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Fundamental Rate-Reliability-Complexity Limits in
Outage Limited MIMO Communications

Petros Elia and Joakim Jaldén

Abstract—The work establishes fundamental limits between
rate, reliability and computational complexity, for the general set-
ting of outage-limited MIMO communications. In the high-SNR
regime, the limits are optimized over all encoders, all decoders,
and all complexity regulating policies. The work then proceeds to
explicitly identify encoder-decoder designs and policies, that meet
this optimal tradeoff. In practice, the limits aim to meaningfully
quantify different pertinent and interrelated measures, such as
the optimal rate-reliability capabilities per unit complexity and
power, the optimal diversity gains per complexity costs, or the
optimal goodput per flop. Finally the tradeoff’s simple nature,
renders it useful for insightful comparison of the rate-reliability-
complexity capabilities for different encoders-decoders.

Index Terms—Diversity-multiplexing tradeoff, complexity,
multiple-input multiple-output (MIMO), space-time coders-
decoders, fundamental limits, lattice reduction, regularization.

I. INTRODUCTION

A. General system model

We consider the general multiple-input multiple-output
(MIMO) communications setting, where the m × 1 vector
representation of the received signal y is given by

y = Hx + w, (1)

where x is the n × 1 vector representation of the coded
transmitted signals, H the m× n channel matrix, and where
w represents additive noise. H is considered to be random,
having an arbitrary distribution, and being parameterized by
ρ which is interpreted as the SNR (cf. [1]). w is taken to be
i.i.d. Gaussian with fixed variance. We assume that one use
of (1) corresponds to T uses of some underlying “physical”
channel.

The model applies to several network topologies and sce-
narios, such as MIMO, MIMO-OFDM, MIMO-MAC, MIMO-
ARQ, and cooperative communications, and each such scenario
endows H and x with different structures, dimensionalities
and statistics. This work specifically considers the non-ergodic,
outage-limited setting, in which the above MIMO-related
scenarios play a crucial role in improving the error and rate
performance, though usually at the expense of much higher
encoding-decoding computational complexity.
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B. Motivation and general results

Error performance and encoding-decoding complexity in
telecommunications (cf. [2]–[6]), are widely considered to be
two limiting, and interrelated bottlenecks. Joint exposition of
these two aspects becomes increasingly necessary, in order to
meaningfully quantify the ever increasing complexity costs of
reliable communication, in systems that progressively become
larger and more dynamic.

A natural question then pertains to establishing and meeting
joint fundamental error-performance and complexity limits,
optimized over all choices of encoders, decoders and policies.
Such limits will be here described, under a high SNR approx-
imation, in the form of an optimal rate-reliability-complexity
tradeoff for MIMO communications.

The limits provide answers, within approximation factors
corresponding to the high-SNR asymptotics1, pertaining to the
following.
• Description, given ρ, of the best possible achievable

rate-reliability-complexity combination, optimized over
all transceivers and policies (Theorem 1).

• Description, given ρ, of the union of all achievable rate-
reliability-complexity combinations. (Theorem 2).

• Description of the optimal value achieved by a large fam-
ily of utility measures which quantify the rate-reliability-
complexity capabilities of transceivers, and which are de-
creasing functions of complexity and of error probability.
(Theorem 3).

C. Structure of paper

Section II recalls the general transceiver setting, and defines
the different performance measures. Section III introduces the
asymptotic measures of performance, directly applying the
diversity multiplexing tradeoff (DMT, [2]) as an asymptotic
measure of rate-error performance, and defining the worst-
case complexity exponent as an asymptotic measure of worst-
case complexity. Section IV presents the high-SNR optimal
rate-reliability-complexity tradeoff, and the optimal transceiver
utility value in its general form, as well as in its simpler, more
specific, homogeneous variant. Finally Section V concludes.

II. TRANSCEIVER DESIGN AND DECODING POLICY: RATE,
RELIABILITY AND COMPLEXITY

A. Transceiver design and decoding policy

Consider a sequence of transceiver designs Xρ,Dρ, parame-
terized by ρ, where Xρ ⊂ Rn denotes the codebook that maps

1For increasing ρ, the approximation factor vanishes to a value smaller than
any polynomial function of ρ, i.e., smaller than any ρε, for any ε > 0.
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information into transmitted signals, and where Dρ denotes the
decoder(s) that extract information from the received signals.
Let the transmitted codewords x be picked, with uniform
probability, from the codebook Xρ. Transmission has duration
T , SNR ρ, rate

R =
1
T

log2 |Xρ|,

and an enforced power constraint such that
1
|Xρ|

∑
x∈Xρ

‖x‖2 = T. (2)

For simplicity we write X ,D, and we let the parameterization
be implied.

Consider a policy P (short for Pρ,X ,D), which generally
trades-off error performance with complexity, by forcing the
decoder to limit the number of numerical operations (i.e.,
flops), up to a maximum designated number of flops. Once
this limiting number of flops is reached, the decoder quits and
declares an error. This limiting number of flops may or may
not be chosen as a function of the instantaneous H,y, and
will generally depend on ρ.

B. Rate, reliability and complexity

The error probability PX ,D,P introduced by the specific
X ,D,P , is simply

PX ,D,P := P (H,x,w : x̂X ,D,P 6= x) , (3)

where x̂X ,D,P denotes the vector decoded by D, under the
restrictions of P . For a given X ,D,P and a given realization
of problem inputs H,x,w, then NX ,D,P(H,x,w) will denote
the overall instantaneous introduced complexity, in flops. Then
worst-case complexity is simply given by

CX ,D,P := sup
H,x,w

NX ,D,P(H,x,w). (4)

A pertinent measure of performance for any X ,D,P then
becomes the corresponding set of achievable combinations
(R, ρ, PX ,D,P , CX ,D,P), or an equivalent one-to-one mapping
of this set. In the rate-of-change setting of interest, a mean-
ingful general mapping is chosen to have output of the
form

(
R, ρ,

logPX ,D,P
logZ ,

logCX ,D,P
logL

)
, where Z,L can regulate the

refinements of these rates-of-change.

III. ERROR AND COMPLEXITY EXPONENTS

A. Quantifying error performance: DMT

As a measure of rate-reliability performance, we adopt the
refinement of the diversity-multiplexing tradeoff, identified by
Zheng and Tse in [2], as a fundamental performance limit in
outage-limited MIMO communications.

In this setting, both the error probability PX ,D,P introduced
by the specific X ,D,P , as well as the cardinality of X , are
parameterized by Z = ρ. Specifically the code cardinality

|X | = 2RT ,

is described by the multiplexing gain

r, lim
ρ→∞

R

log2 ρ
= lim
ρ→∞

1
T

log |X |
log ρ

, (5)

and the associated error performance delivered by the
transceiver and policy, is described by the diversity gain [2]

dX ,D,P(r) := − lim
ρ→∞

logPX ,D,P
log ρ

. (6)

B. Regulating and quantifying complexity performance:
worst-case complexity exponent

In the described setting, for a given ρ,R, we consider the
one-to-one mapping of

CX ,D,P ↔
log
(
CX ,D,P

)
logL

where L is some chosen function of |X |. A general asymptotic
worst-case complexity measure then takes the form

lim
ρ→∞

logCX ,D,P
logL

. (7)

Similar to the DMT in [2] which meaningfully measures the
high-SNR PX ,D,P as a polynomial power of ρ, our chosen
measure of complexity will also be an exponent over ρ,
keeping in line with pertinent complexity behavior CX ,D,P of
most known transceivers. In this scale of interest where L = ρ,
the worst-case complexity exponent takes the following form

cX ,D,P(r) := lim
ρ→∞

log
(
supH,x,w NX ,D,P(H,x,w)

)
log ρ

. (8)

We briefly note that cX ,D,P(r) is set by the structural prop-
erties of the design X ,D,P as well as the statistical properties
of H,x,w. We also note that the worst-case exponent of any
reasonable decoder is bounded as

0 ≤ cX ,D,P(r) ≤ rT.

The upper bound is easily seen to be tight, because cX ,D(r) =
rT is the exponent corresponding to full-search uninterrupted
ML decoders2 in the presence of a canonical code with
multiplexing gain r, i.e., |X | .= ρrT , where the .= notation
is used when f(ρ) .= ρx iff (cf. [2])

lim
ρ→∞

log f(ρ)
log ρ

= x . (9)

The symbols
.
≥ and

.
≤ are defined similarly.

The tradeoff is now put together.

IV. PERFORMANCE-COMPLEXITY TRADEOFF

We proceed to establish the fundamental limits, optimized
over all achievable rate-reliability-complexity combinations of
any transceiver and policy, up to a factor that vanishes in the
limit of high ρ.

Towards this we describe the decoder and encoder struc-
tures, that together with a specific policy, meet a natural upper
bound to this tradeoff, for all values of r. We start with the
decoder, but for now disregard the policy.

2We here note that strictly speaking, X ,D,P may potentially introduce a
complexity exponent larger than rT . In such a case though, X ,D,P may be
substituted by a lookup table implementation of X and an unrestricted ML
decoder. This encoder-decoder will jointly introduce a complexity exponent
equal to rT , thus maintaining the bound. It is also noted that the number of
flops per visited codeword is independent of ρ.
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1) The candidate decoder – the DMT optimal LLL based
LR-aided, regularized linear decoder: We focus on the ef-
ficient and DMT optimal, LLL-based lattice-reduction (LR)-
aided regularized linear decoder, presented in its general form
in [1], [7], [8] for different settings, drawing from works such
as [9], [10]. We clarify that the decoder applies to lattice codes,
and for completeness recall the decoder’s three main steps. In
the first step, the decoder performs regularization via MMSE-
GDFE like preprocessing, thus inducing a regularized metric
(cf. [1])

x̂L = arg min
x̂∈Λr

‖y −Hx̂‖2 + ‖x̂‖2T . (10)

In the above, Λr is the scaled lattice corresponding to the code,
and T is a positive definite matrix. The above metric penalizes
far away elements of Λr that are generally non codewords. The
second step includes lattice-reduction using the LLL algorithm
[11], and the last step is an efficient linear detection using, for
example, the rounding off algorithm.

Under standard assumptions on continuity, and in the pres-
ence of a policy PrT that lets the decoder run its course
irrespective of the complexity, the above decoder was shown
in [1] to be DMT optimal, i.e., that

dX ,DLRR,PrT (r) = sup
D
dX ,D,PrT ,

irrespective of the lattice design X , and irrespective of the
fading statistics.

It is the case though that the decoder’s LLL step introduces
worst-case complexity that is infinite [12]. This problem is
successfully addressed by the policy discussed below.

2) The LR-based policy PLR: To limit the above infinite
complexity, the work in [1] proposed a policy that capitalizes
on the fact that to achieve DMT optimality, it is not required
to LLL reduce every conceivable channel. Instead, in the
event that too many flops occur, the policy instructs the
implementation of the LLL algorithm to halt, and the decoder
to declare an error. Special emphasis is given to guaranteeing
that the event of halting is not more common than the event
of error, thus avoiding degradation of the asymptotic error
performance. Specifically the halting policy, to be denoted as
PLR, was defined on the basis of the bound on the number
K of LLL cycles that are necessary for reduction of matrix
M which generates the composite code-channel lattice. This
bound is given by [12], [13] to be

K ≤ n2 log 2√
3
κ(M) + n, (11)

where κ(M) denotes the 2-norm condition number of M .
Based on this bound, PLR deploys the LLL algorithm only if

κ(M) ≤ ρ 1
2 (dML(r)+1)+ε, ε > 0, (12)

where dML(r) , dX ,DML,PrT (r) describes the DMT achieved
by the uninterrupted ML decoder. By showing that

P
(
κ(M) ≥ ρ 1

2 (dML(r)+1)+ε
) .
≤ ρ−dML(r),

i.e., that the event of halting is less common than the event of
error under full ML decoding, it was proven in [1] that, over
any range of multiplexing gains r, the combination of DLRR

and PLR achieves DMT optimal decoding of any lattice design
XΛ, and does so with worst-case complexity of O(log ρ). This
implies a worst-case complexity that is at most linear in the
rate3, at high SNR. It also constitutes substantial improvement
over sphere decoding implementations where the worst-case
complexity reported (see for example [14] for fast decodable
codes [15]–[17]) is also exponential in R, albeit with a smaller
exponent than full search.

3) The overall worst-case complexity exponent jointly in-
troduced by lattice encoding, DLRR and PLR: With the above
in mind, we proceed to establish the overall computational
complexity jointly introduced by lattice encoding and by the
different components of DLRR, in the presence of PLR.

a) Decoder and policy: We first quickly note that the
regularization and linear-decoding steps, introduce complexity
that is essentially independent of ρ,H , and bounded above by
O(n2), thus inducing a zero complexity exponent.

Regarding the lattice reduction step, we recall the hard
bound

K ≤ n2 log 2√
3
κ(M) + n

≤̇ n2 log 2√
3
ρ

1
2 (dML(r)+1)+ε + n, ε > 0,

on the number of LLL flops enforced by PLR. This bound
implies that

∃z ∈ R+ : P (N(H,x,w) > z log ρ) = 0,

which in turn means that

P (N(H,x,w) > ρc) .= ρ−∞, ∀c > 0. (13)

In conjunction with the equivalent representation (drawing
from [18], which presents some c(r) of different X ,D,P)

c(r) = sup{c :− lim
ρ→∞

logP (N(H,x,w) ≥ ρc)
log ρ

≤ d(r)}

of a worst-case complexity exponent c(r) that allows for d(r),
we conclude that the LLL algorithm under PLR, also introduces
an effective complexity exponent equal to zero. Consequently
the entire DLRR,PLR introduces a minimal complexity expo-
nent, equal to zero.

b) Lattice encoding: Moving on to encoding, it is again
easy to see that any lattice code XΛ comes with encoding
complexity that is bounded as O(n2), thus minimally adding
to the overall complexity exponent of any transceiver/policy.

We are now able to combine the complexities from the
encoder and the decoder, and to provide the following.

Lemma 1: A lattice code XΛ, in conjunction with the
decoder-policy DLRR,PLR, jointly accept a minimum, over all
encoders, decoders and policies, effective complexity expo-
nent, i.e.,

cXΛ,DLRR,PLR
= inf
X ,D,P

cX ,D,P = 0. (14)

3The result is extended in [8] to the MIMO-MAC case, to show that this
optimality holds with worst-case complexity that is at most linear in the users’
sum-rate.
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4) The overall error performance: With respect to the
error performance of DLRR,PLR, we utilize the result in [1]
which proves that the DMT optimality of DLRR,PLR, holds
irrespective of the lattice code that it is applied to, i.e., that
for any fixed lattice code XΛ, then

dXΛ,DLRR,PLR
(r) = sup

D,P
dXΛ,D,P(r). (15)

Disregarding for now issues on code design, we proceed to for-
malize the performance-complexity optimality of DLRR,PLR.

5) The overall effective complexity/error exponent jointly
induced by lattice encoding, DLRR and PLR: Combining (14)
and (15) gives the following.

Lemma 2: The high-SNR rate-reliability-complexity trade-
off achieved by the DLRR,PLR, is better or equal to the tradeoff
achieved by any other decoder-policy, irrespective of the lattice
code XΛ applied, i.e.,(

dDXΛ,DLRR,PLR
(r), cDXΛ,DLRR,PLR

(r)
)

=
(
sup
D,P

dXΛ,D,P(r), inf
D,P

cXΛ,D,P(r)
)
.

Here it is stressed that this achievable tradeoff may be sub-
optimal, as it is limited by the reliability capabilities of the
specific code XΛ.

What remains now is to combine the optimal components
DLRR,PLR, with suitable code designs.

6) Employing DMT optimal codes, to meet the rate-
reliability-complexity tradeoff: We have just seen in Lemma 2
that, given any lattice design XΛ, the combination DLRR,PLR
achieves the highest allowable tradeoff over any transceiver-
policy that includes XΛ. Consequently what remains is to
identify lattice code designs that optimize both cXΛ,D,P(r)
and dXΛ,D,P(r), in the presence of DLRR,PLR. Optimiz-
ing of cXΛ,D,P(r) has already been achieved in Lemma 1
which proved that any lattice design XΛ gives cXΛ,DLRR,PLR

=
inf
X ,D,P

cX ,D,P = 0. Hence what remains is to find a lattice de-

sign that optimizes dXΛ,D,P(r), in the presence of DLRR,PLR.
This in turn is further simplified in the presence of (15), and
the task is now limited to simply finding DMT optimal lattice
codes, i.e., codes that asymptotically meet the outage region

O = {H :
1
T

log det
(
I + βHH†

)
< R}, some fixed β,

of the equivalent MIMO channel to achieve asymptotically
optimal performance (cf. [2])

dopt(r) := sup
X ,D,P

dX ,D,P(r) = P (H ∈ O). (16)

The existence of such lattice codes has been proven in [19],
for the quasi-static Rayleigh fading channel, and a unified
family of such codes was explicitly constructed in [20] using
cyclic division algebras (CDA). Further such codes have, over
the last few years, been described for a plethora of MIMO
models. These codes are based on different variants of CDA
codes (cf. [21], [22]), and have been shown, under basic con-
tinuity conditions, to provide DMT optimality for all channel
dimensions, and most often for all fading statistics. Such codes
can, for example, be found in [20], [23]–[29], and they DMT-
optimally apply to several MIMO scenarios, including MIMO,

MIMO-OFDM, MIMO-MAC (Rayleigh fading), MIMO-ARQ, as
well as to most existing cooperative communication protocols.

For all the above MIMO scenarios, we have now the final
result, which holds under basic continuity conditions.

A. The optimal tradeoff

Theorem 1: The high-SNR optimal, over all encoders, de-
coders and policies, rate-reliability-complexity behavior is
given by

optX ,D,P
(
dX ,D,P(r), cX ,D,P(r)

)
=
(
dXCDA,DLRR,PLR(r), cXCDA,DLRR,PLR(r)

)
=
(
dopt(r), 0

)
(17)

and is achieved for all multiplexing gains, all channel di-
mensions and (in most known cases) all fading statistics, by
the CDA-based designs XCDA, the LR-aided regularized linear
decoder DLRR, and the LR-based policy PLR.

Equivalently the result shows that the achievable rate-
reliability-complexity combination(

R = r log ρ, P .= ρ−dopt(r), C
.= ρ0

)
(18)

is optimal, up to a factor that vanishes in the limit of high ρ.
We quickly note that XCDA,DLRR,PLR is currently the only
known tradeoff-optimal design.

Directly from the above, we have the following.
Theorem 2: In the high SNR regime, the union of all

achievable rate-reliability-complexity combinations, consider-
ing all reasonable X ,D,P , is given by

{
(
R = r log ρ, P .= ρ−d(r), C

.= ρc(r)
)
},

0 ≤ d(r) ≤ dopt(r), 0 ≤ c(r) ≤ rT.

Proof: For a given R, any of the above reliability-
complexity pairs can be achieved by employing an X ,D,P
that is optimal with respect to (18), modifying though P
to introduce the appropriate amount of extra complexity and
errors4.

a) Optimal limits on general reliability-complexity func-
tions: Another measure of the rate-reliability-complexity ca-
pabilities of different transceivers can take the form of general
utility functions. Towards this we define the following.

Definition 1: Let Γ be a weighting function that is increas-
ing in dX ,D,P(r), decreasing in cX ,D,P(r), and which reflects
the different costs assigned separately to erroneous detection,
and complexity. Then for any given X ,D,P , the Γ-general
rate-reliability-complexity limit takes the form

DX ,D,P(r) := Γ
(
dX ,D,P(r), cX ,D,P(r)

)
. (19)

Towards motivating useful and meaningful implementation
of the limit, we identify the following simple manifestation as
one of many special cases of the general limit.

Definition 2: The homogeneous rate-reliability-complexity
limit for a given X ,D,P , and a given weighting factor γ ≥ 0,
takes the form

DX ,D,P(r) := dX ,D,P(r)− γcX ,D,P(r), (20)

4Constructing such modification is trivial. We also note that the worst
case (r, d(r) = 0, c(r) = rT ) corresponds to a full-search transceiver that
provides subexponential decay of the probability of error, for increasing SNR.
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and describes the diversity gain minus the normalized com-
plexity cost.

It is interesting to interpret the rate-reliability-complexity
limit DX ,D,P(r), as a limit that describes the high-SNR error
capabilities of X ,D,P , per unit power and complexity. Equiv-
alently, the limit may be described as a measure of diversity
gain per complexity order.

The following result, which holds under basic continuity
conditions and for the same scenarios as Theorem 1, describes
the optimizing value achieved by a large family of measures Γ.

Theorem 3: The optimal, over all encoders, decoders and
policies, Γ-general rate-reliability-complexity limit D(r), is
given by

D(r) = Γ
(

sup
X ,D,P

dX ,D,P(r), 0
)

= Γ
(
dopt(r), 0

)
(21)

and is achieved for all multiplexing gains, and all channel
dimensions by the CDA-based designs XCDA, the LR-aided
regularized linear decoder DLRR, and the LR-based policy PLR.

Proof: The proof is direct by noting that

D(r) = sup
X ,D,P

Γ
(
dX ,D,P(r), cX ,D,P(r)

)
(22)

≤ Γ
(

sup
X ,D,P

dX ,D,P(r), inf
X ,D,P

cX ,D,P(r)
)
, (23)

and then by applying Theorem 1.
The following holds for the more intuitive, cost-symmetric
version of the limit.

Corollary 3a: The optimal, over all encoders, decoders
and policies, homogeneous rate-reliability-complexity limit, is
given by

D(r) = sup
X ,D,P

dX ,D,P(r)− γcX ,D,P(r) = dopt(r). (24)

V. CONCLUSIONS

The tradeoff and its achievability, provide worst-case guar-
antees on the complexity required for provably optimal perfor-
mance in outage-limited MIMO communications. The guaran-
tees hold over a surprisingly broad setting, and they come with
reduced transmission energy and delay, as well as reduced
algorithmic power consumption and hardware. The tradeoff
concisely quantifies these guarantees and the capabilities of
different transceivers, as well as quantifies the role of policies
in simplifying algorithms which would otherwise introduce
unbounded complexity.
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