Assisted Semi-
Persistent Online Storage at a Large Scale. In Proc. of IEEE INFOCOM,
2009.

[21] L. Toka and P. Michiardi. Brief announcement: a dynamic exchange
game. In Proc. of ACM PODC, 08 2008.

[22] L. Toka and P. Michiardi. Selfish neighbor selection in peer-to-peer
backup and storage applications. In Proc. of Euro-Par, August 2009.

[23] Z. Wilcox-O’Hearn. Convergent encryption reconsidered. https://zooko.
com/convergent_encryption_reconsidered.html, March 2008.


