
Chapter 5
Assessing Cybercrime Through the Eyes of the
WOMBAT

Marc Dacier, Corrado Leita, Olivier Thonnard, Van-Hau Pham and Engin Kirda

5.1 Foreword

The WOMBAT project is a collaborative European funded research project that aims at providing
new means to understand the existing and emerging threats that are targeting the Internet economy
and the net citizens. The approach carried out by the partners include a data collection effort as well
as some sophisticated analysis techniques. In this chapter, we present one of the threats-related data
collection system in use by the project, as well as some of the early results obtained when digging
into these data sets.

In [21], the authors offer a thorough presentation of one of the data collection infrastructures
used within the WOMBAT project to collect threats-related data. The presentation is very detailed,
going as far as explaining the database scheme used to represent the vast amount of information
they have access to. In the following pages, we wish to offer to the reader an early synthesis of the
various results that have been obtained when analyzing this large amount of information. However,
in order for this chapter to be as self-contained as possible, we start the presentation by re-stating
the rationales for this work, as well as by providing a summarized introduction to the data collection
infrastructure. We invite the reader who is already familiar with the WOMBAT project to skip this
part and move directly to the presentation of the results.

Marc Dacier
Symantec, Sophia Antipolis, France, e-mail: marc_dacier@symantec.com

Corrado Leita
Symantec, Sophia Antipolis, France, e-mail: corrado_leita@symantec.com

Olivier Thonnard
Eurecom, Sophia Antipolis, France, e-mail: thonnard@eurecom.fr

Van-Hau Pham
Eurecom, Sophia Antipolis, France, e-mail: pham@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis, France, e-mail: kirda@eurecom.fr

91

92 Dacier et al.

5.2 Introduction

Understanding the existing and emerging threats on the Internet should help to effectively protect
the Internet economy, our information systems and the Internet users. To reach this goal, it is neces-
sary to collect sound measurements about the ongoing attack processes observed worldwide on the
Internet. In the last years, the experimental study of Internet threats has gained much attention and
many valuable initiatives now exist for monitoring malicious activities or for capturing malware
binaries. Important contributions have been made in the field such as: i) the so-called Darknets
and Internet telescopes [23, 30, 35], ii) various projects based on the development of low- or high-
interaction honeypots [2, 13, 31, 34, 41], and iii) other initiatives aiming at collecting and sharing
firewall and IDS logs [14].

The Leurré.com project was initially launched in 2003 and has since then been integrated and
further developed within the WOMBAT project. It is based on a worldwide distributed system
of honeypots running in more than 30 different countries covering the five continents. The main
objective with this infrastructure is to get a more realistic picture of certain classes of threats hap-
pening on the Internet by collecting unbiased quantitative data in a long-term perspective. We have
decided to keep in one centralized database very precise information concerning a limited number
of nodes under close scrutiny. Concretely speaking, we initially deployed identically configured
honeypots based on Honeyd [31] on the premises of several partners around the globe. Within
WOMBAT, we have improved the infrastructure in a major way by building and deploying new
honeypot sensors based on the ScriptGen technology [17, 18, 20]. These new sensors dramatically
improve the interaction with the attackers and, hence, enrich our data collection. We record all
packets sent to or from these machines, on all platforms, and we store the whole traffic into a
database, enriched with some contextual information and with meta-data describing the observed
attack sessions. In the next Sections, we present these two data collection infrastructures and, then,
offer a synthesis of some of the results obtained by the WOMBAT partners when analyzing the
data at their disposal.

This chapter begins with the presentation of the initial data collection infrastructure that is based
on the deployment of low-interaction honeypots, for which we give a series of simple examples
that reveal the kind of information that such low level traces can provide. Then, we present how we
have extended our infrastructure with the SGNET deployment, which has recently been opened to
anybody willing to host one of its sensors. Section 5.5 presents how the identification of so-called
attack events (representing specific activities over limited period of times) enables us to observe the
evolution of what we hypothesize to be armies of zombies, some of them remaining visible for more
than 700 days. Section 5.6 gets deeper into the analysis of the traces, highlighting the usefulness
of applying what we call a multidimensional analysis to the honeypot events. Section 5.7 provides
some insights into the kind of contextual information that SGNET can offer whenever collecting
malware. Concrete examples are given that demonstrate the usefulness of such information in
discovering new threats and in better understanding the links between the code injection phase, the
shellcode injected and the uploaded malware itself.

5.3 Leurre.com v1.0 Honeyd

5.3.1 Historical background

The Institut Eurécom has started collecting attack traces on the Internet in 2003 by means of hon-
eypot responders. The first platform consisted of three high interaction honeypots built on top of
the VMware technology (the interested readers in the platform configuration are invited to read

5 Assessing Cybercrime Through the Eyes of the WOMBAT 93

[12] for more information). As shown in [11, 12], these first experiments allowed us to detect
some locality in Internet attacks: activities seen in some networks were not observed in others.
To validate this assumption, we decided to deploy multiple honeypots in diverse locations. With
diversity, we refer both to the geographical location and to the sensor environment (education, gov-
ernment, private sectors, etc). However, the VMware-based solution did not seem to be scalable.
First, this solution had a high cost in terms of security maintenance. Second, it required signifi-
cant hardware resources. In fact, to avoid legal issues we would have needed to ensure that these
systems could not be compromised and could not be exploited by attackers as stepping stones to
attack other hosts. For those reasons, we have chosen a low-interaction honeypot solution, hon-
eyd [31]. This solution allowed us to deploy low-cost platforms, easy to maintain and with low
security risk, hosted by partners on a voluntary basis. The low-cost of the solution allowed us
to build a distributed honeynet consisting now of more than 50 sensors distributed all over the
world, collecting data on network attacks and representing this information under the form of a
relational database accessible to all the parters. Information about the identity of the partners and
the observed attackers is protected by a Non-Disclosure Agreement signed by each entity partici-
pating to the project. We have developed all the required software to automate the various regular
maintenance tasks (new installation, reconfiguration, log collection, backups, etc.) to reduce the
maintenance overhead related to the management of such a complex system.

5.3.2 Some technical aspects

We describe here some important technical aspects, including the platform architecture, the logs
collection mechanism, the DB uploading mechanism, and the data enrichment mechanism.

Platform architecture: As mentioned before, the main objective is to compare unsolicited
network traffic in diverse locations. To make sound comparisons, the platform architecture must
be the same everywhere. We tried to make our Honeyd-based solution as similar as possible to the
initial VMware setup. We configured Honeyd to simulate 3 virtual hosts running on three different
(consecutive) IP addresses. We configured Honeyd’s personality engine to emulate the presence of
two different configurations, namely two identical virtual machines emulating Windows 2000 SP3,
and one machine emulating a Linux Kernel 2.4.20. To the first two configurations (resp. the last)
correspond a number of open ports: FTP, Telnet, Web server, Netbios name service, Netbios ses-
sion service, and Service Message Block (resp. FTP server, SSH server, Web server on ports (80),
Proxy (port 8080,8081), remote shell (port 514), LPD Printer service (port 515) and portmapper).
We require from each partner hosting the platform a fourth IP address used to access the physical
host running Honeyd and perform maintenance tasks. We run tcpdump [36] to capture the com-
plete network traces on each platform. As a security measure, a reverse firewall is set up to protect
our system. That is, we accept only incoming connections and drop all the connections that could
eventually be initiated from our system (in theory, this should never happen). The access to the
host machine is very limited: SSH connections are only allowed in a two-hour daily timeframe and
only if it is initiated by our maintenance servers.

Data collection mechanism: An automatized mechanism allows us, on a daily basis, to con-
nect to the platforms through an encrypted connection to collect the tcpdump traces. The script
downloads not only the last day’s log file but also the eventual older ones that could not have been
collected in the previous days due to, for example, a connectivity problem. All the log files are
stored on a central server.

Data uploading mechanism: Just after the data retrieval, the log files are then uploaded into
a large Oracle database by a set of Perl programs. These programs take tcpdump files as input and
parse them in order to create different abstraction levels. The lowest one corresponds to the raw

94 Dacier et al.

tcpdump traffic. The higher level is built on the lower ones and has richer semantics. Due to space
constraints, we do not present here all the concepts, but instead we will focus only on the most
important notions.

1. Source: A source corresponds to an IP address that has sent at least one packet to, at least, one
platform. Note that, in our Source model, a given IP address can correspond to several distinct
sources. That is, an IP remains associated to a given source as long as there is no more than 25
hours between 2 consecutive packets received from that IP. After such a delay, a new source
will be assigned to the IP. By grouping packets by sources instead of by IPs, we minimize the
risk of gathering packets sent by distinct physical machines that have been assigned the same
IP dynamically after 25 hours.

2. Large Session: it’s the set of packets which have been exchanged between one Source and a
particular honeypot sensor. A Large Session is characterized by the duration of the attack, the
number of packets sent by the Source, the number of virtual machines targeted by the source
on that specific platform, ...

3. Ports sequence: A ports sequence is a time ordered sequence of ports (without duplicates) a
source has contacted on a given virtual machine. For example, if an attacker sends the following
packets: ICMP, 135 TCP, 135 TCP, 139 TCP to a given virtual machine, the associated ports
sequence will be represented by the string I|135T |139T . Each large session can have, at most,
three distinct clusters associated to it.
This is an important feature that allows us to classify the attacks into different classes. In fact,
as mentioned in [12], most attack tools are automatized, it is as likely that the same attack tools
will leave the same port sequences on different platforms.

4. Tiny Session: A Tiny Session groups the packets exchanged between one source and one vir-
tual host. A Large Session is thus composed of up to three Tiny Sessions, ordered according to
the virtual hosts IP addresses.

5. (Attack) Cluster: A Cluster is a set of Sources having exhibited the same network fingerprint
on a honeypot sensor. We apply a clustering algorithm on the traffic generated by the sources.
The first step of this clustering algorithm consists in grouping large sessions into bags. This
grouping aims at differentiating between various classes of activity taking into consideration a
set of preliminary discriminators, namely the number of targeted virtual hosts and the unsorted
list of port sequences hitting them. In order to further refine the bags, a set of continuous
parameters is taken into consideration for each large session, namely: its duration, the total
number of packets, the average inter arrival time of packets, and the number of packets per tiny
session. These parameters can assume any value in the range [0,∞], but some ranges of their
values may be used to define bag subclasses. This is done through a peak picking algorithm
that identifies ranges of values considered discriminating for the bag refinement. Large sessions
belonging to a bag and sharing the same matching intervals are grouped together in a cluster.
A very last refinement step is the payload validation. The algorithm considers the concatenation
of all the payloads sent by the attacker within a large session ordered according to the arrival
time. If it identifies within a cluster multiple groups of large sessions sharing similar payloads,
it further refines the cluster according to these groups. In summary, a cluster is by design a set
of large sessions that seem to be originating from a similar attack tool.

6. A Cluster time series ΦT,c is a function defined over a period of time T , T being defined as
a time interval (in days). That function returns the amount of sources per day associated to a
cluster c.

7. An Observed cluster time series ΦT,c,op is a function defined over a period of time T , T
being defined as a time interval (in days). That function returns the amount of sources per
day associated to a cluster c that can be seen from a given observation view point op. The
observation view point can either be a specific platform or a specific country of origin. In the
first case, ΦT,c,plat f ormX returns, per day, the amount of sources belonging to cluster c that
have hit plat f ormX . Similarly, in the second case, ΦT,c,countryX returns, per day, the amount of
sources belonging to cluster c that are geographically located in countryX . Clearly, we always
have: ΦT,c = ∑∀i∈countries ΦT,c,i = ∑∀x∈plat f orms ΦT,c,x

5 Assessing Cybercrime Through the Eyes of the WOMBAT 95

Information enrichment

Finally, to enrich the information about each source, we add to it three other dimensions:

1. Geographical information: To obtain geographical location such as: organization, ISP, coun-
try of a given IP address, we have initially used Netgeo [25], developed in the context of CAIDA
Project. It provided a very surprising result which considered Netherlands and Australia as two
of the most attacking countries. As a sanity check, we have used Maxmind [22] and we have de-
tected problems with the Netgeo classification. [29] provides a comparison of these two tools.
It comes out from this analysis that Netherlands and Australia were not among the top attacking
countries anymore when using different sources of information for the geographical location of
attacking IP addresses.

2. OS fingerprint: To figure out the OS of attacking hosts, we have used passive OS fingerprinting
techniques. We take advantage of disco [1] and p0f [42]. It has been shown that p0f is more
accurate than disco. Active fingerprinting techniques such as Nmap, Quezo, or Xprobe have
not been considered to minimize the risk of alerting the attacker of our investigations.

3. Domain name: We also do the reverse DNS lookup to get the domain name of the attacking
machine if it is available.

5.3.3 Generic picture

Jan03 Jan04 Jan05 Jan06 Jan07 Jan08 Jan09
0

10

20

30

40

50

60

70

P
la

tfo
rm

 id
en

tif
ie

r

Jan03 Jan04 Jan05 Jan06 Jan07 Jan08
0

0.5

1

1.5

2

2.5

3
x 105

Time

N
um

be
r o

f s
ou

rc
es

Fig. 5.1 Left: Evolution of platforms, Right: number of sources

Figure 5.1 (left) shows the evolution of platforms. Each curve corresponds to the time life of a
platform. As we can see, we started our data collection in January 2003 with one VMware honeypot
and we have started to deploy the distributed low interaction honeypots in April 2004. Since then,
the number of partners joining us has kept increasing. In total, we have around 50 offical partners
and around 20 former partners. These platforms have, in total, covered 37 different /8 networks,
locating in 28 different countries in five continents. In total, we have observed 5173624 sources
corresponding to 3461745 different IP addresses. Figure 5.1 (right) shows the evolution of the
number of sources over time. The variation of the curve is of course influenced by the number of
platforms. Note that up to April 2004, the traffic is negligible. After that, the number of sources has
increased. It is interesting to observe that the number of sources on the last six months of 2004 is
much higher than that of the last six months of 2005 even through, in the second case, we have more
platforms. In total, there are 155041 different clusters. Figure 5.2 (left) represents the cumulative
distribution function of number of sources per number of cluster. Point (X,Y) on the curve means

96 Dacier et al.

that Y*100% of the total amount of clusters contain less than X sources. As we can see, most of
clusters are very small. There are, in fact, only 15521 clusters containing more than 10 sources
each. Interestingly enough, by querying the database one can find that these clusters, ie. around
10% of the total number of clusters, contain in fact 95% of the observed attacks! In other words, the
bulk of the attacks is found in a limited number of clusters whereas a very large number of diverse
activities originate from a very limited number of sources. In term of attacking machines’ OS,
according to p0f, almost all attacking machines are Windows ones. This confirms again the results
in [11, 12]. Figure 5.3 shows the top ten attacking countries with US in the head, followed by China
and Canada. But the surprising thing is that CS (corresponding to former Serbia and Montenegro)
is at the fifth position. The reason is that there is one (and only one!) platform which is heavily
attacked by this country. In total, it shows up as one of the most attacking countries. Finally, as an
example to show the diversity of the attacks over different platforms, Figure 5.2 (right) shows the
distribution of the number of different clusters per platform. Each column represents the number
of distinct clusters observed on a platform. We have as many columns as number of platforms. As
we can see, the attacks are highly diverse. On some platforms, we observe just small number of
clusters, but it is not the case for others.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of sources−X

F(
x)

CDF of cluster per number of sources

0

1

2

3

4

5

6
x 104

Fig. 5.2 Left:Cumulative distribution function of number of source per cluster; Right:Distribution
of number of clusters per platform.

5.3.4 Some illustrative examples

The diversified aspect of real-world datasets, such as honeynet data, makes the task of an analyst
rather difficult in selecting and analyzing some appropriate attack characteristics, which may help
eventually to make meaningful conclusions about the attack root causes. To illustrate this point, we
provide here a series of basic examples of how to analyze various facets of the observed network
threats. At this stage, the main ideas we want to convey are: i) that several aspects of an attack
dataset can potentially deliver meaningful pieces of evidence about attack root causes, and ii) that
large-scale attack processes manifest themselves through so-called “attack events” on different
sensors, which are the basis for the analysis of the underlying root causes.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 97

US (21%)

CN (18%)

CA (16%)

KR (14%)

CS (7%)

DE (7%)

JP (5%)

FR (4%)
TW (4%)GB (4%)

Fig. 5.3 Top ten attacking countries

5.3.4.1 Temporal Evolution of Attack Clusters

Time series analysis can provide valuable information (e.g., trends, abrupt changes, and emerging
phenomena) to security practitioners in charge of detecting anomalous behaviors or intrusions in
the collected traffic. This first illustration shows a temporal evolution of a given attack cluster,
i.e.an aggregated source count of the number of sources belonging to that cluster on a chosen time
scale, in this case grouped by day. On Fig 5.4, we can see the evolution of the attack cluster with
ID. 17718 in a time period ranging from 1-Dec-06 until 01-Mar-07, either for all platforms together
(left plot), or by splitting the time series for each platform separately, so as to analyze the impact
of this attack cluster on different platforms.

01/12 21/12 10/01 30/01 19/02
0

50

100

150

200

250

300

Time (by day)

N
r

o
f

S
o

u
rc

es

Cluster 17718 � Ports seq. I�445T

01/12 21/12 10/01 30/01 19/02
0

50

100

150

Time (by day)

N
r

o
f

S
o

u
rc

es

Cluster 17718 on sensors 14 and 42

17718.14
17718.42

Fig. 5.4 Left: global time evolution of attack cluster 17718, with the sources aggregated by day.
Right: time evolution of the same attack cluster for the platforms 14 and 42 separately.

98 Dacier et al.

5.3.4.2 Geographical Location of Attackers

Taking back the previous example, we could wonder from which countries the sources belong-
ing to attack cluster 17718 are coming from during the activity period of this attack process. The
geographical origins of attackers can be used indeed to identify attack activities having specific
patterns in terms of originating countries. Such information can be important to identify, for in-
stance, botnets that are located in a limited number of countries. It is also a way to confirm the
existence, or not, of so-called safe harbors for the hackers.

Table 5.1 Geographical distribution for attack cluster 17718 in the time window spanning from
1-Dec-06 until 01-Mar-07.

Country of origin Nr of Sources Relative %

CN 1150 35.3
US 378 11.6
CA 255 7.8
FR 236 7.2

unknown 215 6.6
TW 137 4.2
JP 128 3.9
IT 120 3.6
DE 107 3.3

Others 524 16.1

The result of extracting the geographical distribution of cluster 17718 is represented in Ta-
ble 5.1: the first column indicates the country of origin (represented with its ISO code) and the
second column gives the number of sources belonging to that country. The third column indicates
the corresponding relative percentage for each country with respect to the total number of sources
for this attack process (i.e., 3250 sources in total). With this simple example, we want to show that
this kind of aggregated information can in turn be used as input of a correlation process, as it will
be demonstrated in Section 5.6.

5.3.4.3 Attackers Subnets Information

The source IP network blocks is a property that nicely complements the geolocation as described
before. Instead of giving insight into possible geostrategic decisions made by the attackers, they
can typically reveal some strategies in the propagation model of the malware. Indeed, attackers’ IP
subnets can provide a good indication of the spatial “uncleanliness” of certain networks, i.e., the
tendency for compromised hosts to stay clustered within unclean networks, especially for zombie
machines belonging to botnets as demonstrated in [8]. Previous studies have also demonstrated
that some worms show a clear bias in their propagation scheme, such as a tendency for scanning
machines of the same (or nearby) network so as to optimize their propagation [7].

The results of such analysis are presented in Table 5.21 in the case of an aggregation of the
sources by Class A network blocks, but similar analyses could be performed for other groupings
(Class B, C, ...). Again, this kind of feature vector can be used as input for a global correlation
process in order to identify attack processes that exhibit similar IP subnets distributions.

1 To preserve the confidentiality related to the IPs of the attackers, the first byte values have been
somehow obfuscated in the table. So these are not the real subnet prefixes, but the eventual prox-
imities among them have been preserved.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 99

Table 5.2 Anonymized distribution of Class A-subnets for attack cluster 17718 in the time window
spanning from 1-Dec-06 until 01-Mar-07.

Subnet of Origin (Class A) Nr of Sources

220.x.x.x 451
56.x.x.x 193
80.x.x.x 168
22.x.x.x 160
217.x.x.x 159
86.x.x.x 123
218.x.x.x 113
69.x.x.x 100
66.x.x.x 91
216.x.x.x 90

Others 1602

5.3.4.4 Targeted Platforms or Subnets

Apparently, some recent crimeware toolkits are now able to deliver a specific type of malware
to different geographical regions [5]. By using this new feature, cybercriminals can thus set up
well targeted campaigns by delivering specialized crimeware in specific regions, being specific
countries or its corresponding IP blocks. Therefore, it seems important to look at the relationships
that may exist between attack events and the platforms or subnets they have been observed on.
Table 5.3 illustrates this kind of information, where the first column gives the Id. of the platform,
and each row of the second column indicates the number of sources belonging to attack cluster
17718 that have targeted the corresponding platform. In the last column, the Class A-subnet of
each platform is also given. This last illustration gives yet another example of “viewpoint” that
could be used in a global correlation process of attack events.

Table 5.3 Distribution of targeted platforms for attack cluster 17718

Targ.Platform Nr of Sources Subnet(A)

14 1552 139
76 871 134
42 431 150
57 70 24
71 67 58
53 42 88
55 42 83

Others 175 -

100 Dacier et al.

5.4 Leurre.com v2.0: SGNET

5.4.1 Increasing the level of interaction

We have seen in the previous Section how we have been able to generate valuable dataset with
quantitative information on the localization and the evolution of Internet unsolicited traffic. We are
able to observe interesting behaviors, most of which are very difficult to justify or to attribute to
a specific root cause. It is, indeed, very difficult to link a given observation to a class of activities,
and our search for answers in this direction had to deal with a limited amount of information about
the final intention of the attacker. The low level of interaction of the Leurré.com honeypots is a
limiting factor: when a honeypot receives a client request, it is not able to carry on the network
conversation with the attacker, nor to “understand” it.

For instance, in our experience within the Leurré.com project, due to the lack of emulation
scripts we have been able to observe only the first request of many interesting activities such as
the spread of the Blaster worm [6]. But since Blaster sends its exploit in the second request of its
dialog on port 135, we have never been able to observe such a payload. Therefore it becomes very
difficult to distinguish Blaster’s activity from other activities targeting the same port using solely
the payload as a discriminating factor.

Fortunately, experience shows that, even such limited amount of information, a large variety of
analyses remain applicable and deliver useful results. In order to increase the amount of available
information on attackers, we need to increase the level of interaction with the honeypots. However,
in order to keep carrying on our deployment of sensors on a voluntary basis, we need to achieve
this objective at the lowest possible cost. This led to the development of the ScriptGen approach.

5.4.2 ScriptGen

The ScriptGen technology [19, 20] was created with the purpose of generating honeypots with a
high level of interaction having a limited resource consumption. This is possible by learning the
behavior of a given network protocol when facing deterministic attack tools. The learnt behavior
is represented under the form of a Finite State Machine representing the protocol language. The
generated FSM can then be used to respond to clients, emulating the behavior of the real service
implementation at a very low cost.

The ScriptGen learning phase is completely protocol agnostic: no knowledge is assumed nei-
ther about the structure of the protocol, nor on its semantics. ScriptGen is thus able to replay any
deterministic run of a protocol as long as its payload is not encrypted. The ScriptGen learning
takes as input a set of samples of network interaction between a client and the real implementation
of a server. The core of the learning phase is the Region Analysis algorithm introduced in [20]:
taking advantage of bioinformatics alignment algorithms [24], the algorithm exploits the statisti-
cal variability of the samples to identify portions of the protocol stream likely to carry a strong
semantic meaning and discard the others. In order to build reliable representations of the protocol
interaction, it is thus necessary to collect a clean set of samples with enough statistical variabil-
ity to correctly identify semantically important regions. Figure 5.5 shows an example of semantic
abstraction for an excerpt of SMTP FSM.

The properties of the ScriptGen approach allow to perform a completely automated incremental
learning of the activities as shown in [19]. ScriptGen-based honeypots are able to detect when a
client request falls out of the current FSM knowledge (a 0-day attack or, more exactly, a yet unseen
attack) by simply detecting the absence of a matching transition. In such case, the honeypot is thus
unable to provide a valid answer to the attacker. We showed in [19] how the honeypot can react to
this situation relying on a real host (an oracle) and acting as a proxy between the attacker and the

5 Assessing Cybercrime Through the Eyes of the WOMBAT 101

250 OK

250 OK

250 OK

MAIL FROM: <alice@eurecom.fr>

MAIL FROM: <bob.eurecom.fr>

MAIL FROM: <carl@eurecom.fr>

250 OK

MAIL FROM: <*@eurecom.fr>

Fig. 5.5 ScriptGen FSM generalization

real host. This allows the honeypot to continue the conversation with the attacker, and to collect a
new sample of protocol interaction that can be used to automatically refine the protocol knowledge.

ScriptGen is able to correctly learn and emulate the exploit phase for protocols as complex
as NetBIOS [19]. ScriptGen thus allows to build highly interactive honeypots at low cost. The
oracles needed to learn new activities can be hosted in a single virtualization farm and contacted by
the honeypots through a tunneling system, in a structure similar to Spitzner’s honeyfarm concept.
Differently from classical honeyfarms, access to the real hosts is a rare event resulting from the
occurrence of a new kind of attack. As a consequence, systems based on the ScriptGen honeypots
potentially have a high degree of scalability.

5.4.3 SGNET: a ScriptGen-based honeypot deployment

We took advantage of this technology to build an experimental honeypot deployment, called
SGNET, meant to follow the lines of the Leurré.com deployment but providing a significant im-
provement in the richness of the collected data.

SGNET and code injections. SGNET is a scalable framework that offers almost the same
amount of information than real high interaction systems for a specific class of attacks, namely
server-based code injection attacks generated by deterministic scripts. We are aware of the fact
that they correspond only to a subset of the possible attack scenarios. However, as of today, they

102 Dacier et al.

are considered to be responsible for the creation of large botnets [32] and the preferred propagation
mechanisms of a large number of different malware.

The final objective of a code injection attack consists in forcing the execution of executable code
on a victim machine exploiting a vulnerable network service. Crandall et al. introduced in [10] the
epsilon-gamma-pi model, to describe the content of a code-injection attack as being made of three
parts.

Exploit (ε). A set of network bytes being mapped onto data which is used for conditional con-
trol flow decisions. This consists in the set of client requests that the attacker needs to perform to
lead the vulnerable service to the control flow hijacking step.

Bogus control data (γ). A set of network bytes being mapped onto control data which hijacks
the control flow trace and redirects it to someplace else.

Payload (π). A set of network bytes to which the attacker redirects the vulnerable application
control flow through the usage of ε and γ .

The payload that can be embedded directly in the network conversation with the vulnerable
service (commonly called shellcode) is usually limited to some hundreds of bytes, or even less. It
is often difficult to code in this limited amount of space complex behaviors. For this reason it is
normally used to force the victim to download from a remote location a larger amount of data: the
malware. We extend the original epsilon-gamma-pi model in order to differentiate the shellcode π
from the downloaded malware μ .

An attack can be characterized as a tuple (ε,γ,π,μ). In the case of, old, classical worms,
it is possible to identify a correlation between the observed exploit, the corresponding injected
payload and the uploaded malware (the self-replicating worm itself). Thanks to the correlation
between the 4 parameters, retrieving information about a subset of them was enough to characterize
and uniquely identify the attack. This situation is changing. Taking advantage of the many freely
available tools such as Metasploit [33, 37], even unexperienced users can easily generate shellcodes
with personalized behavior and reuse existing exploit code. This allows them to generate new
combinations along all the four dimensions, weakening the correlation between them. It is thus
important to try to retrieve as much information as possible on all the 4 dimensions of the code
injection. We designed SGNET in such a way to delegate to different functional components the 4
dimensions, and combine the information retrieved by these components to have an exact picture
of the relationships among them.

The ScriptGen approach is suitable for the learning of the exploit network interaction ε , offering
the required level of interactivity with the client required to lead the attacker into sending code
injection attacks. For the previously stated reasons, in SGNET we extend this capability with the
information provided by other tools in order to retrieve information on the other dimensions of
the epsilon-gamma-pi-mu (EGPM) model. We take advantage of the control flow hijack detection
capabilities of Argos [28] to detect successful code injection attacks, understand the bogus control
data γ and retrieve information about the location of the injected payload π . We take advantage
of the shellcode emulation and malware download capabilities of Nepenthes [2] to understand the
payload π , emulate its behavior and download the malware sample μ .

When facing an attacker, the SGNET activity evolves through different stages, corresponding to
the main phases of a network attack. SGNET distributes these phases to three different functional
entities: sensor, sample factory and shellcode handler.

The SGNET sensor corresponds to the interface of the SGNET towards the network. The
SGNET deployment aims at monitoring small sets of IPs deployed in multiple locations of the
IP space, in order to characterize the heterogeneity of the activities along the Internet as observed
in [9, 12]. SGNET sensors are thus low-end hosts meant to be deployed at low cost by different
partners willing to join the project and bound to a limited number of IPs. The deployment of the
sensors follows the same win-win partnership schema explained before. Taking advantage of the

5 Assessing Cybercrime Through the Eyes of the WOMBAT 103

ScriptGen technology, the sensors are able to handle autonomously the exploit phase ε of attacks
falling inside the FSM knowledge with minimal resource requirements on the host.

The SGNET sample factory is the oracle entity meant to provide samples of network interaction
to refine the knowledge of the exploit phase when facing unknown activities. The sample factory
takes advantage of a real host running on a virtual machine and monitors the host state through
memory tainting. This is implemented taking advantage of Argos, presented by Portokalidis et al.
in [28]. Keeping track of the memory locations whose content derives from packets coming from
the network, Argos is able to detect the moment in which this data is used in an illegal way. Argos
was modified in order to allow the integration in the SGNET and load on demand a given honeypot
profile with a suitable network configuration (same IP address, gateway, DNS servers, ... as of the
sensor sending the request). The profile loading and configuration is fast enough to be instantiated
on the fly upon request of a sensor.

The Argos-based sample factories provide information about the presence of code injections
(γ) and are able to track down the position in the network stream of the first byte being executed by
the guest host, corresponding to the byte Bi of the payload π . We have developed a simple heuristic
to identify the injected payload π in the network stream starting from the hint given by the sample
factory [17]. This allows to embed in the ScriptGen learning additional knowledge, namely the a
tag identifying the final state of a successful code injection and information within the preceding
transitions that allows to extract from the attacker’s protocol stream the payload π .

The final steps of the code injection attack trace are delegated to the SGNET shellcode han-
dler. Every payload π identified by the SGNET interaction is submitted to a shellcode handler. The
shellcode handler is implemented reusing part of the functionality of the Nepenthes [2] honeypots.
We take advantage of Nepenthes shellcode analyzer to “understand” the payload π and emulate
its behavior using Nepenthes download modules. In the context of the SGNET, Nepenthes is thus
used as an oracle for the payload emulation. Differently from the exploit phase, we do not try to
learn the Nepenthes behavior in terms of FSM. We consider the payload emulation a too complex
interaction to be represented in terms of a FSM.

SGNET Architecture.

������	

��

������	

������	�

������	�

������
�������	�

������
�������	�

���������
�������

Fig. 5.6 SGNET architecture

The general architecture of the SGNET is presented in Figure 5.6. All the SGNET entities
communicate through an ad-hoc HTTP like protocol called Peiros [18]. The Peiros protocol allows

104 Dacier et al.

communication under the form of a set of service requests, allowing for instance a sensor to require
the instantiation of a sample factory. The sensors, distributed over the IP space and hosted by
partners of the project, are connected to a central entity called SGNET gateway, that acts as an
application-level proxy for the Peiros protocol. The gateway receives service requests from the
sensors and dispatches them to a free internal entity, performing a very simple load balancing.
The architecture offers a clean separation between the sensors, relatively simple daemons running
over inexpensive hosts, and the internal entities, having a higher complexity and higher resource
requirement.

We saw how the ScriptGen learning exploits the variability of the samples to produce “good”
refinements of the FSM knowledge. The architecture of Figure 5.6 shows how the SGNET gateway
offers a unique standpoint to collect interaction samples: all the tunneled conversations between
any sensor and any sample factory flow through the gateway. The gateway becomes thus the best
candidate to perform ScriptGen refinements to the current FSM knowledge. Once a new refinement
is produced, the gateway takes care of updating the knowledge of all the sensors pushing them the
FSM updates. This makes sure that all the sensors online at a given moment share exactly the same
knowledge of the protocols.

An important aspect related to the ScriptGen learning is the strict relation between the Script-
Gen ability to learn exploits and the configuration of the sample factories. If a service is not in-
stalled or activated in the configuration of the virtualized host handled by the sample factory, the
SGNET architecture will not be able to observe activities targeting it. It is thus important to care-
fully configure the sample factories in order to maximize the visibility of malicious activities.
We chose to address this problem supporting the assignment of different profiles for the IPs of
the SGNET sensors, similarly to what was done on the Leurré.com deployment. Each profile is as-
signed to a different sample factory configuration, with different services and different OS versions
to maximize the visibility on network attacks of our deployment.

The description of the SGNET deployment clearly shows a difference with respect to the orig-
inal Leurré.com deployment. SGNET is a more complex architecture, that succeeds in raising the
level of interaction of the honeypots without raising the resource requirements for the partners
hosting the sensors. Taking advantage of the ScriptGen learning, the deployment also allows to
minimize the usage of expensive resources such as the sample factories, that are needed only to
handle those activities that do not fall yet in the FSM knowledge. An important concern for the
partner taking advantage of this deployment is the security of the solution. SGNET raises the level
of interaction of the honeypots; it is thus important to guarantee that the increased interactivity
does not impact the safety of hosting a honeypot platform. The network interaction driven by FSM
knowledge is virtually as safe as any low-interaction honeypots: the attacker interacts with a sim-
ple daemon performing state machine traversals to provide answers to client requests. When a new
activity is handled, the sensor acts as a proxy and the attacker is allowed to interact with a real (and
thus vulnerable) host. Two measures are in place to ensure the safety of this process. Firstly, the
tunneling system ensures that any outbound packet generated by the sample factory is directed only
towards the attacking source (blocking any attempt of exploiting the honeypot as a stepping stone
to attack others). Secondly, the memory tainting capabilities of Argos allow us to stop execution as
soon as the attacker successfully hijacks the host control flow. This does not include for instance
successful password brute-forcing attacks, but this class of attacks can be prevented by a careful
configuration of the virtualized host.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 105

5.5 Analysis of Attack Events

5.5.1 Identification of Attack Events

5.5.1.1 Attack Event Definition

An attack event is defined as a set of observed cluster time series exhibiting a particular shape
during a limited time interval. This time interval typically lasts a couple of days, but it can also be
as short as a single day.

The existence of attack events highlights the coordinated activities of several attacking ma-
chines. Note that the set can be a singleton. This is typically the case when the set is a peak of
activities on a single day. For illustrative purposes, the top plot of Figure 5.7 represents the attack
event 225 which consists of cluster 60332 (targeting port 5900 TCP) attacking seven platforms
5,8, 11, ...,31 from day 393 to day 400. Whereas the bottom plot of Figure 5.7 represents the attack
event 14 which consists of activities of cluster 0 on day 307 coming almost only from Spain.

380 385 390 395 400 405 410
0

20

40

60

nu
m

be
r o

f s
ou

rc
es

time(day)

295 300 305 310 315 320
0

100

200

300

time(day)

nu
m

be
r o

f s
ou

rc
es Cluster 0 coming from Spain

Cluster 60322 attacks on 7 platforms 5,8,11,...,21

Fig. 5.7 On the top plot, cluster 60232 attacks seven platforms from day 393 to day 400. On the
bottom plot, peak of activities of cluster 0 from Spain on day 307.

5.5.1.2 Dataset Description

In order to have a clean dataset for our experiments, we have selected the traces observed on 40
platforms out of the 50 that we had at our disposal. All these 40 platforms have been running for
more than 800 days. During this period, note of the platforms has been down for more than 10
times. Furthermore, each one has been up continuously for at least 100 days. All platforms have
been up for a minimum of 400 days over that period.

The total amount of sources observed, day by day, on all these 40 platforms can be denoted by
the initial time series T S over a period of 800 days.

106 Dacier et al.

We can split that time series per country2 of origin of the sources. This gives us 231 time
series T SX where the ith point of such time series indicates the amount of sources, observed on all
platforms, located in country X . We represent by T S L1 the set of all these Level 1 time series.
To reduce the computational cost, we keep only the countries from which we have seen at least
10 sources on at least one day. This enables us to focus on 85 (the set of corresponding countries
is called bigcountries), instead of 231, time series. We represent by T S L1′ this refined set of Level
1 time series. Then, we split each of these time series by cluster to produce the final set of time
series Φ[0−800),ci,country j∀ci and ∀country j ∈ bigcountries. The ith point of the time series Φ[0−800),X ,Y
indicates the amount of sources originating from country Y that have been observed on day i
attacking any of our platforms thanks to the attack defined by means of the cluster X . We represent
by T S L2 the set of all these Level 2 time series. In this case |T S L2| is equal to 436,756 which
corresponds to 3,284,551 sources. As explained in [27], time series that barely vary in amplitude
over the 800 days are meaningless to identify attack events and we can get rid of them. Therefore,
we only keep the time series that highlight important variations during the 800 days period. We
represent by T S L2′ this refined set of Level 2 time series. In this case |T S L2′| is equal to 2,420
which corresponds to 2,330,244 sources. We have done the very same splitting and filtering by
looking at the traces on a per platform basis instead of on a per country of origin basis. The
corresponding results are given in Table 5.4.

Table 5.4 dataset description: T S: all sources observed on the period under study, OV P: observa-
tion view point, T S L1: set of time series at country/platform level, T S L1′: set of significant time
series in T S L1, T S L2 : set of all cluster time series, T S L2′ set of strongly varying cluster time
series

T S consists of 3,477,976 sources

OVP country platform

|T S L1| 231 40

|T S L1′| 85 40
(94,4% TS) (100% TS)

|T S L2| 436,756 395,712

|T S L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% of T S) (73% of T S)

5.5.1.3 Results on Attack Event Detection

We have applied the techniques presented in [26] to identify the attack events existing in our 2
distinct datasets, namely T Scountry and T Splat f orm. For the time series in T Scountry (resp. T Splat f orm),
we have found 592 (resp. 690) attack events which correspond to 574,125 (resp. 578,372) sources.
The results are given in Table 5.5

2 The geographical location is given to us thanks to the Maxmind product, based on the IP ad-
dress. However, some IPs can not be mapped to any real country and are attached to labels not
corresponding to any country, e.g. EU,A1,..

5 Assessing Cybercrime Through the Eyes of the WOMBAT 107

Table 5.5 Result on Attack Event Detection

AE-set-I(T Scountry) AE-set-II(T Splat f orm)

No.AEs No.sources No.AEs No.sources

592 574,125 690 578,372

No.AEs: amount of attack events

5.5.2 Armies of Zombies

So far, we have identified what we have called attack events which highlight the existence of
coordinated attacks launched by a group of compromised machines, i.e. a zombie army. It would
be interesting to see if the very same army manifests itself in more than one attack event. To do
this, we propose to compute what we call the action sets. An action set is a set of attack events
that are likely due to same army. In this Section, we show how to build these action sets and what
information we can derive from them regarding the size and the lifetime of the zombie armies.

5.5.2.1 Identification of the armies

Similarity Measures: In its simplest form, a zombie army is a classical botnet. It can also be made
of several botnets. That is, several groups of machines listening to a distinct C&C. This is invisible
to us and irrelevant. All that matters is that all the machines do act in a coordinated way. As time
passes, it is reasonable to expect members of an army to be cured while others join. Hence, if
the same army attacks our honeypots twice over distinct periods of time, one simple way to link
the two attack events together is by observing that they have a large amount of IP addresses in
common. More formally, we measure the likelihood of two attacks events e1 and e2 to be linked to
the same zombie army by means of their similarity defined as follows:

sim(e1,e2) =

{
max(|e1∩e2|

|e1| , |e1∩e2|
|e2|) if |e1∩ e2|< 200

1 otherwise

In which, |e1| (resp. |e2|) represents the number of distinct IP addresses of attack event e1 (resp.
e2) and |e1 ∩ e2| represents the number of IP addresses in common of attack events e1 and e2. We
conclude that e1 and e2 are caused by the same zombie army if and only if sim(e1,e2) > 10%.
Called Pe1,e2

is the probability that two attack events e1 and e2 share n IP addresses in common by
chance. We also verify that |e1∩ e2|> n, in which the corresponding Pe1,e2

<= 10−9.

Action Sets: We now use the sim() function to group together attack events into action sets. To
do so, we build a simple graph where the nodes are the attack events. There is an arc between two
nodes e1 and e2 if and only if sim(e1,e2) > δ . All nodes that are connected by at least one path end
up in the same action set. In other words, we have as many action sets as we have disconnected
graphs made of at least two nodes; singleton sets are not counted as action sets.

We note that our approach is such that we can have an action set made of three attack events e1,
e2 and e3 where sim(e1,e2) > δ and sim(e2,e3) > δ but where sim(e1,e3) < δ . This is consistent
with our intuition that armies can evolve over time in such a way that the machines present in the
army can, eventually, be very different from the ones found the first time we have seen the same
army in action.
Results: we have identified 40 (resp. 33) zombie armies from AE-set-I (resp. AE-set-II) which
have issued a total of 193 (resp. 247) attack events. Figure 5.8 (Left) represents the distribution of
attack events per zombie army. Its top (resp. bottom) plot represents the distribution obtained from
AE-set-I(resp. AE-set-II). We can see that the largest amount of attack events for an army is 53
(resp. 47) whereas 28 (resp. 20) armies have been observed only two times.

108 Dacier et al.

5.5.2.2 Main Characteristics of the Zombie armies

Lifetime of Zombie Army.

0 10 20 30 40 50 60 70
0

10

20

30

amount of attack events

of

 z
om

bi
e

ar
m

ie
s

0 10 20 30 40 50 60 70
0

10

20

of

 z
om

bi
e

ar
m

ie
s

amount of attack events 0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

duration (day)

C
D

F

country
platform

Fig. 5.8 Left: Zombie Army Size. Right: Cumulative Distribution Function (CDF) of the durations
of zombie armies.

Figure 5.8 (Right) represents the cumulative distribution of minimum lifetime of zombie armies
obtained from T Splat f orm and T Scountry (see Section 5.5.1). According to the plot, around 20% of
zombie armies have existed for more than 200 days. In the extreme case, two armies seems to
have survived for 700 days! Such result seems to indicate that either i) it takes a long time to cure
compromised machines or that ii) armies are able to stay active for long periods of time, despite
the fact that some of their members disappear, by continuously compromising new ones.

Lifetime of Infected Host in Zombie Armies
We can classify the armies into two classes as mentioned in the previous Section. For instance,

Figure 5.9a represents the similarity matrix of zombie army 33, ZA33. To build this matrix, we
first order its 42 attack events according to their occurred time. Then, we represent their similarity
relation under an 42× 42 similarity matrix M . The cell (i,j) represents the value of sim() of the
ordered attack event ith and jth. Since, M is a symmetric matrix, for the visibility, we represent
only half of it.

As one can see, we have a very high similarity measure between almost all the attacks events
(i.e., around 60%). This is also true between the very first and the very last attack events. It is
important to notice the time interval between the first and the last activities observed from this
army is 753 days!

Figure 5.9b represents an opposite case, the zombie army 31, ZA31, consisting of 46 attack
events. We proceed as above to build its similarity matrix. One can see that the important values
are surrounded around the main diagonal of M . It means that the attack event ith has the same
subset of infected machines with only few attack events happening not far from it in terms of time.
Another important point to be noticed is that this army changes its attack vectors over time. In
fact, it moves from attack against 4662 TCP, to 1025 TCP, then 5900 TCP, 1443 TCP, 2967 TCP,
445 TCP,...And the lifetime of this army is 563 days! It is clear, from these two cases, that the
composition of armies evolves over time in different ways. More work remains to be done in order
to understand the reasons behind these various strategies.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 109

(a)

(b)

Fig. 5.9 Renewal rate of zombie armies

110 Dacier et al.

5.5.3 Impact of Observation View Point

5.5.3.1 Analysis

Table 5.5 highlights the fact that depending on how we decompose the initial set of traces of attacks
(i.e the initial time series T S), namely by splitting it by countries of origin of the attackers or by
platforms attacked, different attacks events show up. To assess the overlap between attack events
detected from different observation view points, we use the common source ratio, namely csr,
measure as follows:

csr(e,AEop′) =
∑∀e′∈AEop′ |e∩ e′|

|e|
in which e ∈ AEop and |e| is the amount of sources in attack event e, AEop is AE-set-I and AEop′ is
AE-set-II (or vice versa).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

common source ratio

C
D

F

Empirical CDF

TPlatform

TCountry

Fig. 5.10 CDF common source ratio.

Figure 5.10 represents the two cumulative distribution functions corresponding to this mea-
sure. The point (x,y) on the curve means that there are y∗100% of attack events obtained thanks to
Tcountry (resp Tplat f orms) that have less than x ∗ 100% of sources in common with all attack events
obtained thanks to Tplat f orms (resp Tcountry). The Tcountry curve represents the cumulative distribu-
tion obtained in this first case and the Tplat f orms one represents the CDF obtained when starting
from the attacks events obtained with the intial Tplat f orms set of time series. As we can notice,
around 23% (resp. 25%) of attack events obtained by starting from the Tcountry (resp. Tplat f orm) set
of time series do not share any sources in common with any attack events obtained when starting
the attack even identification process from the Tplat f orm (resp. Tcountry) set of time series. This
corresponds to 136 (16,919 sources) and 171 (75,920 sources) attack events not being detected. In
total, there are 288,825 (resp. 293,132) sources present in AE-Set-I (resp. AE-Set-II), but not in
AE-Set-II (resp. AE-Set-I).

5 Assessing Cybercrime Through the Eyes of the WOMBAT 111

5.5.3.2 Explanation

There are good reasons why we can not rely on a single viewpoint to detect all attacks events. We
elaborate on these reasons in the following discussion.

Split by country: Suppose we have one botnet B made of machines that are located within the
set of countries {X ,Y,Z}. Suppose that, from time to time, these machines attack our platforms
leaving traces that are also assigned to a cluster C. Suppose also that this cluster C is a very pop-
ular one, that is, many other machines from all over the world continuously leave traces on our
platforms that are assigned to this cluster. As a result, the activities specifically linked to the botnet
B are lost in the noise of all other machines leaving traces belonging to C. This is certainly true for
the cluster time series (as defined earlier) related to C and this can also be true for the time series
obtained by splitting it by platform, Φ[0−800),C,plat f ormi∀plat f ormi ∈ 1..40.However, by splitting
the time series corresponding to cluster C by countries of origins of the sources, then it is quite
likely that the time series Φ[0−800),C,countryi∀countryi ∈ {X ,Y,Z} will be highly correlated during
the periods in which the botnet present in these countries will be active against our platforms. This
will lead to the identification of one or several attack events.
Split by platform: Similarly, suppose we have a botnet B′ made of machines located all over the
world. Suppose that, from time to time, these machines attack a specific set of platforms {X ,Y,Z}
leaving traces that are assigned to a cluster C. Suppose also that this cluster C is a very popular one,
that is, many other machines from all over the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activities specifically linked to the botnet B′ are lost
in the noise of all other machines leaving traces belonging to C. This is certainly true for the cluster
time series (as defined earlier) related to C and this can also be true for the time series obtained by
splitting it by countries, Φ[0−800),C,countryi∀countryi ∈ bigcountries. However, by splitting the time
series corresponding to cluster C by platforms attacked, then it is quite likely that the time series
Φ[0−800),C,plat f ormi∀plat f ormi ∈ {X ,Y,Z} will be highly correlated during the periods in which
the botnet influences the traces left on the sole platforms concerned by its attack. This will lead to
the identification of one or several attack events.

The top plot of Figure 5.11 represents the attack event 79. In this case, we see that the traces
due to the cluster 175309 are highly correlated when we group them by platform attacked. In fact,
there are 9 platforms involved in this case, accounting for a total of 870 sources. If we group the
same set of traces by country of origin of the sources, we end up with the bottom curves of Figure
5.11 where the specific attack event identified previously can barely be seen. This highlights the
existence of a botnet made of machines located all over the world that target a specific subset of
the Internet.

5.6 Multi-Dimensional Analysis of Attack Events

5.6.1 Methodology

Analogous to criminal forensics, the security analyst needs to synthesize different pieces of evi-
dence in order to investigate the root causes of global attack phenomena on the Internet. This task
can be a tedious, lengthy and informal process mostly relying on the analyst’s expertise, and in-
volving many different dimensions characteristics of attack events. For those reasons, we seek to
develop a multi-dimensional knowledge discovery and data mining methodology that should help
us to improve, in a more systematic way, our understandings of emerging Internet threats, so as to
achieve a better cyber situational awareness.

Our idea consists of i) extracting relevant nuggets of knowledge by mining a dataset of attack
events according to different relevant characteristics; and in ii) combining systematically those
pieces of knowledge so as to create higher-level concepts able to explain more clearly the underly-

112 Dacier et al.

0 2 4 6 8 10 12 14
0

10

20

30

40

0 2 4 6 8 10 12 14
0

50

100

150

Fig. 5.11 Top plot represents the attack event 79 related to cluster 17309 on 9 platforms. The bot-
tom plot represents the evolution of this cluster by country. Noise of the attacks to other platforms
decrease significantly the correlation of observed cluster time series when split by country.

ing phenomena that might be the root cause of the suspicious traffic. Each step is further explained
in the next sections.

5.6.2 Clique-based Clustering

5.6.2.1 Principles

The first component of our knowledge mining methodology involves an unsupervised graph-
theoretic correlation process which aims at grouping similar “events” (through their corresponding
feature vectors) in a reliable and consistent manner.

Typical clustering tasks involve the following steps [16]: i) feature selection and/or extraction,
and pattern representation; ii) definition of a similarity measure between pairs of patterns; iii)
grouping similar patterns; iv) data abstraction (if needed), to provide a compact representation of
each cluster; and v) the assessment of the clusters quality and coherence (also when needed).

In any clustering, we must select salient features that may provide meaningful patterns from
the data (e.g., from attack events in our case). Those patterns are represented with feature vectors,
which are for instance the geographical distributions, subnet distributions, attack time series, etc.

In the second step, we need to measure the similarity between two such defined patterns or
input vectors. For that purpose, several types of similarity distances are available (e.g., Pearson
correlations, Minkowski, Jackknife, etc.). Clearly, the choice of a similarity metric has an impact
on the properties of the clusters, such as their size, quality, or consistency. To reliably compare
the empirical distributions mentioned here above, we rely on strong statistical distances that are
based on non-parametric statistical tests, such as Pearson’s χ2 and Kolmogorov-Smirnov, whose
resulting p-value is then validated against the Kullback-Leibler divergence. Those methods are
amongst the most commonly used ones to determine whether two underlying one-dimensional
probability distributions differ in a significant way.

Finally, we take advantage of those similarity measures to group all pattack events whose pat-
terns look very similar. We simply use an unsupervised graph-theoretic approach to formulate the
problem: the vertices of the graph represent the patterns (or feature vectors) of each attack event,

5 Assessing Cybercrime Through the Eyes of the WOMBAT 113

and the edges (or the arcs) express the similarity relationships between those vertices. Then, the
clustering is performed by extracting so-called maximal weighted cliques (MWC) from the graph,
where a maximal clique is defined as an induced sub-graph in which the vertices are fully con-
nected and it is not contained within any other clique. Since it is a NP-hard problem [4], several
approximate algorithms for solving the MWC problem have been developed. We refer the inter-
ested reader to [38, 39] for a more detailed description of this clique-based clustering technique
applied to honeynet traces.

5.6.2.2 Some Experimental Results.

We applied our clique-based clustering on a honeynet dataset made of 351 attack events comprising
282,363 IP sources, which were collected on the Internet in a period spanning from Sep 2006
until June 2008. These events were observed on 36 platforms located in 20 different subnets, and
belonging to 18 different class A-subnets. In terms of network activities, all sources could be
classified in no more than 136 attack clusters

Table 5.6 presents a high-level overview of the cliques obtained for each attack dimension
separately. As one can see, a relatively high volume of sources could be classified into cliques in
each dimension. The high proportion of correlated sources with respect to the attack time series
suggests that a majority of the attack events collected in this dataset were actually coordinated, or
at least synchronized, on different honeypots. Among the targeted port sequences, we can observe
some commonly targeted ports (e.g., Windows ports used for SMB or RPC, or SQL and VNC
ports), but also a large number of uncommon high TCP ports that are normally unused on standard
(and clean) machines. A non-negligeable volume of sources is also due to UDP spammers targeting
Windows Messenger popup service (ports 1026-1028 UDP).

Table 5.6 Some experimental clique results obtained from a one year-honeynet dataset

Attack Dimension Nr of Cliques Volume of Most targeted port sequences
sources (%)

Geolocation 45 66.4 1027U, I, 1433T, 1026U, I445T, 5900T, 1028U, 9763T, I445T80T,
15264T, 29188T, 6134T, 6769T, 1755T, 64264T, 1028U1027U1026U, 32878T, 64783T, 4152T,
25083T, 9661T, 25618T, ...

IP Subnets (Class A) 30 56.0 1027U, I, 1433T, 1026U, I445T, 5900T, 1028U, 9763T,
15264T, 29188T, 6134T, 6769T, 1755T, 50656T, 64264T, 1028U1027U1026U, 32878T, 64783T,
18462T, 4152T, 25083T, 9661T, 25618T, 7690T, ...

Targeted platforms 17 70.1 I, 1433T, I445T, 1025T, 5900T, 1026U,
I445T139T445T139T445T, 4662T, 9763T, 1008T, 6211T, I445T80T, 15264T, 29188T, 12293T,
33018T, 6134T, 6769T, 1755T, 2968T, 26912T, 50656T, 64264T, 32878T, ...

Attack time series 82 92.2 135T, I, 1433T, I445T, 5900T, 1026U,
I445T139T445T139T445T, I445T80T, 6769T, 1028U1027U1026U, 50286T, 2967T, ...

5.6.2.3 Visualizing Cliques of Attackers.

In order to assess the consistency of the resulting cliques of attack events, it can be useful to see
them charted on a two-dimensional map so as to i) verify the proximities among clique members
(intra-clique consistency), and ii) to understand potential relationships between different cliques
that are somehow related (i.e. inter-clique relationships). Note that a clique can be considered as
a stricter definition of a cluster. Moreover, the statistical distances used to compute those cliques
make them intrinsically coherent, which means that certain cliques of events may be somehow
related to each other, although they were separated by the clique algorithm.

114 Dacier et al.

Since most of the feature vectors we are dealing with have a high number of variables (e.g.,
a geographical vector has more than 200 country variables), obviously the structure of such high-
dimensional data set cannot be displayed directly on a 2D map. Multidimensional scaling (MDS)
is a set of methods that can help to address this type of problem. MDS is based on dimensionality
reduction techniques, which aim at converting a high-dimensional dataset into a two or three-
dimensional representation that can be displayed, for example, in a scatter plot. As a result, MDS
allows an analyst to visualize how near observations are to each other for many kinds of distance
or dissimilarity measures, which in turn can deliver insights into the underlying structure of the
high-dimensional dataset.

�80 �60 �40 �20 0 20 40 60
�60

�40

�20

0

20

40

60

PK,IN

CN,JP

CN,KR

US,CN

CA,US

CN,US
CN,KR

CN,US

CN,US
CN,null

IT,null

IT,ES

IT,IL

IT,IL
IT,ES

PL,US

PL,DE
HU,PL

DE,TR

DE,AT

CA US,KR

US,JP

US,CN

US,CA

US,GB TW,KR

KR,CA

KR,US

KR,US

FR,IT FR,DE

US,PL

US,FR

FR,CN

US,CN

TW,IT

KR,US

CN,US

ES,IT

0

5

10

15

20

25

30

35

40

45

Fig. 5.12 Visualization of geographical cliques of attackers. The coloring refers to the different
clique Id’s. The superposed text labels show the two top attacking countries for some of the data
points.

Because of the intrinsic non-linearity of real-world datasets, and the induced feature vectors,
we applied a recent MDS technique called t-SNE to visualize each dimension of the dataset and
to assess the consistency of the cliques results. t-SNE [40] is a variation of Stochastic Neighbour
Embedding (SNE); it produces significantly better visualizations than other MDS techniques by re-
ducing the tendency to crowd points together in the centre of the map. Moreover, this technique has
proven to perform better in retaining both the local and global structure of real, high-dimensional
data in a single map, in comparison to other non linear dimensionality reduction techniques such
as Sammon mapping, Isomaps or Laplacian Eigenmaps.

Figure 5.12 shows the resulting two-dimensional plot obtained by mapping the geographical
vectors on a 2D map using t-SNE. Each datapoint on the map represents the geographical vector
of given attack event, and its coloring refers to its clique membership as obtained previously by
applying the clique-based clustering. It can be easily verified that two adjacent events on this map
have highly similar geographical distributions (even from a statistical viewpoint), while two distant
events have clearly nothing in common in terms of originating countries. Quite surprisingly, the
resulting mapping is far from being chaotic; it presents a relatively sparse structure with clear data-
point groupings, which means also that most of those attack events present very tight relationships

5 Assessing Cybercrime Through the Eyes of the WOMBAT 115

regarding their origins. Due to the strict statistical distances used to calculate cliques, this kind of
correlation can hardly be obtained by chance only.

Similar “semantic mapping” can naturally be obtained for other dimensions considered (e.g.,
subnets, platforms, etc), so as to help assessing the quality of other cliques of attackers. To conclude
this illustration, on Figure 5.13 we have indicated also some of the port sequences for several geo-
graphical cliques of attackers. This can help to visualize unobvious relationships among different
types of activities and their origins.

�80 �60 �40 �20 0 20 40 60
�60

�40

�20

0

20

40

60

I I I

1026U

1026U1028U1027U
135T 135T 5900T

5900T

4662T
28238T

6769T

7690T

50656T

6769T

46030T

46030T

4152T

9661T

6342T

50286T

4662T

6342T

5900T

35964T

4662T

I
I

I
I I I I

4662T

I445T80T

5168T

5900T
1433T

1025T 139T

I

I I I
I I

I

1433T
5900T

2967T

2967T
1433T

I I

I
I

I445T

6644T
5900T

5900T

2967T

5900T

1026U

1026U
2968T

2967T

2967T

445T

I445T139T445T139T445T
445T

135T
2968T

5900T

12293T

445T5000T445T5000T
I445T139T445T139T445T

5900T

1755T
1433T

0

5

10

15

20

25

30

35

40

45

Fig. 5.13 Same visualization of the geographical cliques of attackers as Fig 5.12, but here the
superposed text labels indicate the port sequences made by the attackers.

5.6.3 Combining Cliques of Attackers

The second component of our methodology is similar to a dynamic data fusion process. Start-
ing from all sets of cliques, the idea is to combine k sets out of the N attack dimensions, with
k = 2, ...,N, in order to discover higher-level knowledge about certain phenomena and their root
cause (e.g., a set of attack events belonging to a same botnet or worm family, the evolution of a bot-
net IP location, etc). As such, each clique pattern can hold a piece of interesting knowledge about
an attack phenomenon; but in many cases the security analyst will have to synthesize different
pieces of evidence in order to perform a root cause analysis, and to really understand what hap-
pened. Therefore, we can take advantage of all one-dimensional cliques to construct higher-level
concepts by simply combining different sets of cliques. Based on the phenomenon under scrutiny,
the practitioner may include any number of dimensions in order to create “concepts” containing
more or less semantics. In practice, we observe that the number of concepts obtained by combining
any number of dimensions is not excessive. So, while the analysis of raw network traces (composed
of thousands of packets) on each sensor would definitively be impractical, now the analysis of a

116 Dacier et al.

limited number of combined concepts can provide a better insight into the real-world phenomena
that have caused the attack traffic.

Fig. 5.14 Time series (i.e., nr of distinct sources by day) of a large scale phenomenon related to a
botnet activity, made of 67 attack events observed from Dec 06 until April 07.

Illustration of Multi-dimensional analysis.
When we apply the multi-dimensional analysis on the examples given in 5.3.4, now we find out that
those attack events were actually involved in a large-scale phenomenon assumed to be related to a
botnet activity. This phenomenon has been active in a time period spanning from 1-Dec-06 until 31-
Mar-07, during which we observed about 67 attack events that can be grouped into 4 distinct waves
(see Fig 5.14) thanks to the temporal dimension. The platform correlations indicate that all attack
events have hit exactly the same set of platforms (mostly in Belgium and in UK). Regarding the
origins of the attacks (e.g., countries and subnets of origin), our method can clearly highlight two
communities of attackers: one large group of “scanners” (performing almost only ICMP scanning
on all honeypot IP’s), and one smaller group of “attackers” (performing ICMP followed by attacks
on Windows ports 445T or 139T). Interestingly, the attackers seem to “know” which honeypots are
emulating a Windows machine, as they hit almost exclusively those IP addresses. The last finding
deals with the dynamic evolution of the botnet population (in terms of IP blocks) between each
botnet attack wave, which can be observed from the mapping of the different cliques of attackers.
The scanner community has indeed been split into a few different cliques; but when looking at
the geographical mapping (Fig 5.13 - see the regions indicated by the three red crosses in the
lower-right part of the map), we can observe that those cliques appear in the same neighborhood.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 117

5.7 Beyond Events Correlation: Exploring the
epsilon-gamma-pi-mu space

In the previous Sections we took advantage of correlation techniques to analyze and correlate the
available information to infer meaningful facts on the identity and on the behavior of the clients
responsible for the observed events. We have left out until now the analysis of the effects of these
activities on the victims. Many of these activities are likely to be exploitation attempts carried on
by self propagating malware. Gathering intelligence on the nature of these activities and studying
their structure is an important step towards a better understanding of the Internet threats. As ex-
plained in Section 5.4, such analysis requires an increase of the level of interaction, requirement
that motivated our efforts in the development of the SGNET deployment.

The SGNET deployment was designed around the phase separation introduced by the epsilon-
gamma-pi-mu model: each of the phases of a generic code injection attack is handled by a different
entity of the distributed system. The emulation of these phases generates information on the char-
acteristics of the specific instance. For instance, the network interaction involved in the exploit
phase ε is associated to a traversal identifier in ScriptGen’s FSM models. All the information gen-
erated by the different components of the SGNET deployment is collected and stored in the central
database. Similarly to the Leurré.com case, this information is then enriched through different
analysis tools. For instance, all the malware collected by SGNET is submit to the Anubis sand-
box [3] to retrieve information on its behavior. The SGNET dataset puts at our disposal a variety
of information on the observed exploits (ε), shellcodes (π) and malware samples (μ).3

Following the epsilon-gamma-pi-mu model, we model an attack as a tuple (ε,π,μ), assign-
ing to each dimension a coordinate representative for a given “type” of interaction in the model.
The relationship and the correlation among the dimensions of this three-dimensional space offer
a perspective over the structure and the amount of code reuse present in nowadays exploitation
attempts.

The identification of the interaction “type” is not always a straightforward task, since it needs
to cope with the increasing usage of polymorphic techniques in malware and shellcode.

Malware families such as the Allaple one [15] take advantage of polymorphism to generate a
new variant of themselves at each propagation attempt. Such a technique ensures each malware
sample to completely mutate its binary content at every generation, making its detection much
more complex to AV vendors. From our standpoint, the employment of such techniques leads to
the proliferation of unique samples (downloaded only once) and makes the problem of attribution
of two events to the activity of the same malware type much more complicated. How to define two
completely different binaries to be similar and thus attribute two different code injections to the
activity of the same malware?

The intuition that helped us in solving the problem is that any polymorphic technique can
be used by attackers to randomize only some of the characteristics of a certain observed event.
A polymorphic technique such as that previously mentioned will indeed succeed in randomizing
the content of the injected malware (and consequently its MD5 hash), but might not succeed in
randomizing other characteristics, such as its structure or its behavior. By looking at a sufficient
amount of samples of the same activity type, it will be always possible to identify the invariant
characteristics and reduce the activity classification problem to a pattern generation process.

For each of the 29283 code injection attacks observed by the SGNET honeypots in a period
of 8 months ranging from January to August 2008, we have considered the set of characteristics
described in Table 5.7. For each dimension, we have considered the corresponding characteristics
vector, discovered frequent patterns and used these patterns to cluster them. In the rest of this work,
we will refer to the name e-clusters, p-clusters and m-clusters to refer to the clusters of activities
along the epsilon, pi and mu dimensions respectively.

3 While theoretically possible, the prototype deployment did not collect sufficient information on
the control flow hijack itself to include the dimension γ in the analysis

118 Dacier et al.

Table 5.7 Information taken into account

Exploit Destination port
Traversal identifier
Alerts generated by Snort

Shellcode Hash of the binary shellcode
Interaction with the terminal emulator, if any
Type of malware download (pushed by the attacker or pulled by the victim)
Protocol used in the malware download
Host involved in the download (the attacker itself or a central malware repository)
Port involved in the download

Malware Hash of the binary sample
Size of the sample
Number of created mutexes
Name of the created processes
Number of sections declared in the PE header
Linker version declared in the PE header
Packer name as detected by the PEiD database
Number of sections in the PE header marked as both writable and executable

5.7.1 Degrees of freedom

We tried to get a very high level view over the relationship between the three (e,p,m) dimensions
by quantifying the number of different combinations witnessed by the honeypot deployment in
the 8 months observation period. We have thus counted the number of generated clusters, and the
number of combinations over two or three dimensions. In the multi-dimensional case, we have
compared the number of combinations witnessed by the honeypots with the maximum achievable
number to have a rough estimate of the amount of variability over that combination.

As it possible to see from the table here under, most of the variability is introduced by the
combinations of exploits and payloads: 20 different exploits have been combined with 58 different
payloads in 107 different ways accounting for approximately 9% of all possible combinations.

e-clusters 20

p-clusters 58

m-clusters 74

(e,p) combinations 107 (9.22%)

(p,m) combinations 186 (4.33%)

(e,p,m) combinations 290 (0.33%)

The previous results seem to suggest a considerable reuse of exploitation code in different
malware variants and eventually combined with personalized payloads. Indeed, in the 8 months of
observation period, each e-cluster was combined in average with 5.9 different p-clusters and 21.2
different m-clusters. The same payload type was also often used by different malware families: in
average, each payload type was used to upload 6.2 different m-clusters.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 119

5.7.2 Interesting cases

It is interesting to look more in depth at different subsets of the epsilon-gamma-pi-mu space to
better evaluate the impact of this variability in some practical cases. We have thus focused our
attention on three interesting cases, associated to the usage of two specific vulnerability types and
to the propagation strategies employed by a specific malware family associated to an m-cluster.

5.7.2.1 ASN.1 vulnerability

Allaple.bAllaple.eAllaple.eAllaple.bRbot.bni

ASN.1 exploit ASN.1 exploit

Port: 139
Path: ID 458
Snort alert set: {1394,1390}

Port: 139
Path: many
Snort alert set: {1394,1390}

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

MD5:
3875b6257d4d21d51ec13247ee4c1cdb
Size: 57344
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

MD5: random
Size: random
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {2}

MD5: random
Size: 50176
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {2}

MD5: random
Size: 57856
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

MD5: random
Size: 50176
Mutexes: 0
Process name: {urdvxc.exe}
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

PULL payload
Protocol: link
Port: random
Content: random

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

PUSH payload
Protocol: creceive
Port: 9988
Content: random

E
p

silo
n

P
i

M
u

Fig. 5.15 The ASN.1 exploit (port 139)

Figure 5.15 provides an overview of all the observed code injections associated with the ex-
ploitation of the ASN.1 vulnerability (MS04-007) on TCP port 139.

In this specific case, there is a very low level of correlation between the first two dimensions.
The totality of the e2 exploits always pushes to the victim a single type of payload (p57). The
payload involved in these exploits runs a small downloader that binds itself to TCP port 9988 and
runs any content received upon connection from the attacker. Such download behavior is easy to
identify and block: it is hard to identify a legitimate case in which a host should be allowed to
accept inbound connections on a high port, and TCP port 9988 is not associated to any legitimate
service. Despite its simplicity and its potentially low success rate, this payload is responsible for
pushing to the honeypots a large number of m-clusters. For each of these clusters, we reported in
Figure 5.15 the label associated with the malware samples by Kaspersky antivirus.

Many of the m-clusters involved in this propagation strategy are related to different variants
of the Allaple worm, previously mentioned as example of polymorphic malware. These different
variants are all sharing the same propagation strategy despite differences in the overall behavior
of the worm. The same propagation strategy is also used by different malware types that are not
directly related to the Allaple worm, such as the m-cluster 732, associated to the Rbot.bni IRC bot.

120 Dacier et al.

5.7.2.2 Rbot.bni malware family

ASN.1 exploit

ASN.1 exploitASN.1 exploit

ASN.1 exploit

DCOM RPC exploit

Rbot.bni

MD5:
3875b6257d4d21d51ec13247ee4c1cdb
Size: 57344
Mutexes: 1
Process name: none
PE Sections: 3
Linker: 92
Packer: unknown
Self modifying sections: {}

PUSH payload
Protocol: creceive
Port: 9988
Content: fixed

Port: 135
Path: ID 473
Snort alert set: {648}

Port: 139
Path: many
Snort alert set: {1394,1390}

Port: 139
Path: ID 458
Snort alert set: {1394,1390}

Port: 445
Path: ID 966
Snort alert set:
{1394,12710,1390}

Port: 445
Path: many
Snort alert set:
{1394,12710,1390}

PULL payload
Protocol: link
Port: random
Content: random

E
p

si
lo

n
P

i
M

u

Fig. 5.16 Propagation ability for mu group m732

The propagation strategy used by Rbot.bni is shown in Figure 5.15. Interestingly, while most
of the infections associated to it were witnessed through the previously analyzed ASN.1 exploit on
port 139, SGNET honeypots observed a more diversified propagation strategy. This malware family
was in fact also witnessed exploiting the ASN.1 exploit on port 445 and the DCOM RPC exploit
on port 135. While all the ASN.1 exploits took advantage of the payload p57 previously described,
the RPC DCOM exploit (e22) took advantage of a completely different download strategy. The

5 Assessing Cybercrime Through the Eyes of the WOMBAT 121

exploits on this vulnerability forced in fact the victim to actively open a connection and download
the malware from the attacker on a random port.

5.7.2.3 DCOM RPC vulnerability

DCOM RPC exploit

Pakes.DAB

Vanbot.AX Unknown

Kolabc.BSB
Vanbot.AX

Port: 135
Path: ID 473
Snort alert set: {648}

MD5:
830faa6678a70eefd9df8a41f826c221
Size: 95232
Mutexes: 0
Process name: random
PE Sections: 8
Linker: 96
Packer: unknown

MD5:
c662ba11d8f939e757c53c327727fbd7
Size: 58076
Mutexes: 3
Process name: {lssas.exe,pojnm.bat}
PE Sections: 3
Linker: 0
Packer: unknown
Self modifying sections: {2}

MD5:
e64b8798ac5e4e06ec0feacd4da8a002
Size: 55808
Mutexes: 0
Process name: none
PE Sections: 1
Linker: 96
Packer: kkrunchy 0.26 alpha
Self modifying sections: {0}Vanbot.mn

MD5:
b0d7f3f3fff40a348ebd57630c47dac5
Size: 61333
Mutexes: 3
Process name: random
PE Sections: 3
Linker: 4080
Packer: unknown
Self modifying sections: {2}

MD5:
f5d2bc2ca21ea7d1c8a58df091c407d1
Size: 63488
Mutexes: 1
Process name: random
PE Sections: 1
Linker: 96
Packer: kkrunchy 0.26 alpha
Self modifying sections: {0}

MD5:
5f85dc4d417c7aa7e49652d89cd6568a
Size: 68608
Mutexes: 0
Process name: {lssas.exe,tuts.bat}
PE Sections: 4
Linker: 92
Packer: unknown
Self modifying sections: {0,1,2}

E
p

silo
n

P
i

M
u

PULL payload
Protocol: link
Port: specific (high ports)
Content: random

PULL payload
Protocol: link
Port: random
Content: random

PUSH payload
Protocol: blink
Port: random
Content: random

PULL payload
Protocol: FTP
Port: 2755
Content: random

Fig. 5.17 The DCOM RPC exploit

We previously analyzed a case of high correlation between the exploitation type and the cor-
responding payload. Figure 5.17 takes into consideration a different vulnerability to show a com-
pletely different scenario. The vulnerability taken into consideration is the DCOM RPC vulner-
ability on port 135, used as “secondary” propagation vector by the Rbot.bni malware previously
taken into consideration. The difference with Figure 5.15 is striking: in this case, a very high level
of variability exists between the exploitation type and the payload involved.

Three different classes of payloads can be identified: a PULL payload (p24073) forces the
download of malware from the attacker on port 2755; a PUSH payload (p258) forces the victim
to accept the malware on a random port using the protocol blink; finally, there is a proliferation of
clusters related to PULL payloads taking advantage of the protocol link.

The variability in terms of payloads is also reflected by a variability in terms of malware variants
pushed through these combinations of epsilon and pi. While none of the mu clusters in Figure 5.17
correspond to polymorphic malware, all of them are associated with IRC-based C&C channels.

5.8 Conclusions

In this chapter, we have presented in detail Leurré.com, a worldwide distributed system of honey-
pots running since 2003. We have extensively described its architecture used for collecting mean-
ingful data about emerging attack processes observed at various places on the Internet.

122 Dacier et al.

Several examples have been given throughout the text to illustrate the richness of our central
data repository and the flexibility of its design, enabling a large diversity of analyses to be carried
out on it. It is not the main purpose of this chapter to report on a specific analysis. Other publi-
cations have focused on some of these issues and some more work is ongoing. Instead, we have
shown by means of simple examples that this database helps in discovering trends in the attacks
and in characterizing them quite precisely. Next to this, we have also presented the important im-
provements we made to our infrastructure by deploying high-interaction ScriptGen sensors, which
enable us to collect even more precise and valuable information about malicious activities. In the
light of those promising results, we showed that this entire data collection infrastructure holds a
great potential in augmenting our threats intelligence capability on the Internet. Being able to con-
duct in-depth analyses on this huge data collection, in a systematic way, will hopefully help us to
make some advances towards the creation of early warning information systems.

So, it is our wish to share the data contained in this database with those interested in carrying
some research on it. The authors can be reached by mail to get detailed information on how to join
the project in order to gain access to the database.

References

1. ALMODE Security. Home page of disco at at http://www.altmode.com/disco/.
2. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes Platform: An

Efficient Approach to Collect Malware. Proceedings of the 9th International Symposium on
Recent Advances in Intrusion Detection (RAID), September 2006.

3. U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware. PhD thesis,
Master’s Thesis, Technical University of Vienna, 2005.

4. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In
Handbook of Combinatorial Optimization, volume 4. Kluwer Academic Publishers, Boston,
MA, 1999.

5. F. M. C. R. Center. Web security trends report q1/2008,
http://www.finjan.com/content.aspx?id=827, sep 2008.

6. CERT. Advisory CA-2003-20 W32/Blaster worm, August 2003.
7. Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms. In Proceedings of

IEEE INFOCOM, 2003.
8. M. P. Collins, T. J. Shimeall, S. Faber, J. Janies, R. Weaver, M. D. Shon, and J. Kadane.

Using uncleanliness to predict future botnet addresses. In IMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pages 93–104, New York, NY, USA,
2007. ACM.

9. E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian, and D. McPherson. Toward un-
derstanding distributed blackhole placement. In WORM ’04: Proceedings of the 2004 ACM
workshop on Rapid malcode, pages 54–64, New York, NY, USA, 2004. ACM Press.

10. J. Crandall, S. Wu, and F. Chong. Experiences using Minos as a tool for capturing and ana-
lyzing novel worms for unknown vulnerabilities. Proceedings of GI SIG SIDAR Conference
on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), 2005.

11. M. Dacier, F. Pouget, and H. Debar. Attack processes found on the internet. In NATO Sym-
posium IST-041/RSY-013, Toulouse, France, April 2004.

12. M. Dacier, F. Pouget, and H. Debar. Honeypots, a practical mean to validate malicious fault
assumptions. In Proceedings of the 10th Pacific Ream Dependable Computing Conference
(PRDC04), Tahiti, February 2004.

13. M. Dacier, F. Pouget, and H. Debar. Leurre.com: On the advantages of deploying a large scale
distributed honeypot platform. In Proceedings of the E-Crime and Computer Conference
2005 (ECCE’05), Monaco, March 2005.

14. DShield. Distributed Intrusion Detection System, www.dshield.org, 2007.

5 Assessing Cybercrime Through the Eyes of the WOMBAT 123

15. F-Secure. Malware information pages: Allaple.a, http://www.f-secure.com/v-
descs/allaplea.shtml, December 2006.

16. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice-Hall advanced reference
series, 1988.

17. C. Leita and M. Dacier. Sgnet: a worldwide deployable framework to support the analy-
sis of malware threat models. In Proceedings of the 7th European Dependable Computing
Conference (EDCC 2008), May 2008.

18. C. Leita and M. Dacier. SGNET: Implementation Insights. In IEEE/IFIP Network Operations
and Management Symposium, April 2008.

19. C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol dependencies and
reaction to 0-day attacks with ScriptGen based honeypots. In RAID 2006, 9th International
Symposium on Recent Advances in Intrusion Detection, September 20-22, 2006, Hamburg,
Germany - Also published as Lecture Notes in Computer Science Volume 4219/2006, Sep
2006.

20. C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script generation tool for
honeyd. In Proceedings of the 21st Annual Computer Security Applications Conference,
December 2005.

21. C. Leita, V. Pham, . Thonnard, E. Ramirez-Silva, F. Pouget, E. Kirda, and M. Dacier. The
Leurre.com Project: Collecting Internet Threats Information using a Worldwide Distributed
Honeynet. In 1st WOMBAT open workshop, April 2008.

22. Maxmind Product. Home page ot the maxmind company at http://www.maxmind.com.
23. D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes: Technical report.

CAIDA, April, 2004.
24. S. Needleman and C. Wunsch. A general method applicable to the search for similarities in

the amino acid sequence of two proteins. J Mol Biol. 48(3):443-53, 1970.
25. Netgeo Product. Home page of the netgeo company at http://www.netgeo.com/.
26. V.-H. Pham and M. Dacier. Honeypot traces forensics: The observation view point matters.

Technical report, EURECOM, 2009.
27. V.-H. Pham, M. Dacier, G. Urvoy Keller, and T. En Najjary. The quest for multi-headed

worms. In DIMVA 2008, 5th Conference on Detection of Intrusions and Malware & Vulner-
ability Assessment, July 10-11th, 2008, Paris, France, Jul 2008.

28. G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting zero-day
attacks. Proc. ACM SIGOPS EUROSYS, 2006.

29. F. Pouget, M. Dacier, and V. H. Pham. Understanding threats: a prerequisite to enhance sur-
vivability of computing systems. In IISW’04, International Infrastructure Survivability Work-
shop 2004, in conjunction with the 25th IEEE International Real-Time Systems Symposium
(RTSS 04) December 5-8, 2004 Lisbonne, Portugal, Dec 2004.

30. T. C. D. Project. http://www.cymru.com/darknet/.
31. N. Provos. A virtual honeypot framework. In Proceedings of the 12th USENIX Security

Symposium, pages 1–14, August 2004.
32. M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to understanding

the botnet phenomenon. In ACM SIGCOMM/USENIX Internet Measurement Conference,
October 2006.

33. E. Ramirez-Silva and M. Dacier. Empirical study of the impact of metasploit-related attacks
in 4 years of attack traces. In 12th Annual Asian Computing Conference focusing on computer
and network security (ASIAN07), December 2007.

34. J. Riordan, D. Zamboni, and Y. Duponchel. Building and deploying billy goat, a worm de-
tection system. In Proceedings of the 18th Annual FIRST Conference, 2006.

35. I. M. Sensor. http://ims.eecs.umich.edu/.
36. TCPDUMP Project. Home page of the tcpdump project at http://www.tcpdump.org/.
37. The Metasploit Project. www.metasploit.org, 2007.
38. O. Thonnard and M. Dacier. A framework for attack patterns’ discovery in honeynet data.

DFRWS 2008, 8th Digital Forensics Research Conference, August 11- 13, 2008, Baltimore,
USA, 2008.

124 Dacier et al.

39. O. Thonnard and M. Dacier. Actionable knowledge discovery for threats intelligence support
using a multi-dimensional data mining methodology. In ICDM’08, 8th IEEE International
Conference on Data Mining series, December 15-19, 2008, Pisa, Italy, Dec 2008.

40. L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, November 2008.

41. T. Werner. Honeytrap. http://honeytrap.mwcollect.org/.
42. M. Zalewski. Home page of p0f at http://lcamtuf.coredump.cx/p0f.shtml.

