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Abstract

The amount of digital data produced by users, such as photos, videos, and digital docu-
ments, has grown tremendously over the last decade. These data are very valuable and need
to be backed up safely.

Solutions based on DVDs and external hard drives, though very common, are not practical
and do not provide the required level of reliability, while centralized solutions are costly. For
this reason the research community has shown an increasing interest in the use of peer-to-
peer systems for file backup. The key property that makes peer-to-peer systems appealing is
self-scaling, i.e. as more peers become part of the system the service capacity increases along
with the service demand.

The design of a peer-to-peer file backup system is a complex task and presents a consider-
able number of challenges. Peers can be intermittently connected or can fail at a rate that
is considerably higher than in the case of centralized storage systems. Our interest focused
particularly on how to efficiently provide reliable storage of data applying appropriate re-
dundancy schemes and adopting the right mechanisms to maintain this redundancy. This
task is not trivial since data maintenance in such systems may require significant resources
in terms of storage space and communication bandwidth.

Our contribution is twofold.

First, we study erasure coding redundancy schemes able to combine the bandwidth effi-
ciency of replication with the storage efficiency of classical erasure codes. In particular, we
introduce and analyze two new classes of codes, namely Regenerating Codes and Hierarchi-
cal Codes.

Second, we propose a proactive adaptive repair scheme, which combines the adaptiveness
of reactive systems with the smooth bandwidth usage of proactive systems, generalizing the
two existing approaches.





Résumé

La quantité de données numériques produites par les utilisateurs, comme les photos, les
vidéos et les documents numériques, a énormément augmenté durant cette dernière décen-
nie. Ces données possèdent une grande valeur et nécessitent d’être sauvegardées en sécurité.

D’une part, les solutions basées sur les DVDs et les disques durs externes, bien que très
communes, ne fournissent pas un niveau suffisant de fiabilité. D’autre part les solutions
basées sur de serveurs centralisées sont très coûteuses. Pour ces raisons, la communauté
de recherche a manifesté un grand intérêt pour l’utilisation des systèmes pair-à-pair pour
la sauvegarde de donnés. Les systèmes pair-à-pair représentent une solution intéressante
grâce à leur capacité de passage à l’échelle. En effet, la capacité du service augmente avec la
demande.

La conception d’un réseau de sauvegarde de fichiers pair-à-pair est une tâche très complexe
et présente un nombre considérable de défis. Les pairs peuvent avoir une durée de connexion
limitée et peuvent quitter le système à un taux qui est considérablement plus élevé que dans
le cas des systèmes de stockage centralisés. Notre intérêt se concentre sur la manière de
fournir efficacement du stockage de données suffisamment fiable en appliquant des schémas
de redondance appropriés et en adoptant des bons mécanismes pour maintenir une telle
redondance. Cet effort n’est pas négligeable, dans la mesure où la maintenance du stockage
de données dans un tel système exige des ressources importantes en termes de capacité de
stockage et de largeur de bande passante.

Notre contribution se porte sur deux aspects.

Premièrement, nous proposons et étudions des codes correcteurs pour la redondance capa-
bles de combiner l’efficacité en bande passante de la réplication à l’efficacité en stockage des
codes correcteurs classiques. En particulier, nous présentons et analysons deux nouvelles
classes de codes: Regenerating Codes et Hierarchical Codes.

Deuxièmement, nous proposons un système de réparation, nommé "adaptive proactive re-
pair scheme", qui combine l’adaptabilité des systèmes réactifs avec l’utilisation régulière de
la bande passante des systèmes proactifs, en généralisant les deux approches existantes.
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CHAPTER1
Introduction

1.1 Motivation

1.1.1 Need for user data backup

The amount of data produced in the world is increasing at an incredible rate. A study in
2003 [71] estimated that about 5 exabytes (5 · 1018 bytes) of original data were produced in
2002, showing an increase of more than 30% over the previous year. Part of this tremendous
growth has been driven by the digital data produced by users. Fig. 1.1 (Source: [71]) focuses
on hard disks installed on user PCs and shows that the amount of original digital data yearly
stored on PCs by users has increased by two orders of magnitude from 1996 to 2003. User
data proliferation is in large part due to the digitalization of information: digital photos,
digital videos, and electronic mail became part of everyday life of all computer users.
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Figure 1.1: Amount of digital data produced yearly by users and stored on hard disks in Petabytes
(1015 bytes).
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2 CHAPTER 1. INTRODUCTION

The durability of these very valuable and mostly irreproducible data is jeopardized by sev-
eral threats, such as media failures, software bugs, malwares, user errors, and theft [25].

All this said, it is evident that data backup has become an urgent need for users. Obvi-
ously, data backup is not a new topic: Companies have been facing the problem of data loss
for decades and are equipped with data backup systems. However, the costs sustained by
companies for these systems are not affordable for ordinary users, which need to find cheap
solutions to store their data safely.

1.1.2 Existing solutions and their limits

The data backup solutions that ordinary users can afford generally belong to one of the two
categories described in the following.

Removable devices and optical supports

It is a very common practice to put a backup copy of important data on pluggable storage
devices, such as external hard-drives and flash memories or on optical media, such as DVDs
and CDs. The main shortcomings of these solutions reside in:

• Complexity of operations: burning DVDs or copying data on external hard-drives can
be a tedious task and is far from being automatic.

• Lack of availability: while it is a common belief that data stored on CDs and DVDs are
safely recorded for ever, they can instead suffer from data loss much more frequently
than we would expect, especially if not handled with care [13]. To obtain long-term
durability, data stored on external media must be checked and refreshed on regular
basis, making data management even more complex. Moreover, these media are nor-
mally stored in the same place where the primary copy of data is stored and are very
likely lost if external disasters occur (fire, theft, etc.).

Online Storage

Outsourcing data backup to online services is another popular solution. Initially born in the
’90s as a service for companies [59], it is now also proposed to ordinary users, thanks to the
spread of the Internet access.

With the advent of cloud computing big players, like Microsoft with SkyDrive [11] and Ama-
zon with S3 [3], are offering online storage services. A number of smaller companies, such
as iBackup [9], mozy [12], carbonite [4], Allmydata [1] and iDrive [10], offer online backup
services.

These services partially overcome the shortcomings of the methods based on external media
mentioned in the previous section:

• Data backup can be completely automatic.
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• The process of checking and refreshing data is transparent to the user.

• External disasters occurring to the user PCs do not impact the online stored data.

However, the adoption of outsourced data backup is not a panacea for a number of different
reasons:

• There are concerns on data privacy. Users must trust a single party, which stores their
data and can potentially violate data confidentiality.

• Users do not have any control on how data are handled and kept durable, while failures
and data losses occur also in these systems.

• These services have a cost that not all users are willing to pay. Online backup prices are
currently around 5$ to 10$ a month for an amount of storage that ranges from 10GB to
an unlimited volume.

1.1.3 Peer-to-peer as the solution

As argued in the previous sections, there is an increasing need for user data backup solutions,
and the existing solutions have serious limitations in terms of reliability and costs. These two
factors motivate the investigation of new ways to do user data backup.

An idea that has been around in the research community for several years is the development
of storage systems and in particular of data backup systems based on peer-to-peer technol-
ogy.

The traditional architecture of distributed applications follows the client-server paradigm,
which consists of two distinct entities:

• The server, which provides the service and all the resources needed for the service.

• The client, which uses the service and exploits the resources provided by the server.

The main characteristic of peer-to-peer networks is the fusion of these two roles. In a peer-
to-peer network all the peers play the role of both, the server and the client: every peer
contributes to the service sharing part of its resources and, at the same time, it is a customer
of the service. Moreover, peer-to-peer networks differ from a client-server architecture by
their self-organization, which means that usually they do not need a centralized administra-
tion. The peer-to-peer approach empowers the system with two intrinsic and very appealing
properties:

• Self-scaling, which means that the amount of resources increases along with the de-
mand. This is a tremendous advantage over the client-server approach, where the
server needs to be dimensioned to sustain all the possible clients and must be upgraded
whenever the service demand increases.

• Fault-tolerance. In the client-server applications, the server represents a single point
of failure and resiliency can be provided only using multiple servers, as in the case of
mirroring, or equipping the server with very reliable and expensive hardware. The de-
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centralized organization of peer-to-peer networks, instead, exploits the independence
of the different peers to provide a good level of reliability.

In the case of storage systems a peer-to-peer approach means that each peer dedicates part
of its storage space to the community; in exchange the community (i.e. other peers) will
reliably store data for this peer. A very trivial example of peer-to-peer data backup could
be represented by two peers that store each the other’s data, providing mutually a backup
service.

A peer-to-peer data backup solution can be seen as a special case of an online backup service,
which overcomes the problems we outlined in the previous section:

• Data are usually distributed over many different peers, which means that users do
not need to trust a single entity. A malicious entity must gain the control of many
independent peers to get access to the data of a specific user.

• The way data are organized and handled is publicly known by all the participating
peers.

• A peer-to-peer service is potentially free. The costs of such a service are shared among
all the participants.

1.1.4 Enabling technology trends

A peer-to-peer storage system can be realized only if participating peers are equipped with
spare storage resources. Fig. 1.2 (Source: [8]) depicts the evolution of the capacity of hard
disks during the last 30 years, showing an exponential growth of storage capacity. This
growth is not associated with a corresponding growth in price, which implies an exponential
decrease of the cost per byte stored. The availability of cheap storage suggests that users can
easily have a lot of storage space, which may be underutilized. This intuition is confirmed
by a study conducted on desktop PCs within Microsoft [46], which shows that disks are only
half-full in average.

1.2 Description of a peer-to-peer storage system

The design of a peer-to-peer storage system and specifically of a peer-to-peer data backup
system is a complex task, which involves lots of different aspects and poses a number of
challenging problems. Before we discuss the different issues involved in such design, we
propose a description of the system from two different points of view.

First, we define the properties that are expected from the system. We propose a sort of
service contract that specifies what are the functionalities that a storage system must provide
to the user. At this step, the system is seen as a black box and all the implementation and
architectural aspects are ignored.
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Figure 1.2: Capacity of hard disk over the time.

Second, we describe the constraints we have on the construction of the system. In practice
we define the peer-to-peer nature of the system and we detail the expected behavior and
characteristics of the participating peers.

1.2.1 Definition of a data storage service

We propose here a formal definition of a data storage service. We enumerate the features
such a system must offer to the users and describe a typical interface between the service
and the user.

In essence, a data storage system provides a reliable and secure storage of data. If one consid-
ers the system as a black box, the user will have two very simple primitives: Store Data and
Retrieve Data, which correspond to the insertion of the data in the system and their retrieval.
The system must guarantee a basic set of three properties with respect to these primitives:

• Data Durability. This is the ultimate purpose of a data backup system: the data that
is inserted in the system is reliably stored and never lost. Eventually the user is able to
retrieve his data back. Durability implies also that data are not corrupted or modified.

• Data Availability. The availability of data implies the ability of retrieving the data
upon the user request. Note that this property differs from data durability. A given
stored object could be durable but unavailable at certain periods. Availability and
durability can also be evaluated in terms of the latency between a retrieval request
and the actual data retrieval. Perfect data availability corresponds to a zero-latency,
low data availability means high latency, while durability implies only finite latency.

• Data Confidentiality. The data inserted can be read only by a group of authorized
users, which consists, in the most common case, only of the data owner.
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1.2.2 Constraints of the peer-to-peer environment

As mentioned in section 1.1.3, the essential property of peer-to-peer systems is that the re-
sources are provided by the participating peers themselves. In the case of peer-to-peer data
storage systems, the most important resource is the storage capacity. Every peer provides
a certain amount of its local storage space, used by the system to provide a reliable storage
service.

The peers participating in the system, however, are components that are not under the con-
trol of the system itself. The service properties must be guaranteed in spite of this lack of
control, which can be characterized as follows:

• Intermittent connectivity. Peers are not connected to the system all the time for a
number of different reasons: users may disconnect from the Internet, machines could
crash or reboot, and there might be temporary network outages. This intermittent
connectivity implies that data stored on peers incur periods of unavailability.

• Permanent disconnections. Beyond the temporary disconnections, peers may quit the
system forever and the data stored on that peer are lost. The event of data loss may
occur because of voluntary leave but also because of permanent hardware failures or
deletion of data (accidental or voluntary).

• Peer misbehavior. Peers are not trusted parties. They can misbehave or behave in
unexpected way. For example, Peers may claim to store data that they are actually not
storing or can corrupt data they are storing. Moreover, peers may be non-collaborative,
which means that they may try to exploit the services without providing any resource
in return, which is usually referred to as Free Riding.

• Limited bandwidth connection. Peers are connected to the system through a connec-
tion with a limited bandwidth. This limitation might be due to the actual constraints
on the access link or to a bandwidth utilization cap that the user may deliberately pose
on the peer-to-peer application.

To clearly understand the peer behavior, we introduce in Fig. 1.3a a state machine that mod-
els the evolution of the life-cycle of every single peer. Every peer alternates periods in which
it is online to periods in which it is temporarily offline. This alternation of disconnections
and reconnections constitutes what we defined as intermittent connectivity. After a period,
called lifetime, the peer can abandon the system and become dead. We called this event
permanent disconnection, and, as already mentioned, a permanent disconnection translates
to data loss and it is conceptually equivalent to when a peer deletes the data it is storing.

It is important to notice that the real peer behavior is not observable, since the system knows
only whether or not a peer is connected and it is not able to tell apart disconnections from
abandons. In Fig. 1.3b we depict the state machine as it is observable from the system. As
we will discuss in the following sections, the lack of knowledge about the actual status of the
peers and thus of the data they are storing, makes the data maintenance challenging.
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(a) Real peer behavior (b) Observed peer behavior

Figure 1.3: State machine modeling the behavior of a peer.

1.2.3 File-systems vs. data backup systems

While the main focus of this thesis is on peer-to-peer data backup systems, these systems
share a lot of features and design issues with peer-to-peer file systems. Indeed a considerable
part of the literature addresses issues that refer to the generic field of peer-to-peer storage
systems. Yet, data backup systems and file systems differ a lot in terms of assumptions and
properties required and these differences can have a strong influence on the design choices.
In this section we point out such differences and discuss how they are reflected in the design.

Data availability and durability

Previously we introduced the concept of data availability and data durability. It is obvious
that availability implies durability, while the opposite is not always true: a durable object
can be unavailable at certain periods. A first difference between file systems and file backup
systems consists of the different importance given to data availability and data durability. It
is obvious that availability is essential in file systems, since file reads and writes are opera-
tions that are not delay-tolerant, which implies that a given file must be available practically
at any point in time. In file backup systems, there is no such constraint: the data owner
accesses the storage repository after a disaster to recover what he has lost and normally can
accept some reconstruction delay. The essential property of a file backup system is that data
are alive somewhere, i.e. they will be eventually available.

The different importance of data availability and data durability has also another interesting
implication. A file system user accesses stored files very often, which means that this op-
eration should be relatively cheap. In file backup systems, data retrieval is hopefully very
seldom needed, and, since this operation is very rare, it can have some additional costs.

Data updates

In file systems, files are not only read, but also modified. A big challenge in the design
of peer-to-peer storage systems is to manage data updates and guarantee consistency. In
data backup systems, data could be considered immutable (see for instance [81]) : data are
backed-up on regular basis in big and static snapshots. Consecutive snapshots of the same
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data can be either stored entirely or stored incrementally [33], which makes it possible to
avoid any update of stored data.

Design guidelines

The differences between file systems and backup systems will lead the system designer to
choices that could be radically different in the two cases. For this reason, the following
guidelines can be formulated. A peer-to-peer backup system:

• Can relax the assumption on availability, which must be guaranteed only for what is
strictly needed by the maintenance process in order to assure data durability.

• Should be organized such that the maintenance operations are very cheap. However,
it is not essential that data retrieval and insertion be extremely fast and cheap.

• Can assume that data are immutable and avoid all the design complications due to
data updates, concurrent accesses, and replica consistency.

1.3 Issues in peer-to-peer storage systems

In this section we discuss the issues that must be addressed in the design of peer-to-peer stor-
age systems, paying particular attention to those that relate closely to peer-to-peer data
backup systems. For each issue we provide a brief overview of the problems and an out-
line of the different solutions proposed in literature.

The challenge “number one” in the design of peer-to-peer data backup systems (and of peer-
to-peer systems in general) is the construction of a reliable storage service out of many unreli-
able and uncontrollable components. The key solution to this problem consists of exploiting
the diversity in behavior and characteristics of these components. The idea relies on the fact
that even if all the peers will incur periods of temporary or permanent disconnections and
some of them will delete or corrupt data, these events are not strongly correlated and at
any point in time there will be enough connected and well-behaving peers to guarantee the
correct functioning of the system.

To exploit this idea there are three main tools: data redundancy, data maintenance, and data
placement, which are discussed respectively in the following three sections.

Data redundancy and its maintenance, however, are not the only important issues in the de-
sign of a peer-to-peer data backup system. In particular there are lots of architectural aspects
that need to be addressed. One of them is for example the organization of peers and the
organization of data and metadata. The organization of peers concerns how peers interact
with each other and the level of decentralization of the system: is there a central entity that
coordinates all the operations, is there a structure in the peer-to-peer overlay network, are the
peers completely autonomous. The organization of data, instead, is related to how the data
inserted in the system are formatted, distributed and referenced. The organization of peers
and data are strongly related and, for this reason, both of them are discussed in section 1.3.4.
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The aspects we discuss in section 1.3.5 are incentives and peer fairness. The feasibility of
peer-to-peer systems requires that peers contribute their resources to the system. Without
any incentive mechanism, peers would tend to be selfish, i.e. they would consume resources
without providing any in return. One of the most widely used incentive mechanism consists
of enforcing peer fairness. Peer fairness consists basically of excluding free-riders, applying
a sort of “tit-for-tat” policy between the resources consumed by peers and those provided.

A lot of the solutions to the issues presented take advantage of mathematical models that
capture the behavior of system. In section 1.3.6, we illustrate briefly some of these models,
focusing especially on models of peer behavior and repair process, which represent also an
essential building block in our contributions.

1.3.1 Data redundancy

Data redundancy is the essential tool in order to exploit peer diversity. Data redundancy
consists of storing multiple instances of the same data on different peers in order to mask
data unavailability: even if part of the stored data is unavailable, the remaining part should
be enough to reconstruct the original data.

There exist a lot of different techniques to add redundancy to data and they are usually called
redundancy schemes. Each redundancy scheme determines (i) how to create the redundant
data and (ii) how to rebuild redundant data when lost. These two operations generate costs
that differ from one scheme to another. Here we introduce the most widely used redundancy
schemes: replication and erasure coding.

The simplest way to store data redundantly is replication: If we store Nrep replicas of the
same file, even if Nrep − 1 of these replicas are stored on peers that are unavailable, we are
still able to retrieve our file back. The data insertion for replication is depicted in Fig. 1.4a for
the case Nrep = 3. In the case of replication, rebuilding a lost replica is straightforward, since
it is enough to create an exact copy of any other alive replica, as depicted in Fig. 1.5a.

A smarter redundancy scheme is erasure coding. In general terms, a set of k data objects can
be erasure coded in k + h parity objects, where the size of any parity object is the same as
the one of an original object. These parity objects are such that any k of them are sufficient to
reconstruct the original k objects. The name “erasure coding” expresses the ability to sustain
up to h erasures of parity objects without losing data. A way to apply erasure coding to a
single storage object is to divide it in k (original) fragments and then code them in k + h
parity fragments, such that any k of them are sufficient to reconstruct the original object. The
insertion of data for erasure coding is depicted in Fig. 1.4b in the case of k = 3 and h = 2.
Note that erasure codes are able to consume less storage space as compared to replication,
providing the same level of reliability. To understand this point, consider the replication
scheme (with Nrep = 3) and the erasure coding scheme (with k = 3, and h = 2) of Fig. 1.4. In
both cases, the system can accept up to two losses without losing the original data, however
replication consumes storage space of 3 times the size of the original data, while erasure
coding consumes only 5/3 times the size of the original data.

In erasure coding, repairs are more complex than in replication. When a parity fragment
is lost, its reconstruction requires the access to other k alive parity fragments. Note that to
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(a) Replication with 3 replicas.

(b) Erasure coding with k = 3, h = 2

Figure 1.4: Redundancy schemes: data insertion.

exploit data redundancy it is essential that the replicas or the parity fragments are stored
on different peers. Our assumption, implicitly introduced in Fig. 1.4, is that each replica or
parity fragment is stored on a distinct peer. This choice maximizes the probability that data
are available, since it exploits maximally the diversity of peers, but implies that all the data
reads correspond to data transfers. When a repair of an erasure coded parity fragment is
performed, the system needs to download k other parity fragments, which translates into
the data transfer of an amount of data equal to the size of the entire storage object. This repair
procedure for erasure coding is depicted in Fig. 1.5b in the case of k = 3 and h = 2.

Since redundancy schemes and the cost trade-offs they entail are one of the main focus of
this thesis, we refer the reader to the section 2.4 for a detailed presentation of the state of the
art and a description of the open issues.

1.3.2 Data placement

Thanks to data redundancy, multiple instances of the same data can be placed in different
locations, i.e. on different peers. This is the necessary condition to exploit the diversity of
these peers. However, it is important that such diversity be actually present in the peers
employed. If, for instance, peers are perfectly synchronized in their disconnection times, no
matter how much redundancy we add, there will be periods in which data will be unavail-
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(a) Replication with 3 replicas.

(b) Erasure coding with k = 3, h = 2

Figure 1.5: Redundancy schemes: data repair.

able. For this reason, the choice of the peers used to store the data, usually referred to as data
placement, plays an important role for the final data availability and durability.

In a scenario where peers behave randomly and independently, a random data placement
is a reasonable solution. A lot of systems assume such independence and adopt a random
placement [27, 29, 30, 34, 103].

In reality, independence in peer behavior may not always be realistic. Some peers exhibit
correlated behavior, which means that it is possible to identify classes of peers that behave in
a similar way. An example of such correlation is given by diurnal online patterns for peers
that are geographically close [28, 95]: users tend to stay connected during given periods
of the day (e.g. working hours or evening), while they are disconnected during the night.
Correlation may also happen in the failure patterns: Peers that are belonging to the same
sub-network may be affected by the same network outage, peers that run the same operat-
ing system or the same software may be subject to the same bugs or vulnerabilities [58, 75].
Finally, it is possible to identify peers that show a very high connectivity in terms of up-time
or communication bandwidth, while others that are very poorly connected. These correla-
tions suggest to investigate non-random placement policies, which are aware of patterns in
the peer behavior and characteristics.

Douceur et al. [47, 48, 49], in the Farsite project, address the optimization of data availability.
They first analyze different heuristics for the initial placement of data and then propose a hill-
climbing strategy, which exchanges constantly the position of replicas to increase data avail-
ability. Tian et al. [96] address both data availability and efficiency of resource utilization,
propose a stochastic model to capture different behaviors of peers and propose a placement
strategy able to exploit such stochastic model. Weatherspoon et al. [104] observe the peer
behavior and group peers in clusters that show correlated behavior. These clusters are then
used to pick a set of uncorrelated peers for data placement. Similarly the “Phoenix recovery
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system” [62] identifies clusters of peers using information about their software configuration
or network position and then chooses peers that are most likely not correlated.

1.3.3 Data maintenance

The event of data loss requires that the stored data be checked and refreshed, or in gen-
eral terms maintained. Data maintenance consists of two different parts: the detection of
unavailability, which we call data monitoring, and the actual repair of data, which we call
repair policy and determines when, given the information collected by the data monitoring,
a repair must be performed.

Data monitoring

Data monitoring implies a procedure that constantly monitors the status of the stored data.
This activity can be in turn divided in two parts:

• Peer monitoring, used to detect if peers are online or not.

• Data integrity check, used to detect if data have been deleted or corrupted.

The basic mechanism to detect if a peer is online consists of checking if that peer answers to
an external solicitation, like a ping message. An important remark is that the peer monitoring
is only able to assess the fact that a peer is non-online, but it cannot say anything about the
kind of disconnection (temporary or permanent) that has occurred. In other words, the peer
monitoring has access only to the observable state machine of peers, as already depicted in
Fig. 1.3b

The challenge in a peer-to-peer system that is completely distributed is how to organize
these checks in a decentralized way. In structured overlay networks (see discussion in sec-
tion 1.3.4), the structure of the network provides an easy way to perform such checks: in
DHTs for example, every peer has a set of neighbors, exchanges messages with them and
it is able to detect whether or not they are online. In unstructured networks, one may use
gossip-based membership protocols [54], which rely on flooding or partial-flooding of con-
nectivity information. In peer-to-peer storage systems this connectivity information must be
used to understand which data are affected and take repair actions if needed. In DHT-based
storage systems, for every storage object, a responsible peer is identified, usually called root,
and this peer is in charge to listen to peer disconnections and understand if they affect the
data it is responsible for. In the first systems [38, 50], the root stores the data it is responsible
for on neighbors and the detection of a neighbor failure corresponds to the detection of data
loss. In BitVault [110] the root relies on a DHT-based membership protocol and listens to all
the disconnection and reconnection events filtering the ones it is concerned by. In Glacier
[58], replicas from the same set of storage objects are stored approximately on the same set of
peers. This choice allows peers belonging to the same set to exchange a list of stored objects
and detect if some replicas are missing.

Orthogonal to the detection of peer failure is the detection of data integrity. Accidental data
corruptions may be detected by means of checksums, while the detection of malicious data
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corruption or deletion is trickier. One possibility is to create self-verifying data [89, 106],
where every block of data is associated with a signature that is function of the block of data
itself. If the function adopted is for example a cryptographic collision-resistant hash function
any modification of the data won’t be reflected in the signature and the modification is easily
detected. This approach, however, requires the verifier to download the complete data block
and recompute the signature to perform the comparison, which may be costly in terms of
communication and computation. Another approach is to use a challenge-response scheme,
where the verifier proposes a challenge to the data holder that can be solved only if the data
holder actually stores the data block. These schemes usually adopt a probabilistic approach
and use cryptographic functions [24, 67, 76].

Repair policy

The repair policy defines when to perform repairs, i.e. when to create new replicas or new
parity fragments. This decision is non-trivial, since it has to be taken without having a com-
plete knowledge of the status of the data. While data integrity checks can easily detect data
that are corrupted and thus need to be repaired, peer monitoring is only able to say if data is
unavailable, but cannot say if these data will become available again or they are permanently
lost.

A repair policy must guarantee that at least the data stored on peers that abandon the sys-
tems, i.e. the permanent disconnections, be repaired. For this reason one very trivial ap-
proach is to repair all the data that become unavailable, no matter if they will become avail-
able again or not. This eager policy however is very costly in terms of (i) storage, because it
consumes more space than what is strictly needed and (ii) in terms of communication band-
width, since any repair corresponds to the transfer of the whole storage object in both cases
of replication and erasure coding.

Smarter repair policies strive to reduce these costs by avoiding useless repairs. One approach
is timeout based, which means that the system considers as permanently lost only the data
that remain unavailable for a period of time that exceeds the timeout. In this lazy policy the
choice of the timeout is critical, since a small timeout may cause useless repairs, while a big
one may detect permanent losses too late, jeopardizing data durability.

Another lazy policy is based on a threshold, which fixes the minimum amount of redun-
dancy that must always be available. In this case, the repairs are triggered when this thresh-
old is attained. This approach, however, makes the repair process to act in bursts, which
means that a lot of repairs are performed in a small window of time, while in other periods,
when the system stays above the threshold no repairs are done. As we will explain in de-
tail later, this bursty behavior causes an inefficient use of communication bandwidth, which
ideally should be used as smoothly as possible.

Finally, there are the proactive policies, which try to choose a fixed rate at which repairs
are performed to achieve a smooth utilization of communication bandwidth. However, the
choice of the correct rate is very difficult and a wrong choice can cause either useless repairs
or data loss.
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Together with data redundancy schemes, the repair policies are the main focus of this thesis.
For this reason, as in the case of data redundancy schemes, we will give a more detailed
discussion of the related work in section 2.5.

1.3.4 Peer and data organization

The peer-to-peer nature of the system is given by the fact that the storage space is provided
by the peers participating in the system. Under this broad definition there are many possible
system architectures, which differ in the level of decentralization.

A very simple approach is the presence of a central entity, usually called tracker, which co-
ordinates all the operations performed in the storage system. This design comes from the
early file-sharing systems like Napster [15], where the tracker has a central index of the files,
mapping them to their locations, and a complete knowledge of the peers’ status. A design
based on a central tracker is much easier than a completely distributed system. However,
it poses problems of scalability, robustness and security, being the tracker a single point of
failure. Lillibridge et al. [67] employed a central server to track the peers. This server is used
only to find backup partners in order to exchange symmetrically storage. In the Google File
System (GFS) [55] the architecture is based on a single master and many chunkservers. The
master is a central point of control, which coordinates all the operations of data placement,
data maintenance, etc., and serves all the requests. The files stored in GFS are divided in
big chunks, which are then replicated and stored on the chunkservers. This choice implies
that the master holds an index that maps files to chunks and chunks to chunkservers. This
index however is not stored on the master, but it is stored in the chunkservers themselves;
the master holds a volatile version of the index and can reconstruct it in case of failure.

In Farsite [20] machines are partitioned in subgroups and the system administrator assigns
to each subgroup a partition of the file system, called namespace root. These groups of
machines work in completely autonomous way and each of them runs a Byzantine-fault-
protocol [32] such that any machine in the group has a consistent view of the file system
partition. Such an organization, however, requires a relevant administration effort in the
setup phase, which can be feasible in a corporate LAN, but it becomes impossible in an
Internet-wide peer-to-peer scenario.

The solution to build a completely distributed system comes from Distributed Hash Tables
(DHTs), which represented a revolution in the design of peer-to-peer storage systems. The
purpose of DHTs is to provide a consistent mapping between keys and values (or storage
objects) in a completely decentralized fashion. To give an example of how DHTs work, let
us consider the design of Chord [93]. In Chord every peer and every object is identified by
an m-bit key, which means that peers and objects could be logically positioned in a circle
composed by the 2m possible key values. The keys of peers partition the space into disjoint
intervals and every peer is responsible to store the objects, whose keys fall in the interval
that precedes the peer’s key. The responsible peer replicates the objects also in some of its
successor peers, to guarantee persistence of objects. Every peer maintains a set of links to
other specific peers in the circle, these links constitute a structured overlay and provide a
way to quickly find the peer responsible for a given key through simple routing protocols.
When a peer joins or leaves, the peers run simple procedure to maintain the overlay in a
consistent status. There exist many different DHTs [72, 83, 87, 111], which propose different
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design choices and give different performance guarantees, but they all share the same basic
functionalities.

An interesting issue in the use of DHTs for storage purposes is how to generate the unique
key to identify a storage object. A very popular solution for the key generation is content
hashing, which actually was already suggested in the design of Chord. Content hashing
identifies a block of data with a key that is the result of a hash function applied to the data
block itself. This choice provides a set of interesting properties:

• If the key space is big enough, this choice guarantees a very low probability of collision,
which means that it is very unlikely that different blocks have the same key, as argued
in the design of Venti [81].

• With high probability the keys are uniformly distributed in the key-space, which guar-
antees a good load-balancing among peers [93].

• It provides an easy way to perform integrity check “for free”, i.e. a modification in data
blocks is immediately detectable. As a side effect, the stored blocks can be considered
as immutable data, since any modification of the data would change the identifier key
as well.

If one wants to use DHTs directly as the basis of a peer-to-peer storage or backup system,
another issue is how to store complex structures, such as file metadata and directory infor-
mation in data blocks. A solution, which is employed in many systems, is to pack all the
metadata information in the data blocks themselves. One instance of such solution is based
on the construction of a hierarchy of hash functions and has been adopted for example in
Venti and CFS [38]. To understand how this hierarchy works, let us consider the case of
CFS. CFS relies on a block storage layer called DHash, which provides an interface to store
and retrieve a generic fixed-size block B using its hash H(B) as key. On top of DHash, CFS
builds a hierarchical structure of linked blocks, which allows to group multiple data blocks
keys together into inode-blocks F , which represent files, and in turn group multiple inode-
block keys together into directory-blocks D, which represent directories. Finally directory
keys can be packed together to constitute the root of the storage assets of a single user. Such
hierarchical structure is depicted in Fig. 1.6.

Figure 1.6: Data layout in CFS.

As previously remarked, modifications of a data block in a hierarchical structure like the one
described, cause a chain of modifications in a whole subtree up to the root. If blocks are never
deleted, different versions of the same data may coexist in the system and be referenced by
many different roots. There are two implications of this property: (1) Storing multiple times
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the same data does not require more space, which means that full backups are automatically
implemented as incremental backups. (2) If different users store identical data they do not
occupy twice the storage space. This property is very interesting, since, according to a study
within Microsoft corporation [31], users that store the same content are not rare.

While the use of DHTs directly as storage layer, as in the case of DHash, is straightforward,
many systems use them only to build an overlay among peers and for indexing purposes.
These systems are then free to use their own placement strategies, redundancy schemes and
repair policies. As an example of this approach, BitVault [110], as mentioned before, uses a
DHT only to locate the responsible peer of a given storage object and to have a membership
service: the data maintenance is delegated to the responsible peer and it is not performed
by the replication mechanism of the DHT. DHTs can also be used to find nodes with given
characteristics, like in Pastiche [36], which uses two DHTs, one to locate peers close in the
network and the second to select nodes that have a good level of overlapping data.

Another important aspect to be taken into consideration is the data encryption in order to
assure data confidentiality. Symmetric or asymmetric encryption techniques represent a very
popular solution and the discussion of such techniques is out of the scope of this dissertation.
It is interesting, however, to remark that classical data encryption prevents to store identical
files only once: the same data inserted by two different users will be encrypted with different
keys and need to be stored separately. A possible solution is to use convergent encryption
[45], which uses the content hash as the encryption key, guaranteeing confidentiality and
coalescing of identical content.

1.3.5 Incentives and Fairness

In peer-to-peer systems it is essential that peers contribute at least as many resources as they
consume. Selfish peers may decide to exploit other peers’ resources without providing their
resources, which is usually referred to as free-riding. Free-riding can be catastrophic for the
stability of the system and can compromise its feasibility.

In peer-to-peer storage systems the simplest case of free-riding takes place when peers in-
sert data (including redundancy) whose size is larger than the storage space they offer to the
system. To prevent this phenomenon a mechanism that enforces storage fairness is needed.
One of the essential elements of any of such mechanism is a technique that allows to check
if a peer is actually storing what he claims to store. This problem is closely related to data
integrity, which we have already discussed in section 1.3.3. On top of this technique there
are multiple ways to enforce fairness. One of these ways is symmetric storage exchanges:
every peer selects a set of other peers and data are exchanged symmetrically. This “tit-for-
tat” approach is simple and effective and has been employed in a number of systems [36, 67].
The limitation of symmetric exchanges is given by the constraints posed on the data place-
ment, which as discussed in section 1.3.2 may improve the data availability and durability.
Samsara [37] overcomes this issue defining the concept of storage claim. A storage claim
held by a peer can be exchanged with storage space of another peer and becomes a sort of
currency. This approach resembles a more general technique based on payments [57, 61],
which, however, needs the existence of a central authority.
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Other interesting approaches are given by reputation systems based on regular audits [77].
The efficacy of such systems can be demonstrated by game-theoretic models [78]. Game
theoretic models have also been proposed by Toka and Michiardi [97, 98], where peers choose
partners on the basis of their profiles, defined by online time, bandwidth, storage space etc.
This selection creates a sort of stratification among peers and creates a strong incentive for
peers to improve their profile to get a better service experience.

1.3.6 Modeling peer behavior and data repair

Evaluating redundancy schemes, data maintenance techniques, or incentives strategies in
real implemented systems is very hard and costly. A cheaper way to understand the dynam-
ics of a peer-to-peer storage system is to model its behavior through mathematical models,
which should be able to capture the essential aspects of its functioning. In this section we
discuss some of the models proposed in literature.

Utard and Vernois [100] model the behavior of a peer with a state machine which is con-
ceptually similar to the one we presented in section 1.2.2. They also define temporary and
permanent disconnections, which are driven by two parameters: the availability, which ex-
presses the percentage of time a peer spends online in its lifetime and the volatility, which
expresses the probability that upon a disconnection the peer permanently leaves the system.
All the sojourn times in the different states are assumed to be exponentially distributed. On
top of this simple model of the peer behavior, they build an aggregate model of the dura-
bility of a file stored in the system based on either replication or erasure codes, which store
each replica or parity fragment in a distinct peer. The status of replicas or parity fragments is
represented by a Markov chain in which transitions correspond to temporary disconnections
of peers (i.e. data that become unavailable), permanent disconnections of peers (i.e. data that
are lost), reconnections of peers (i.e. data that become available again), and repair operations
(i.e. new redundant data created by the maintenance mechanism). Since the repair opera-
tions are modeled differently in replication and in erasure coding, this Markov chain is used
to evaluate the impact of these two repair schemes on the durability of data.

Ramabhadran and Pasquale [82] propose a similar model based on a Markov chain, which
however does not distinguish explicitly between temporary and permanent disconnections.
It models repair operations for a system that uses replication. The study discusses the impact
of the number of replicas and the aggressiveness of repairs on the data durability. The results
suggest that, due to bandwidth and storage constraints, it is more convenient to maintain
few replicas aggressively than a lot of replicas in a lazy way. It is interesting to mention that
this work validates the exponential distribution of the connection and disconnection times
analyzing the behavior of nodes in PlanetLab.

Dandoush et al. [39] propose a model similar to the one Ramabhadran and Pasquale based
on a Markov chain. Their model, however, addresses both, replication and erasure codes,
and aims to compare different repair strategies. In particular, they evaluate lazy and eager
repair policies with both, centralized and distributed repair process. A centralized repair
process is performed by a central entity, which downloads all the data needed for repairs
and build all the data that has been lost at once. A distributed repair process, instead, can
be performed by any peer, which carries out a single repair. Their numerical results for the
models can be used to tune the system parameters to fulfill predefined requirements. It is
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interesting to note that the authors propose also an improved model in which sojourn times
are hyper-exponentially distributed, which offer a better representation of the real system.
In a successive work [40], the authors show through simulation that repair times are also
hyper-exponentially distributed.

1.4 Focus of the thesis

As we will discuss in chapter 2, the idea of distributed storage based on a peer-to-
peer paradigm is not new. It has been around for about ten years and there are a number of
relevant publications. According to their nature, the publications can be put in one of two
categories:

• Complete systems, which describe fully-working systems and represent a general
proof of concept. While they propose interesting techniques and solutions, the com-
plexity of the whole design often prevents the authors to give a detailed discussion of
the design choices they make.

• Solutions to well-defined sub-problems. These publications, instead, focus on specific
aspects and provide an analysis and results that are reusable by others who want to
build a complete system.

We decided to follow this second approach: the contributions of this thesis aim to provide
clearly understood and reusable building blocks that solve specific issues efficiently.

Among the aspects involved in the design of peer-to-peer backup systems, we focus our
attention on specific aspects of data storage reliability, such as the redundancy schemes and
the repair policies. Our contributions pivot on a vital point: communication bandwidth can
be a scarce resource. This fact, which will be discussed and justified in chapter 3, has been
ignored in many works that investigated data redundancy and maintenance.

A lot of redundancy schemes proposed in literature focus on the efficient use of storage,
while paying a high price in terms of communication. Classical erasure codes are one ex-
ample. They are able to save a lot of storage, but they consume a lot of communication
bandwidth for data repair, which can compromise the feasibility of the system. Our intu-
ition is that it is essential to investigate redundancy schemes specifically conceived for dis-
tributed storage systems that take into account both, the storage space and communication
bandwidth efficiency.

As in the case of redundancy schemes, maintenance policies need to consider the bandwidth
consumption as well. In this case, however, the point is not how much communication band-
width is needed for the maintenance, which is determined by the redundancy scheme itself,
but it is when this communication bandwidth is needed. An important observation is that
the communication bandwidth cannot be saved for later use, on the contrary unused communi-
cation bandwidth is just lost. As explained in section 1.3.3, threshold based repair schemes,
which are the most commonly used, tend to make a bursty use of bandwidth, while proactive
schemes are not able to match properly the behavior of peers. This fact makes us focus on
the design of data maintenance algorithms that strive to smooth the bandwidth utilization
and at the same time to adapt to the real behavior of peers.
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1.5 Organization of the thesis

As discussed in the previous section, in the area of peer-to-peer storage systems, the related
work can be divided in two categories. Chapter 2 proposes an overview of both categories,
describing first some of the most important projects that build complete peer-to-peer storage
systems and then discussing works that deal with subjects related to the focus of the thesis,
namely data redundancy and maintenance.

In chapter 3 we present an analysis of the costs of a peer-to-peer backup system and pay par-
ticular attention to the interplay between the storage capacity of the system and the available
resources at the peers. This chapter makes evident the importance of an efficient use of the
communication bandwidth, and also provides all the tools to correctly frame and appreciate
the contributions of the remaining chapters.

Chapters 4, 5 and 6 describe our main contributions and represent the core of this disser-
tation. While the first two chapters (4 and 5) deal with redundancy schemes that are both,
storage and communication efficient, the last one (chapter 6) proposes a repair policy that
aims to adapt to peer failure patterns and to smooth the communication bandwidth con-
sumption.

Finally, in chapter 7 we draw some conclusions and propose directions for further improve-
ments and extensions.
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CHAPTER2
Related Work

2.1 Introduction

In the last decade the topic of peer-to-peer storage has been actively investigated. In partic-
ular, we can find in the literature the description of a number of projects that aim to design
complete peer-to-peer storage systems. While we presented in the previous chapter all the
issues involved in such design, we provide in this chapter a discussion on how some of the
most representative systems address these issues. The discussion proposed cannot be ex-
haustive and the objective is to provide the reader with the concepts needed to understand
and evaluate the contributions of this dissertation.

A much more detailed discussion is dedicated to the topics that are closely related to our
contributions, namely data redundancy and repair policy. In this part we discuss the state of
the art and we describe the limitations of the current approaches. This discussion, together
with chapter 3 will frame and motivate our contributions.

This chapter is organized as follows: in section 2.2 we give a historical perspective of the
evolution of peer-to-peer storage systems. In section 2.3 we select the most relevant projects
from literature and we propose a comparative discussion of them. In section 2.4 we conduct
an analysis of the data redundancy strategies, discuss their evolution, and pose the motiva-
tions for two of our contributions in this domain. Finally, in section 2.5 we discuss the related
work in the domain of repair policies for data maintenance, which is the subject of our third
contribution.

2.2 The genesis

The seminal ideas of peer-to-peer storage systems come from two different research activi-
ties. On the one hand, companies made an effort to build network file systems that do not
rely on central servers; on the other hand, the need to share files anonymously led the devel-
opment of the first peer-to-peer systems.

21
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2.2.1 Server-less network file systems

In organizations such as companies and universities it is very important to have a global file
system facility, which provides a global namespace for files and a location-transparent access
to them. This facility can be provided using a centralized server or a set of servers, which are
accessed by clients through a network file system (e.g. [88]). Centralized implementations
however are very expensive, servers often require special hardware to handle a very high
rate of request or to provide a high level of reliability. Moreover, they represent a single
point of failure.

The drawbacks posed by centralized implementations led to research in the field of dis-
tributed file systems. Some examples are represented by XFS [23] and Frangipani [94]. The
assumptions made by both systems is that the set of machines collaborating are completely
trusted and are under the control of the system administrator. These assumptions simpli-
fied a lot the design of these systems, which are almost a straightforward extension of the
centralized implementations based on a cluster of servers. A step forward is represented
by the Farsite project, started with a preliminary study [31], which investigated the feasibil-
ity of the deployment of a server-less file system on a set of existing PCs. The big novelty
of Farsite was that the design did not assume any trust in the participating PCs, tolerating a
significant number of failures and misbehavior of malicious nodes. For these reasons, Farsite
represented the first example of a peer-to-peer file system and a milestone on this research
area.

2.2.2 Peer-to-peer file-sharing and DHTs

In the late 90s the first storage systems distributed over the entire Internet were proposed
[44]. The purpose of such systems was mainly the anonymous exchange of files. Even if
the main objective in the design of these systems was to hide the identity of users, since
most of the stored files were illegal and/or copyright protected, they underlined how the
storage resources present at the users PCs could be used to build a global storage service
and represented the first example of peer-to-peer storage systems.

While the first systems, like Napster [15], were based on a central server, called tracker, which
knows the location of the different files, more advanced systems started to implement an
unstructured routing mechanism, mainly based on flooding or on simple routing protocols,
like Gnutella [7] or FreeNet [35].

The need for an efficient way to locate the content without a central tracker led the re-
searchers to propose structured networks that provide the functionalities of a hash ta-
ble but are implemented in a distributed way. These distributed data structures are
called Distributed Hash Tables (DHTs) and have been proposed in many different flavors
[72, 83, 87, 93, 111]

Except from Kademilia [72], no DHTs were deployed for peer-to-peer file sharing, but they
enabled researchers to pursue the investigation in peer-to-peer file systems and storage in
general. Indeed, the first works in this direction [38, 50], as we will explain in the following
section, were conceived as a natural extension of DHTs.
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2.3 An overview of selected projects

One can find in literature a significant number of projects that aim to design complete sys-
tems for distributed storage, distributed file systems, or backup. In this section we present a
selection of the most significant of them.

At the end of the section we propose in Table 2.1 a comparison of the most relevant features
of the systems described.

Farsite The Farsite project [6] has been conducted by Microsoft with the objective of build-
ing a serverless file-system exploiting the desktop PCs present within the company. Farsite
aims to provide a network file system service (like NFS [88]), which means that data are not
immutable, but they can be modified and deleted. The architecture of Farsite [20] proposes to
partition the file system in namespaces and assigns different namespaces to different group
of machines. Each group of machine uses replication and a Byzantine-fault-tolerant protocol
to guarantee data integrity and data consistency. Data durability is provided using a timer-
based repair policy in each group. To increase availability, data placement is continuously
updated using a hill-climbing optimization algorithm. Data are encrypted by the clients be-
fore insertion in the system using convergent encryption.

PAST PAST [50] is an Internet-wide peer-to-peer storage system for immutable data. The
purpose of the system is to build a per file reliable storage service, which provides data dura-
bility, data availability and data security. Even if it does not deal with automatic backup, or
snapshot of big portion of users’ data, PAST resembles a backup system, since it does not al-
low data modification or data deletion. Every peer can insert files into the system, which are
identified by a unique FileID assigned by the system, and placed/located by the means of
the Pastry DHT [87]. Like other DHT-based systems, the FileId determines the peer respon-
sible for a given file and the redundancy is performed creating replicas on fixed number of
neighbors of this peer in the overlay network. To guarantee load balancing, however, PAST
allows replica diversion, which means that replicas can be placed also on peers that are not
neighbors of the responsible peer. Peer fairness is guaranteed by the means of smartcards
and a central authority, which enforces a quota-system.

CFS CFS [38] is a read/write Internet-wide peer-to-peer file system. The spirit of CFS is
very similar to the one of PAST, the difference resides in the fact that CFS provides a sort of
file system structure: files are not stored separately but they can be organized in a directory
hierarchy. As discussed in the previous chapter, CFS relies on a block storage layer called
DHash, on the top of which the file system is built. DHash uses the Chord DHT [93], which
is in charge of replication and data maintenance. Fairness is provided imposing a per IP
address quota system.

PStore PStore [26] is the first Internet-wide peer-to-peer storage system that addresses ex-
plicitly data backup. Data are organized in signed and encrypted chunks and then stored
using the Chord DHT. The chunks support versioning, which allows to perform incremental
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backup. Redundancy is performed by means of chunk replication. The replication however
is not performed automatically by the DHT as in the case of CFS. Chunk replicas are identi-
fied differently and each replica is stored autonomously in the DHT, while the maintenance
of such replicas is delegated to the data owner.

OceanStore OceanStore [16] is a large project based at University of California at Berkeley.
The purpose of the project is to propose an architecture [64] for an Internet-wide archival
storage utility based on the federation of untrusted servers. Within the framework given
by this architecture, the project produced a large number of contributions in all the areas re-
lated to peer-to-peer storage. Some of the specific contributions will be discussed later in this
chapter, while the interested reader can refer to the PhD dissertation by Weatherspoon [101]
for a comprehensive view of the design aspects investigated in the project. To give some de-
tails of the OceanStore architecture we refer to an implemented prototype called Silverback
[105]. In Silverback, every object is identified by a unique identifier, called GUID. The GUID
is used as key to route in the peer overlay network, called Tapestry [111], which is indexing
mechanism similar to a DHT. As in DHT-based systems, the GUID identifies a peer respon-
sible for the object, which will be aware of the position of the erasure coded blocks created
from the object. Updates are performed by versioning, which means that objects are never
modified in place, but new versions (possibly incremental) are created. Data maintenance
is performed thanks to two alternative mechanisms: (1) every peer sends periodic heartbeat
messages to the root of every erasure coded block it stores, when the root misses some of the
heartbeats it detects a disconnection; (2) there could be a third centralized party that checks
the availability of objects. Placement and redundancy parameters are decided through intro-
spection: the system observes itself and tries to infer the statistical properties of participating
peers and then takes decisions based on these properties.

Pastiche Pastiche [36] is an Internet-wide peer-to-peer backup system. In Pastiche every
peer finds a set of backup buddies. These buddies cooperate to backup their own data.
The buddy selection is performed with two criteria: locality, which means that closer peers
are preferred, and data overlap, which means that peers with more data in common are
preferred. These two properties are obtained using two separate Pastry DHTs built using
locality and overlap as distance metrics. Data are organized in chunks, which are encrypted
using convergent encryption and then replicated on other buddies. Every peer is responsible
to check the status of its chunks by polling on regular basis the buddies to detect their failure
and ask them periodically some of the chunks they are storing to detect data corruption or
deletion. Data modifications are allowed using a log-based incremental update scheme.

BitVault BitVault [110] is a follow-up of another project called RepStore [68] and aims to
provide a storage service of immutable data within a local network, where peers are trusted.
Peers are organized in a DHT called XRing [109], which provides a membership service. A
membership service is able to notify every connected peer about other peers’ connections
and disconnections. Every object stored in the system has an identifier, which associate the
object to a responsible peer. The responsible peer stores object replicas on other peers and
stores locally a list of these peers. When a responsible peer receives the notification of the
disconnection of a peer storing an object it is responsible for, it immediately triggers a repair.
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When peers storing replicas receive the notification of the disconnection of the responsible
peer, they elect the new responsible peer and communicate to him their identity. The respon-
sible peer is in charge of choosing the peers to store the replicas, the choice is performed
striving to provide load balance.

TotalRecall Total Recall [29] is an Internet-wide peer-to-peer storage system. The architec-
ture of the system is very similar to the other systems based on a DHT. Every file is stored
autonomously and identified by a key, which in turn identifies a responsible peer in the DHT.
The novelty in Total Recall is that the repair policy and the redundancy techniques are dif-
ferentiated accordingly to the kind of data to be stored and the characteristics of the peers.
In general, file metadata, which point to data blocks, are replicated through the DHTs on the
neighbors of the responsible peers, while data-blocks are erasure-coded and spread on other
peers. Replicated nodes are repaired with an eager policy, while erasure-coded blocks are
repaired through a lazy threshold based policy. Data updates are allowed and consistency is
guaranteed by the responsible peer.

Glacier Glacier [58] is a peer-to-peer storage system intended to be used in combination
with a primary storage within a large company network. While the primary storage uses
a distributed replication mechanism with read/write facilities, Glacier acts as a backup of
such a primary storage providing data durability against large-scale correlated failures. Data
inserted in the primary storage are periodically packed in big storage objects and stored in
Glacier as erasure coded blocks. Objects are signed with a hash-based manifest that is stored
with each block to guarantee integrity. Each block is identified by a key, which is function of
the object identifiers and a salt, this key is used by a placement function to place each block in
the DHT. The placement function stores similar keys on the same set of peers, which means
that sets of peers store the same sets of objects. Such a constrained data placement allows
for an easy data monitoring: the peers belonging to the same set exchange a list of what they
store and any discrepancy is fixed by repairs.
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System Type Scope DHT Redundancy

scheme
Repair
policy

Data
access

Data
placement

Peer
monitoring

Peer
fairness

Farsite
file
system

company
LAN - replication eager read/write availability

byzantine
protocol -

PAST
storage
system Internet Pastry replication eager read-only DHT DHT smart-cards

CFS
file
system Internet Chord replication eager

incremental
updates DHT DHT

IP address
quota

PStore
backup
system Internet Chord replication -

incremental
updates random - -

OceanStore
storage
system Internet Tapestry hybrid

eager/
lazy read/write proximity - -

Pastiche
backup
system Internet Pastry replication -

incremental
updates

proximity/
overlapping -

symmetric
exchanges

BitVault
backup
system

company
LAN XRing replication eager read-only load balance membership

service
-

TotalRecall
storage
system Internet generic hybrid lazy - read/

write
DHT -

Glacier
storage
system

company
LAN generic

erasure
coding eager read-only load-balance

Bloom filter
exchanges -

Table 2.1: A comparison of existing peer-to-peer storage systems.
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2.3.1 Commercial Solutions

It is interesting to mention that in the last years several start-ups have been created to pro-
pose peer-to-peer based file backup. However not much is known about the design and
implementation of these systems.

Wuala [18] is the result of the research at ETH Zurich and offers an online file backup. Users
start with 1 GB of storage and then can get as much as they want, either by trading idle disk
space and bandwidth, or buying additional one.

Ubistorage [17] is a French company, which provides the users with a dedicated storage
device connected to the Internet. This device is used to build the peer-to-peer infrastructure
for data backup.

Allmydata [1] is an online backup company, which developed an open source software,
called Tahoe-LAFS [2], intended for peer-to-peer data backup.

2.4 Data Redundancy Strategies

Data redundancy is a very important issue in reliable storage and in distributed storage
in particular. It is not thus surprising that numerous papers focused on this subject and
investigated optimal redundancy strategies. We first give a brief overview of the different
redundancy schemes, and then discuss how these schemes are adopted in distributed storage
systems.

2.4.1 Data redundancy schemes

Data redundancy is used in both, storage and communication systems. In the first case to
provide data availability and durability, while in the second case for reliable delivery of data.
This dual usage of redundancy is the reason why progress in this field comes from both areas,
data storage and data communication.

Data redundancy techniques belong essentially to two categories: replication and erasure
coding. We already introduced in section 1.3.3 the main characteristics of these two tech-
niques.

Erasure codes based on XOR operations are used for RAID systems [79], while erasure codes
based on linear operations on Galois Fields are the basis of Reed-Solomon codes [80, 84].

The main drawback of Reed-Solomon codes is the computational complexity of coding and
decoding. To overcome this complexity, Luby et al. proposed Tornado Codes and LT Codes
[69, 70], which are near-optimal codes with linear coding and decoding times, paying a small
price in terms of reliability: the reconstruction is guaranteed when slightly more than k par-
ities are used. These codes are based on Low Density Parity Check codes (LDPC) first pro-
posed in 60s by Gallager [53]. An additional interesting property of these codes is that the
parameter h is not fixed in the design, which means that the redundancy rate is not fixed
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and can be accommodated as needed. The codes with this property are referred to as rateless
codes or Fountain Codes. A survey of the possible applications of fountain codes is given by
Mitzenmacher [73].

Another way to build rateless erasure codes comes from Network Coding in the domain
of data delivery in a network. Network Coding is a generalization of the classical data for-
warding mechanism. In traditional systems, intermediate nodes are only allowed to forward
input data on the output links. Network Coding allows them to encode input data and send
the encoded results on the output link. Ahlswede et al. [21] show that Network Coding can
achieve the theoretically optimal data throughput. Other studies [63, 66] showed that linear
encoding operations are enough to reach this optimum. Finally Ho et al. [60] proved that
random linear encoding operations performed independently at the intermediate nodes can
achieve the optimum throughput with a very high probability, which depends only on the
field size adopted and can be made arbitrarily close to one increasing such field size. This
last study opened up the possibility to build rateless erasure codes based on random lin-
ear codes and to use such codes for storage purposes [52] and in particular for distributed
storage applications [19].

2.4.2 Redundancy in distributed storage systems

Replication is the simplest redundancy scheme and it is not surprising that most of the sys-
tems in literature are based on replication. This is particularly true with the first systems
conceived as an extension of DHTs, where it is natural to adopt replication: the object are
usually stored in the peer responsible of the object key, while its replicas are stored in the
successor peers in the DHTs. For example PAST [50] adopts full-file replication, while CFS
[38] divides files in blocks and then performs replication at the block level. Other examples
of replication based systems can be found referring to Table 2.1.

The first system that proposed the use of erasure codes is FreeHaven [44], which argued that
erasure codes are able to provide a higher data confidentiality: storing a coded blocks of an
object is more secure than storing a full replica of the object, even if encryption is applied.

A study conducted by Baghwan et al. [27] compares replication and erasure codes and ad-
vocates the use of erasure codes for their higher storage efficiency: erasure codes are able to
provide the same level of reliability as replication, consuming a much smaller storage space.

OceanStore [64] is based on a hybrid scheme, where meta-data are replicated, while normal
data are erasure-coded. The reason for this is detailed in a study from the same project
[103]. This study proposes an analytical comparison between replication and erasure codes
and while it confirms the higher storage efficiency of coding with respect to replication, it
argues that coded data can be accessed with a higher latency than replicated data. These
reasons justify the adoption of erasure codes for stored data to save storage space and the
use of replication for meta-data to guarantee a faster access. For the same reasons TotalRecall
[29] proposes an hybrid scheme where data is both replicated and erasure-coded to provide
low-latency, thanks to replicas, and durability at low storage cost thanks to coding.

In 2003, Blake and Rodrigues investigated the impact of the maintenance process on the econ-
omy of the system. Their study [30] showed how the communication bandwidth needed for
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data maintenance may be quite large and might be unsustainable in common Internet sce-
narios when erasure codes are used. The reason for this is that when an erasure coded block
must be repaired, the whole file is needed. This means that any repair operation requires
the transfer of an amount of data equal to the whole file size, which becomes unfeasible if
the failure rate is too large or the network bandwidth is too small. Rodrigues and Liskov
[86] carried out a comparison between replication and erasure codes taking into considera-
tion the maintenance communication bandwidth needed and concluded that advantages of
erasure codes in terms of storage might not be worth their disadvantages in terms of com-
munication bandwidth. To overcome this problem a number of works [30, 86, 107] proposed
the use of a hybrid replication/coding scheme, where the erasure codes are used to provide
a high level of reliability, while the replicas are used to compute repairs avoiding the transfer
of the whole file.

Dimakis [42], however, argues that maintaining both replicas and coded-blocks increases the
complexity of the system: replicas must be maintained as well and the criteria to maintain
replicas are different from the ones to maintain coded-blocks. Moreover, the introduction
of replicas decreases the storage efficiency of the redundancy scheme. Dimakis claims that
the optimal solution is to find erasure codes that keep their storage efficiency providing
communication efficiency as well and proposes a class of codes called Regenerating Codes.

2.5 Repair Policy for Data Maintenance

Storing data redundantly may not be enough to make data available and more importantly to
guarantee data durability. During the lifetime of the system it is vital that data are monitored
and maintained. The maintenance consists in replacing the data lost with new redundant
data. The mechanisms to perform this replacement depend on the particular redundancy
scheme adopted, as mentioned in the previous section, while the process that decides when
this replacement must be done is a completely different issue, which can be referred to as the
repair policy. In this section we give a short overview of the existing techniques, underlining
what are the major trends and the open issues.

The first systems were very naïve from this point of view. In particular the main target of
these systems was to provide availability at all costs. For this reason some of them [38, 50, 85]
adopt a very simple technique: whenever a peer is detected to be offline, all the content it
was storing needs to be recreated. The extreme simplicity of this technique is the reason for
its popularity, however it is extremely inefficient as well. The inefficiency resides in the fact
that the system considers all the disconnections as permanent disconnections: when a peer
reconnects after a short period its content is not reintegrated. This choice may be accept-
able if the rate of transient disconnections is low compared to the rate of permanent ones.
Bhagwan et al. [28] made an analysis of the connectivity traces of Overnet, a file sharing net-
work based on Kademilia, and pointed out how transient disconnections are very common.
The conclusion of their study is that availability can be provided efficiently by taking into
account both, short-term and long-term evolution of the peer behavior, i.e. transient and
permanent disconnections. The same authors in Total Recall [29] classified repair policies in
eager and lazy ones. An eager policy reacts immediately to disconnections, while a lazy pol-
icy delays the repairs in order to reintegrate peers that disconnected temporarily, avoiding
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useless maintenance. They propose a lazy repair technique, based on thresholds. The idea is
as follows:

• Identify the amount of redundancy that is strictly needed to guarantee the availability
required. This amount is determined through introspection, i.e. observing the statisti-
cal behavior of peers, and it defines a repair threshold that must be guaranteed at all
costs.

• When the data are stored for the first time, insert in the system an amount of redun-
dancy larger than the repair threshold.

• Avoid any repairs as long as the amount of redundancy available in the system is larger
than the repair threshold.

• When the available redundancy hits the repair threshold, perform all the repairs to
bring the level of redundancy back to its initial level.

One limitation of this approach is that the system is able to reintegrate reconnecting frag-
ments only as long as the threshold has not been hit and the repairs have not been performed.
Chun et al. [34] proposed a very similar technique, called Carbonite that solves this issue. We
propose a discussion about the differences between these two techniques in chapter 6.

In backup systems, as discussed in chapter 1, durability is far more important than availabil-
ity. Lefebvre and Feeley [65] showed how durability could be provided at much lower price
than availability and advocated the use of a repair policy able to separate durability from
availability. The technique proposed is based on timers: a fragment is considered unavail-
able, but alive, when it is not available for a period smaller than a given timer value. This
timer value is again determined by introspection.

Datta and Aberer [41] studied the time evolution of the system based on Markov models.
They compared eager and lazy policies and proposed a new lazy policy based on random-
ization: Every disconnected node is repaired with a given probability that depends on the
state of the system. They show how this randomized technique provides the same steady
state guarantees of other lazy techniques, improving the resilience from a time-evolution
perspective.

Sit et al. [90] put the emphasis on the smoothness of the bandwidth utilization during the
repair process. They show that repair policies that make a bursty use of the network band-
width are not efficient. The solution proposed is called Tempo and spreads the repair process
over time to smooth as much as possible the network bandwidth utilization. Tempo assigns
to every peer a bandwidth budget and then asks the system to perform repairs at a fixed rate
that consumes the entire budget.



CHAPTER3
Challenges and Costs

3.1 Introduction

The main pitfall in the evaluation of a peer-to-peer system is the misconception that no par-
ticular care in managing resources is needed as long as the resources provided by peers are
larger than the resources that those peers would require if the service was implemented as
a centralized service. This naïve evaluation neglects that the coordination of many different
distributed entities requires a continuous exchange of information, which represents a cost
in terms of communication. Moreover, the unreliability of peers requires a more robust and
often more costly design, which would not be needed in a centralized service.

In the special case of data backup, one may believe that the system needs that peers provide
only storage space, which must be larger than the global storage capacity we ask to the
system. The reality is that assuring data durability in such a hostile environment entails a
number of costs that include not only storage, but also communication and computation.
These resources must be administered with care, since their availability is possibly limited
and an inefficient use may reduce the total storage capacity the system can provide.

The objective of this chapter is to build an analytic model that captures the main costs of
a peer-to-peer file backup system and their impact on the storage capacity of the system.
In particular, the final outcome will be an upper-bound on the amount of backup capacity
available for each participating peer as function of the resources that peers contribute on
average to the system. Such an analysis is deeply important for two main reasons:

• Understanding the costs gives precious insights on what a system with given resource
constraints can achieve in terms of backup storage capacity. The system designer,
aware of these constraints, can infer what is reasonable to expect in terms of service
and performance from a given set of peers.

• The analysis of the costs unveils the mechanisms that produce them, providing a clear
path to follow if one wants to improve the system performance. This path justifies the
directions of the work presented in this dissertation.

31
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The objective of our analysis is not to cover all the details of such a complex system. The
purpose is, instead, to give an idea of the inter-play between available resources, system
performance, and system efficiency.

Section 3.2 describes the main characteristics of the modeled system. In particular it describes
the life-cycle of a file stored in the system, and states the assumptions and the details of the
model used to describe the behavior of peers. In section 3.3 we recall the characteristics
of the main redundancy schemes and we analyze their efficiency, which will be then used
in the following analysis. The core of the chapter is represented by section 3.4, where the
upper-bound on the system storage capacity is computed. Finally in section 3.5 we discuss
the results obtained, which allow to motivate and introduce the contributions presented in
the next chapters.

3.2 Overview of the modeled system

Formalizing the definition of a peer-to-peer file backup system involves two different as-
pects: one refers to the definition of a file backup system, while the other is related to the
peer-to-peer nature of the system.

A file backup system is a system able to store safely the data to be backed up. This means
that, when the owner of the data needs them, they can be retrieved from the system. As
detailed in section 1.2.3, this generic feature articulates in two specific properties: data avail-
ability and data durability. We already discussed how in a file backup system durability is
essential, while a very high level of availability is not a strict requirement. In formal terms, a
file backup system must guarantees something around 5 nines for durability, while an avail-
ability of 99% can be considered enough.

The peer-to-peer architecture of the system implies that the resources (storage, bandwidth,
and computation) are provided by service customers themselves, which collaborate, hope-
fully without central coordination, to guarantee data durability.

In the next subsections we describe how this kind of system works in practice, we propose a
model of the fundamental problems it has to cope with, and we elaborate the basic solutions
adopted to solve these problems. All these elements will then be used to understand the
cost-performance trade-offs.

3.2.1 File life-cycle

In a peer-to-peer file backup system, the participating peers collaborate to store durably a
given amount of data. To understand how this is done, let us analyze the life-cycle of a
single file inserted in the system. This life-cycle consists of three steps:

• Insertion: The file owner processes the file to add redundancy to it. The redundant
data are uploaded to the system, i.e. they are uploaded and stored on peers participat-
ing to the backup system as already illustrated in Fig. 1.4.
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• Maintenance: Once inserted the key-role of the system is to guarantee the durability
of the files. This operation is non-trivial, since data durability is threatened by a lot of
factors. In very rough terms the maintenance process can be described as the monitor-
ing of data and the refurbishment of them when losses are detected. It is important to
note that the maintenance operation is done by the system autonomously, without the
presence of the file owner, which means that the original file is not available during
this phase.

• Reconstruction: Eventually, the file owner needs to retrieve the file inserted in the
system. This operation consists of downloading enough redundant data from the par-
ticipating peers and reconstructing the original file from them.

3.2.2 Modeling the behavior of peers

As mentioned in the description of a file life-cycle, there are a lot of factors that threaten the
survival of the files stored in the system. The main problem is the intrinsic unreliability of
peers, in particular the fact that peers are not continuously connected and more seriously the
fact that peers can abandon the system for ever, experience software or hardware failures or
delete data.

We already presented an approximate model of the peer behavior based on a simple state
machine. Now we refine this model as depicted Fig. 3.1 and give a more formal description.

(a) Model of intermittent connectiv-
ity.

(b) Model of permanent disconnec-
tions.

(c) Combined model.

Figure 3.1: State machine modeling the behavior of a peer.
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The model consists of two nested state machines. The first state machine is depicted in
Fig. 3.1a and describes the intermittent connectivity of a peer, which alternates periods in
which it is connected to periods in which it is temporarily disconnected. In particular the
model defines two states:

• Online. A peer online is a peer that actively participates in the system. In this situation
the peer is connected, i.e. can be contacted by any other online peer, and it is safely
storing all the data that the system asked to store.

• Offline. An offline peer is temporarily disconnected, i.e. it is not reachable by other
peers, but it is safely storing the data that the system asked to store. This condition
covers the cases in which the peer is off, is experiencing a network outage, or its appli-
cation has crashed.

The transition rates define how often a peer changes state and represent the inverse of the
times spent by a peer in the different states. In particular we define:

• Average session time. The average time spent by a peer in the online state. It is de-
noted with Ton, while 1/Ton denotes the disconnection rate.

• Average disconnection time. The average time spent by a peer in the offline state. It is
denoted with Toff, while 1/Toff denotes the reconnection rate.

A peer that is either in the online or in the offline state is defined as an alive peer. The union
of the two states of the state machine of Fig. 3.1a corresponds, indeed, to the alive state of
the model depicted in Fig. 3.1b, which represents the process of permanent disconnections.
Formally, this model defines two states:

• Alive. An alive peer is either online or offline and it is safely storing all the data that
the system asked to store.

• Dead. A dead peer is a peer that has logically abandoned the system and the data
stored on that peer are permanently lost. This condition covers the cases in which the
peer has deleted the data or it has quit the system for ever.

In this case there is a unique transition with a rate, called abandon rate, whose inverse de-
fines the lifetime:

• Lifetime. The average time spent by a peer in online and offline state, before going to
the dead state.

In Fig. 3.1c the two models presented are combined in a nested model.

It is useful to define an auxiliary parameter α, called the up ratio, which represents the per-
centage of time a peer is online during its lifetime:

α =
Ton

Ton + Toff

To be precise, in the nested model of Fig. 3.1c, the average time spent by a peer in the online
state, i.e. the average session time, is not exactly Ton, since the average session time is func-
tion of both Ton and Tlife. However if one assumes that Tlife >> Ton, the influence of Tlife can
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be considered negligible (The same observation holds for Toff and the average disconnection
time). In our case this assumption is valid since we consider Ton and Toff smaller than 1 day
and Tlife larger than 1 month.

3.2.3 The role of data redundancy

When redundancy is added to data, the obtained redundant data are such that even when
part of them is not available the original content can be reconstructed. Clearly data redun-
dancy inserted at the beginning can easily cope with the temporary disconnections, since if
enough redundancy is added, even when part of the peers are in the offline state, the rest
are enough to provide the stored files. However, we know that peers may also permanently
disconnect and produce data loss, which means that, if nothing is done, the amount of re-
dundancy present in the system decreases. For this reason we need data maintenance, which
compensate the data losses by constructing new data, i.e. performing repairs.

To sum up, data redundancy inserted at the beginning copes with temporary disconnections
and strives to provide data availability, while the maintenance of such redundancy copes
with permanent disconnections and strives to provide data durability.

3.3 Redundancy Schemes

A redundancy scheme defines how the redundancy is added to the stored data. There exist
different techniques to perform this operation and each technique presents a different trade-
off in terms of benefits and costs. While in section 2.4.1 we described the main redundancy
schemes used for reliable storage, in this section we propose an analysis of their reliability
and efficiency.

3.3.1 Metrics

The analysis of a redundancy scheme consists in evaluating the reliability of the data storage
and the costs such redundancy scheme produces.

The ability of a redundancy scheme to be resilient to such data loss is usually measured
as the probability of a correct reconstruction of a stored object. Note that this measure is
not absolute, but it is conditioned by the peer behavior: one of the most important factors
is the probability of having concurrent failures. For this reason, the reliability of a redun-
dancy scheme is measured as the number of concurrent losses that it can sustain without
compromising the ability of reconstructing original data. More formally, one can express
this property as the probability of data loss (failure) given that l concurrent losses occurred:
P (failure|l).

The description of the costs is more complex. To perform a complete analysis, we need to
consider separately the two main activities involved in a storage system:
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Storage The core activity of a storage system consists of the initial insertion of the data
along with redundancy. The cost of the redundancy scheme, in this phase, is merely the
absolute amount of storage space consumed. To abstract from the amount of data, it is mea-
sured as the ratio between the size of the stored data with redundancy |datared| and the size
of the original data |data|. This cost can be referred to as redundancy factor and denoted as

β =
|datared|
|data|

Maintenance During the lifetime of a peer-to-peer storage system, permanent disconnec-
tions occur. Whenever this happens part of the redundant data is lost and the chances of
losing the original data increase. If nothing is done to compensate these losses, sooner or
later the durability will be not guaranteed anymore. The maintenance consists in refurbish-
ing the redundant data when they are lost. This operation is performed reading the available
data and producing new ones. The reading operation has a cost, which in a distributed
storage system translates into network traffic, whose volume depends on the redundancy
scheme adopted but also on lots of other factors, such as the peer behavior, the repair pol-
icy, the coordination algorithms etc. To evaluate only the contribution of the redundancy
scheme, we measure the amount of data read with respect to the amount of new redundant
data created. In other words, once the system has decided that a new redundant bit needs to
be created, we measure how many (available) bits the scheme has to read. This cost can be
referred to as repair degree and denoted as d.

Let us now apply the metrics proposed for the most representative examples of redundancy
schemes: replication and erasure codes.

3.3.2 Replication

Replication is the most straightforward way to add redundancy. Its basic version consists in
creating multiple copies of the object to store. The analysis of such a scheme is very simple.
Let us assume that Nrep replicas of the original object are stored on different peers. The
number of losses that the system can support is Nrep − 1. In a formal way the probability
of losing the object conditioned by the probability of having a given number of concurrent
losses is:

P (failure|l) =
{

0 l < Nrep
1 l = Nrep

The redundancy factor is
β = Nrep

while the repair degree is
d = 1

since the reconstruction of a new element corresponds to a simple copy of one replica.
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3.3.3 Erasure Codes

A generic erasure (k,h)-code can be described as follows. Consider a file to store and split it in
k (original) fragments, then process these fragments to produce k +h parity fragments such
that any k of them are sufficient to reconstruct the original fragments. The number of losses that
this scheme can sustain is h. In a formal way the probability of losing the object conditioned
by the probability of having a given number of concurrent losses is:

P (failure|l) =
{

0 l ≤ h
1 h < l ≤ k + h

The redundancy factor is

β =
k + h

k

This corresponds to significantly increased storage efficiency. We recall here the example
proposed in chapter 1: consider a replication scheme with Nrep = 3 and an erasure coding
scheme where k = 3 and h = 2. In both cases the system can accept up to two losses without
losing the original data, however replication consumes storage space for 3 times the size of
the original data, while erasure coding consumes only 5/3 times the size of the original data.
The price to pay for this increased storage efficiency resides in the repair cost. As we will
show later, the existing coding schemes (with the characteristics described) require a repair
degree of

d = k

Note that replication can be considered as a special case of coding where k = 1 and h =
Nrep − 1.

3.4 An upper-bound on the storage capacity

To understand the implication of the costs on the practical functioning of the system, it is es-
sential to compute the impact of such costs on the ultimate objective of a file backup system,
i.e. the durable storage of the maximum amount of data.

In this section we propose a quantitative analysis of this impact. In particular, given a set
of resources provided by the peers and given the behavior of such peers we compute an
analytic upper-bound on the total storage capacity of the system.

Temporary and permanent disconnections impact differently the reliability of the system.
Transient disconnections affect availability of data, i.e. the ability of reconstructing the stor-
age object in a given moment, while permanent disconnections affect durability, i.e. the real
survival of data. This is quite intuitive if one thinks that, without permanent disconnections,
data might be unavailable but cannot be lost, which means that they can be eventually re-
constructed. This might lead us to assume that in a backup system, where durability is the
only thing that matters, we can avoid taking care of temporary disconnections. However,
every repair, which happens in response to a permanent disconnection, needs at least k parity
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fragments, which implies that providing durability requires availability, or more generally
that poor availability may have a negative impact on durability.

In practice a system that wants to provide data durability must first provide data availability
through proper data redundancy, which generates a storage cost, and then must guarantee
durability by the means of a proper maintenance process, which generates a communication
cost. Since these “activities” are inter-dependent, the costs they generate and thus the effects
on the system storage capacity are inter-dependent as well. After having formalized in the
next section the requirements and the available resources of the system, we first decompose
these inter-dependent costs in their two components and then present an aggregate vision of
them.

3.4.1 The system from a quantitative perspective

The peer-to-peer file backup system we analyze consists of a number Np of peers that col-
laborate to store an aggregate amount of data whose original size (before applying any re-
dundancy scheme) is |data|. The data to be stored consist of Nf files. Each file, whose size
is denoted by |file|, is managed separately and when the repair policy detects for a given file
the need of a repair, a new parity fragment is reconstructed using the existing ones.

In this analysis we do not consider the details related to the organization of peers, such as the
overlay management, the monitoring infrastructure and so on. These issues are orthogonal
to the problems studied here. While they can have an impact on the efficiency of the system,
they mostly do not interact with the parameters we are considering.

We focus on the following resources that the peers provide and study how they impact the
overall storage capacity of the peer-to-peer storage system.

Bandwidth Every peer is connected to the network through a data link with an average
upload bandwidth of b. For the present analysis we consider that download capacity is un-
limited, which simplifies a lot the task and can be justified by the fact that home users are
mostly connected through asymmetric links, where download bandwidth is much higher
than upload bandwidth. In other words since the upload link is most likely the communi-
cation bottleneck, assuming an infinite download bandwidth should not affect significantly
the results. Moreover, the effect of a finite download bandwidth could only be a further re-
duction of the storage capacity offered by the system, which does not affect the validity of
our analysis, which aims to find an upper-bound of such capacity.

Storage Peers participating to the system provide a certain storage space to the peer-to-
peer storage system. The average storage space each peer offers is denoted as |storage|.

3.4.2 Amount of Redundancy

Following the same approach as in [30], we first consider a system where peers have an
infinite lifetime, which means that stored data can never be lost. This system correspond to
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the model of Fig. 3.1a. In such a system, durability is not an issue and availability can be
provided using a proper redundancy scheme. The objective is to store for each file a number
of parity fragments k + h such that at any given moment k of them are on peers that are
online.

In this computation we assume that the session time and the disconnection time are dis-
tributed according to an exponential distribution with a mean value equal respectively to
Ton and Toff. The exponential distribution assumption is not novel and it is supported by the
analysis performed in a number of other studies [39, 82, 100, 102].

Under this assumption the model corresponds to a continuous-time Markov chain and we
can derive analytically (the derivation is proposed in section 3.6) the probability πr of r peers
out of k + h to be online (and consequently k + h− r peers to be offline), which is function of
k,β, and α.

πr =


[
1 +

∑n
j=1

∏j−1
i=0

βk−i
i+1

α
1−α

]−1
r = 0

πr−1
βk−r+1

r
α

1−α 0 < r ≤ n

A file is considered available, i.e. it can be reconstructed, when at least k peers are online.
The probability of such condition is denoted with a and can be expressed as:

a =
n∑

r=k

πr (3.1)

which means that a is in turn function of k, β, and α.

If we set a target availability of â, given the values of k and α, we can find using eq. 3.1 the
minimum value of β that guarantees:

ak,β,α ≥ â

If we set, as discussed in section 3.2, a target availability of 99%, which corresponds to a =
0.99, we obtain the results shown in Fig. 3.2 as function of the parameter k and for different
values of up ratio α.

An obvious observation is that more stable peers (larger α) require less redundancy. More
importantly, the redundancy factor is highest for k = 1, which corresponds to replication,
and the more we increase k the less redundancy is required.

3.4.3 Maintenance Process

The analysis carried out in the previous section assumes that no maintenance is needed.
A more realistic analysis must take into account that peers have a finite lifetime and that,
to provide durability, the pieces lost due to permanent disconnections must be periodically
refurbished through repairs. A repair requires to transfer to a repairing peer the parity frag-
ments needed to construct a new one. Given that the available bandwidth is limited, implies
that the number of repairs in a given period of time is limited, which in turn will put a bound
to the total amount of data we can store safely.
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Figure 3.2: Redundancy factor β required for an availability of 99% as function of the up ratio α and
the number of original fragments k the file is cut into.

Let us consider an ideal case in which an oracle tells apart permanent disconnections from
temporary ones, which means that we perform only the repairs strictly needed to assure the
durability of the data. Since the average lifetime of each of the Np peers in the system is Tlife
and each peer stores on average (k + h)Nf/Np pieces, we can say that the number of pieces
lost permanently constitutes a flow of events with a rate

λ =
(k + h)Nf

Tlife

From the model proposed in [51], the piece losses can be interpreted as jobs that enter a queu-
ing system, which represents the repair process as depicted in Fig. 3.3. The “jobs” leaving
the queue represent the new pieces created. To guarantee the stability of the system we must
assure that the repair rate µ is larger than the loss rate λ.

Figure 3.3: Queuing system representing the repair process.

To compute the repair rate, let us analyze a single repair operation. In this analysis we
assume the use of traditional erasure codes, where a repair requires transferring k parity
fragments from k connected peers to a new peer, called newcomer. In terms of upload data
transfer, this implies the transfer of an amount of data corresponding to the size of a file.
Since we are dealing with an average case analysis and assuming that the organization of
repairs distributes equally the different repairs among all the connected peers, we can say
that the effort required by a single repair is shared by all the connected peers1, which are on

1We can make this assumption, since multiple repairs are performed at the same time and on average they
load equally all the peers.
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average αNp. This means that the rate at which the system is able to complete a repair is
given by

µ =
αNpb

|file|
where b represents the upload bandwidth of a peer. Imposing the stability condition λ ≤ µ
we have:

(k + h)Nf

Tlife
≤ αNpb

|file|
⇒ Nf |file| ≤

αNpbTlife

k + h

The quantity Nf |file| corresponds to the total amount of data stored in the system, on which
we have obtained an upper-bound, which considering that k + h = βk, can be expressed as:

|data| ≤
αNpbTlife

βk
(3.2)

3.4.4 Peer Data Share

In the previous section we derived an upper-bound on the total amount of data that can be
stored safely in the system. More interesting is to quantify the amount of data that every
single participating peer can store, which we refer to as the data share |share|.

The value of |share| can be obtained by dividing the right hand side of eq. 3.2 by the number
Np of participating peers. We also know from section 3.4.2 that β depends on k and α. Given
this we obtain:

|share|k,α,Tlife,b =
αbTlife

βk
(3.3)

This result is very powerful as it expresses the relationship between the characteristics of
the peers, the parameters of the erasure code employed, and the amount of data that every
single peer can insert in the system. In other words, given all the other factors, no matter
how peers are organized, how the system detects piece losses or performs repairs, |share| as
given in eq. 3.3 gives an upper-bound on the amount of data that can be stored safely.

If we want to store more data, we need to adopt more efficient techniques to manage data
redundancy.

To get an intuition for what values of |share| are feasible, we plug in some values in eq. 3.3.
If we set the upload bandwidth to 100Kbps and the target availability to 99% we obtain the
results depicted in Fig. 3.4. One can easily see that poorly connected peers will prevent the
system from storing more than few GBytes per peer. Moreover, these numbers reflect an
ideal case in which an oracle tells the system when to do repairs and the system is able to do
repair in the most efficient way possible. It is reasonable to expect that the amount of data
that can be actually stored in a real system would be even lower.

Another conclusion one may draw from the results in Fig. 3.4 is that the more we increase k
the less data can be stored safely. As a consequence, replication is the redundancy scheme
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Figure 3.4: Peer Data Share for an upload bandwidth b=100Kbps, target availability 99% as function
of the up ratio α and the number of original fragments k the file is cut into.

one should use since it requires the least communication bandwidth for piece repair and
consequently allows to store more data. However, we need to remember what we saw in
section 3.4.2, namely that replication requires much a higher redundancy factor than erasure
codes. Since every peer may provide a limited amount of storage space, replication is pos-
sibly not the best choice. More formally, the total amount of data stored at a peer, including
the redundant data, must be smaller than the total space capacity provided by a peer.
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If we denote as |storage| the average storage space provided by a single peer we get the
additional constraint:

β|data| ≤ Np|storage| (3.4)

If we fix the storage space provided by each peer at |storage| = 10GB eq. 3.3 and eq. 3.4 will
give the amount of data that can be stored safely by each peer as depicted in Fig. 3.5. This
figure shows that the peer data share |share| reaches a maximum at k = k̂:

• For k < k̂, the system is storage limited since the quantity of data that every peer stores
amounts to 10GB and the amount of data |share| that a peer can safely store is given by
10GB divided by the redundancy factor required for that particular value of k.

• For k > k̂, the system is communication bandwidth limited and the curves are identical to
the ones in Fig. 3.4.

These results illustrate nicely how the choice of k in the use of erasure codes allows to trade-
off between storage and bandwidth consumption.

For reference and clarity we summarize in Table 3.1 a list of the symbols adopted and their
meaning.

symbol meaning
Ton Average session time of peers.
Toff Average disconnection time of peers.
Tlife Average lifetime of peers.
α Peer up ratio.
β Redundancy factor.
d Repair degree.

Nrep Number of replicas in a replication scheme.
k Number of original fragments in an erasure code.
h Number of additional fragments in an erasure code.
Np Number of peers participating in the system.
Nf Number of files stored in the system.
|file| Size of a file stored in the system.
|data| Total amount of data stored in the system without redundancy.
|datared| Total amount of data stored in the system with redundancy.
|storage| Average storage space offered by every peer.

b Average upload bandwidth offered by every peer.
|share| Average amount of data every peer can insert in the system

Table 3.1: Table of symbols used in the computation of the upper-bound the system storage capacity.
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Figure 3.5: Peer Data Share for an upload bandwidth b=100Kbps, target availability 99%, and a stor-
age contribution of 10GB per peer, as function of the up ratio α and the number of original fragments
k the file is cut into.

3.5 Lesson learned

The analysis we have proposed deals with an ideal system and neglects a lot of details present
in a real system. However, the results are able to illustrate how important it is to administer
efficiently the resources available to maximize the storage capacity provided by the system.
The need for efficiency motivates our contribution and translates into the two issues we
address: efficient redundancy schemes and efficient repair schemes.
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3.5.1 Efficient Redundancy Schemes

From the discussion at the end of section 3.4.4, it is clear that existing redundancy schemes,
namely replication and erasure coding, defines a clear trade-off, which is either communica-
tion bandwidth efficient or storage efficient.

The first question we aim to answer is: Is there a redundancy scheme able to combine the storage
efficiency of erasure codes and the communication efficiency of replication?.

Our contribution to answer this question is twofold:

Implementation and analysis of Regenerating Codes Regenerating Codes, originally pro-
posed by Dimakis [42, 43], seem to solve this issue, since they decrease significantly the
amount of communication required for maintenance, while providing almost the same stor-
age efficiency. However the original paper only provides a theoretic framework that allows
the construction of these codes, while it does not discuss a real implementation.

Our contribution in chapter 4 consists of a description of a practical implementation Fenerat-
ing Codes, based on random linear codes. On the basis of this implementation, we evaluate
analytically and experimentally the costs of such codes not only in terms of storage and
communication bandwidth, but also in terms of computation. We show how Regenerating
Codes are actually able to provide higher bandwidth efficiency as compared to traditional
erasure codes, with almost the same storage efficiency, but they may generate considerable
computational complexity, which in some cases renders their use impractical.

Hierarchical Codes We propose in chapter 5 a new class of codes, called Hierarchical
Codes. They are conceived with the same objective as Regenerating Codes, but they do not
suffer of a higher computation complexity. Hierarchical Codes are based on linear codes, but
they allow the construction of parity fragments that depend only on a subset of the original
fragments. This choice, on the one hand, reduces the required repair degree, while on the
other hand, increases the number of repairs needed to provide the same level of reliability
of a traditional erasure code. We show through experiments that Hierarchical Codes estab-
lish an interesting trade-off in terms of repair degree and number of repairs, which can be
exploited to reduce the global communication bandwidth needed by maintenance.

3.5.2 Efficient Repair Policies

In chapter 6 we address the efficiency of the system from a different perspective focusing
on repair policies. The repair policy defines when the repairs must be performed and, as
discussed in section 1.3.3, this task is non-trivial mainly because the system is not able to tell
apart temporary disconnections from permanent ones.

In the model adopted in this chapter, there are two ideal assumptions about the repair policy:
(i) an oracle tells apart temporary disconnections from permanent ones (ii) repairs are done
such that the communication bandwidth utilization is constant. The first assumption guar-
antees that the number of repairs performed is the minimum possible, while the second one
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guarantees that the bandwidth is used as smoothly as possible. In a real system, where such
an oracle does not exist, the repair policy likely performs more repair than what is strictly
needed. Moreover, existing repair policies, mainly threshold-based, tend to perform repairs
in bursts and thus to make a bursty utilization of the repair bandwidth, which is extremely
inefficient.

Our contribution consists of a repair policy, based on a statistical model that is able to infer
the permanent disconnections and to perform the needed repairs at a rate that is as constant
as possible, which maximizes the smoothness of the bandwidth utilization.

3.6 Derivation of the distribution of the number of available frag-
ments with infinite lifetime

Consider a set of n = k + h peers that behave independently accordingly to the model of
Fig. 3.1a. If we assume that session times and disconnections times are exponentially dis-
tributed with mean values respectively of Ton and Toff, and we store one fragment on each
peer, we can model the number of available fragments with the continuous-time Markov
model depicted in Fig. 3.6. The generic state r in this model corresponds to the condition in
which r fragments are available and n− r fragments are unavailable.

Assuming that the current state is r, the system can move to the state r − 1, if one of the r
online peers disconnects, which happens with a rate r/Ton. The system can also move to the
state r +1, if one of the n− r offline peers reconnects, which happens with a rate (n− r)/Toff.
Repeating this analysis for each state the transition rates of Fig. 3.6 are obtained.

Figure 3.6: Continuous-time Markov model expressing the number of available fragments.

The model is a particular case of a birth-death process with closed population, as depicted
in Fig. 3.7, where the rates are mapped as follows:

λr = n−r
Toff

µr = r
Ton

(3.5)

For such a system the expression of the state probability is well-known [99]:

πr =


[
1 +

∑n
j=1

∏j−1
i=0

λi
µi+1

]−1
r = 0

πr−1
λr−1

µr
0 < r ≤ n

(3.6)
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Figure 3.7: Generic birth-death process with closed population.

Using the mapping of eq. 3.5, we have:

λr−1

µr
=

n− r + 1
r

Ton

Toff

Using the relation α = Ton/(Ton + Toff), we have:

Ton

Toff
=

α

1− α

Plugging what we obtained in eq. 3.6 and using the relation n = k + h = βk, we can finally
derive the state probabilities of the model of Fig. 3.6:

πr =


[
1 +

∑n
j=1

∏j−1
i=0

βk−i
i+1

α
1−α

]−1
r = 0

πr−1
βk−r+1

r
α

1−α 0 < r ≤ n
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CHAPTER4
Regenerating Codes

4.1 Introduction

The cost analysis in chapter 3 shows how important it is to find redundancy schemes that
provide both, storage and communication efficiency. Regenerating Codes are a class of era-
sure codes that provide almost the same storage efficiency as classical erasure codes, with a
significant reduction of the communication bandwidth needed upon repairs.

The original description of Regenerating Codes does not propose a practical way to imple-
ment them and more importantly does not deal with the costs that such codes imply and
consequently with their feasibility in the real world.

Our contribution aims to fill this gap. First, we give a detailed description of the theoretic
properties of Regenerating Codes, then we describe our implementation based on random
linear codes, and finally we perform an analytic and experimental evaluation of the different
cost/performance trade-offs.

In the next three sections we formalize the notation used for generic erasure codes, describe
how the redundancy is employed in the different phases of the system life-cycle, and we pro-
pose a detailed analysis of the costs for each of these phases. After this general introduction,
we recall in section 4.5 the fundamental properties of Regenerating Codes and we describe in
section 4.6 our implementation based on random linear codes. The last part of the chapter is
dedicated to the evaluation of the costs generated by Regenerating Codes: in section 4.7 we
propose an analytical evaluation of the complexity of the operations required by Regenerat-
ing Codes and, finally, in section 4.8 we describe the experimental results obtained testing
our implementation of random linear regenerating codes.

4.2 Notation for Erasure Codes

Before going into the details of Regenerating Codes, it is essential to establish a unique no-
tation for generic erasure codes. This notation must be generic enough to express all kinds

49
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of erasure codes this dissertation deals with, namely traditional erasure codes, regenerating
codes and hierarchical codes, which will be discussed in chapter 5.

Let us consider a file, whose size is denoted by |file|. Applying a (k,h) erasure code to the file
means producing, out of this file, k + h parity blocks such that any k of them are sufficient
to reconstruct the original file. An important remark is that in this generic definition there is
no constraint in the way these blocks are built and neither on their size. In particular the size
of a parity block is |block| and, since k of them must carry enough information to reconstruct
the original file, the only constraint is:

|block| ≥ |file|
k

The most common way of building erasure codes is linear codes. The mechanisms that linear
codes rely on will be described in section 4.6.1, at this point, however, it is useful to introduce
the notation used. In linear codes the original file is cut into nfile fragments, called original
fragments. The ith original fragment is denoted as oi and its size is:

|fragment| = |file|
nfile

The original fragments are linearly combined to obtain new fragments, called parity frag-
ments. The ith parity fragment is denoted as pi and its size is equal to the fragment size and
denoted |fragment| as well.

The parity fragments are then used to build the parity blocks of the erasure codes. In partic-
ular a parity block contains one or more parity fragments. The number of parity fragments
contained in a block is denoted as nblock.

The parameter nfile, the way the parity fragments are built and the way these parity fragments
are put in the parity blocks is determined by the particular erasure code adopted and will be
amply discussed in this chapter and in the next one.

4.3 Refinement of the file life-cycle

In this section we recall what we presented in section 3.2.1 and we refine the operation in-
volved in the life-cycle of a file when an erasure code is used. This will be useful in the
description of regenerating codes and more importantly in the evaluation of the costs they
produce.

1. Insertion: The insertion consists of processing the file, creating (k + h) parity blocks
and distributing them over distinct peers. The processing can be as trivial as building
replicas of the file1, or can be a complex coding operation. No matter which redun-
dancy scheme is used, as explained in the previous section, the property of these parity
blocks is that any k of them are sufficient to reconstruct the original file.

1This is the replication case where k = 1.
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2. Maintenance: Maintenance consists of rebuilding the redundancy lost due to peer fail-
ures. Maintenance is performed by the means of repairs. A repair requires the coopera-
tion of d peers that send data to a new peer2, called newcomer, which in turn processes
the received data to obtain a new parity block. We refer to d as the repair degree. If the
repair is correctly executed, the new parity block has the same properties as all the oth-
ers, i.e. with any (k−1) other parity blocks it forms a set of redundant blocks sufficient
to reconstruct the original file.

3. Reconstruction: If the owner of the file wants to retrieve it from the system, a recon-
struction needs to be performed. The reconstruction consists of downloading data from
k peers and processing them to obtain the original file.

4.4 Quantification of the costs

Thanks to the description of the operations involved in a file backup system, we can now
propose a formal description of the costs produced by each operation separately. In particu-
lar there are three kinds of costs:

1. Storage: Redundancy implies that the stored file consumes more storage space than
the original file. The storage requirement is easily computed by:

|storage| = (k + h) · |block| > |file|

2. Communication: All three phases in the life cycle require data to be transferred among
peers. At insertion, all the parity blocks must be transferred, which amounts to a vol-
ume of |storage|. At maintenance, for every repair, d peers upload each an amount of data
equal to |repairup| to the newcomer for a total of |repairdown|, with the obvious relation:

|repairdown| = d · |repairup|

At reconstruction, the file owner needs to download at least an amount of data equal to
|file|(See section 4.6.2 for details).

3. Computation: When coding is used, all the three phases described require process-
ing of data3. At insertion, all the parity blocks need to be coded with a cost of
CPU(encoding). At repair, part of the processing is done on the d participating peers, de-
noted as CPU(repair)up and part is done on the newcomer, denoted as CPU(repair)down.
At reconstruction, the original file must be reconstructed from k parity blocks with a
cost CPU(reconstruction).

The particular redundancy scheme defines how the redundant data are generated and han-
dled and what is the cost in terms of computation, communication, and storage. As an
example let us consider traditional erasure codes (like Reed-Solomon codes [80]). For these

2A new peer is a peer that at the moment is not storing any parity blocks of the file.
3In case of replication there is no processing.
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codes, the following two constraints hold with respect to the repair degree d and the parity
block size:

d = k
|block| = |file|/k

(4.1)

which means that every repair is performed collecting data from d = k existing peers and
that every peer stores an amount of data equal to 1/k of the file size. It can be shown that
given these constraints, the amount of data that needs to be transferred from every participating peer
to the newcomer is equal to the size of a parity block, which means that in total an amount equivalent
to the size of the whole file will be transmitted. In terms of maintenance, the communication costs
are:

|repairup| = |block|
|repairdown| = |file|

Note that this means that for every new bit that we create during a repair, k existing bits need
to be transferred.

The computation costs are implementation dependent (see section 4.7 for details).

4.5 Description of Regenerating Codes

In this section we give a description of the main properties of Regenerating Codes as they
have been described originally by Dimakis et al. [42, 43].

In essence, Regenerating Codes address the following question: what is the impact on the
communication cost if we relax the constraints defined for traditional erasure codes given in
eq. 4.1?

To answer this question, Dimakis et al. introduce a theoretic framework, called information
flow graph, which maps the distributed storage problem onto a network communication
problem. This framework is used to derive a lower-bound on the amount of information
that need to be transferred upon a repair, as function of the repair degree d and the parity
block size |block|.

We propose the results obtained in the following. Along with the generic formulation of
the lower-bounds, to show their practical implications, we also propose the specific values
obtained with a code with k = 32 and h = 32. This setting allows the system to sustain up
to 32 losses. We consider this reasonable under the massive churn we may observe in an
Internet scenario. However, results with other parameters show the same trends.

Given k and h, Regenerating Codes can take k · h different values for the pair of parameters
(d, |block|). In fact Regenerating Codes can be considered as a generalization of traditional
erasure codes, which trade-off increased storage cost for reduced communication cost.
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More formally, a generic Regenerating Code denoted by RC(k, h, d, i), sets the following con-
straints on the repair degree d and the parity block size:

d ∈ [k, k + h− 1]
|block| = p(d, i) · |file| i ∈ [0, k − 1]

(4.2)

Given a repair degree d, the parameter i, called the block expansion index, determines the
parity block size through the function p(d, i), which is defined4 as:

p(d, i) = 2
d− k + i + 1

2k(d− k + 1) + i(2k − i− 1)

The values of p(d, i) for k = 32 and h = 32 are plotted in Fig. 4.1.
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Figure 4.1: Function p(d,i), which determines the block size, for a Regenerating Code with k=32 and
h=32.

It can be proved that RC(k, h, d, i) requires that each of the d peers participating in a repair
needs to transfer to the newcomer an amount of data at least equal to

|repairup| = r(d, i) · |file| (4.3)

where r(d, i) is defined as:

r(d, i) =
2

2k(d− k + 1) + i(2k − i− 1)

consequently

|repairdown| = d · r(d, i) · |file| (4.4)

The values of r(d, i) for k = 32 and h = 32 are plotted in Fig. 4.2.

4We reformulate the expressions given in [42] in a different way to facilitate the successive computations.
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Figure 4.2: Function r(d,i), which determines the amount of data that needs to be transferred upon a
repair, for a Regenerating Code with k=32 and h=32.

Fig. 4.3 depicts how the parity block size |block| and the volume of repair traffic |repairdown|
evolve as a function of d and i for a code with k = 32 and h = 32. In particular, all the
values are relative to the parity block size and the volume of repair traffic required by a
traditional erasure code, which in the framework of Regenerating Codes corresponds to
RC(32, 32, 32, 0), i.e. with d = 32 and i = 0. As described in the previous section, these
reference values are:

|block| = |file|/32
|repairdown| = |file|

Fig. 4.3 shows that moving to larger repair degree d and to larger parity block size (increasing
the block expansion factor i) it is possible to obtain an impressive reduction of the repair traffic.

Dimakis et al. [42] identify two notable cases for the block expansion index, namely i = 0
and i = k− 1. For i = 0, the size of the parity blocks stays constant at the minimum possible
size and the codes are called Minimum Storage Regenerating codes (MSR). For i = k−1, re-
pair traffic is minimized and the codes are called Minimum Bandwidth Regenerating codes
(MBR).

4.6 Random Linear Implementation

While Dimakis et al. [42, 108] present the theoretic framework that supports the construction
of Regenerating, Wu et al. [108] show that these codes can be constructed through linear
operations over Galois Fields. In particular, focusing on the case of d = n− 1, they prove the
existence of both randomized and deterministic linear regenerating codes.
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Figure 4.3: Size of the parity blocks and repair communication cost (in log-scale) normalized by the
reference values of a traditional erasure code, for RC(32, 32, d, i).

Relying on the theoretic results of Wu et al. [108], we design a real implementation of Regen-
erating Codes based on random linear codes and we discuss its practical implications.

4.6.1 Traditional erasure codes based on random linear codes

Let us first explain how linear codes and random linear codes work for the case of traditional
erasure codes.
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The essence of linear codes is that all the operations are linear operations performed on fixed
size fragments. These linear operations are performed over a Galois Field. The essential
property of Galois Fields is that they define addition, subtraction, multiplication and division
that are all internal operations, which means that the results of these operations applied to
elements of the field are still in the field.

If the size |GF| of the field, which is the number of elements belonging to the field, is of the
form |GF| = 2q, the elements of the field can be expressed as q-bit words. As we will explain
in the following, a fragment can be interpreted as a vector of q-bit words and all the linear
operations to be performed on fragments, are performed as linear operations on vectors in
GF(2q)

In section 4.2, we mentioned that for generic linear erasure codes, the original file is divided
into nfile original fragments, used to produce parity fragments, which are in turn used to
build up parity blocks. In the specific case of traditional erasure codes in discussion in this
section, nfile = k and a parity block contains exactly 1 parity fragment: nblock = 1. For this
reason, in traditional erasure codes, the words “redundant fragments” and “redundant blocks” are
interchangeable.

The easiest example of a linear erasure code is given by the parity check, which can be con-
sidered as a an erasure code with h = 1: consider k bits and build an additional bit applying
the XOR operator to all the other bits. The XOR operation can be extended to all the bits in
a fragment. If we denote as oi the sequence of bits in the original fragments, and with pi the
sequence of bits in the created parity fragment, we can describe the parity check as follows:

−→p i =
{ −→o i i <= k
−→o 1 ⊗−→o 2 ⊗ · · · ⊗ −→o k i = k + 1

It is clear that any k parity fragments are sufficient to build the missing one, applying again
the XOR operator.

The XOR operation can be interpreted as a linear combination of all the original fragments
in the domain of Galois Field with size 2, denoted as GF(2). In this field there exists only
one possible linear combination among all fragments, which is the reason why only one
additional fragment can be built. In erasure codes, a larger field size is used to be able to
build h > 1 additional fragments.

Consider a Galois Field GF(2q), where the elements of such a field can be expressed by q-bit
words. This means that every original fragment and every parity fragment can be inter-
preted as a sequence of words in GF(2q). For simplicity of notation, let us assume that every
fragment is composed by a single q-bit word. In the general case of fragments composed by a
sequence of words, all the operations are applied to all the words contained in the fragment.
Let us denote as oi and pi the words belonging respectively to the ith original fragment and
the ith parity fragment. A linear code can be built using the following linear operations in
GF(2q):

pi =
{

oi i ≤ k∑k
j=1 ci,joj k < i ≤ k + h, ci,j ∈ GF(2q)

(4.5)

We can introduce the following vectors and matrices, all composed by elements in GF(2q):



4.6. RANDOM LINEAR IMPLEMENTATION 57

Ok,1 Vector of original fragments.
Pk+h,1 Vector of parity fragments.
Ik,k Identity matrix.
Ch,k Coefficient matrix.

Using these matrices we can give an alternative expression of the code:

P =
[

I
C

]
O = C ′O

If the matrix C is such that any sub-matrix S built using k rows from C ′ is invertible, then
the original fragments can be always reconstructed by F=S−1PS , where PS is the subvector
of k elements of P , corresponding to the coefficients chosen in S. If this property is satisfied,
the code obtained is a (k,h) linear erasure code.

Many choices are possible for the coefficient matrix, and consequently there exist multiple
implementations of this class of codes. One of the most prominent are Reed-Solomon codes
[80], which define the matrix C as a h × k Vandermonde matrix, i.e. ci,j=ji−1. For Reed-
Solomon codes as well as for all the codes that fix a specific coefficient matrix, the repair
of a lost block requires first the reconstruction of all the original fragments, and then their
recombination accordingly to the coefficient row that corresponds to the lost parity fragment.
This explains why the repair degree is d=k.

Another approach is to build the matrix C ′ choosing randomly the coefficients in the Galois
Field5. This class of codes is called Random Linear Codes.

The theory of Random Linear Network Codes [19, 21, 66] says that the probability to suc-
cessfully invert the matrix upon reconstruction depends only on the size of the Galois Field
and that this probability can be made arbitrarily close to 1 by increasing the size of the Galois
Field. For all practical purposes a field size equal to 216 is considered sufficient.

The repair of a lost parity fragment can be done like in Reed-Solomon codes, i.e. first re-
constructing the original fragments and then combining them again. In this case, the repair
degree would be again d=k. However, with random linear codes we can do better: In fact
the reconstruction of original fragments is not necessary and the result is indeed equivalent
as to when the k parity fragments are combined directly using random coefficients.

Now that we know how random linear codes work from a mathematical point of view, we
can describe their application following the life cycle of a file.

1. Insertion: In this phase, we have to create k+h parity blocks, which correspond to k+h
parity fragments of size |file|/k. To do that, it is enough to cut the file in nfile = k equal
sized (original) fragments, and compute any of the k + h parity fragments as a random
linear combination of them. The random coefficients used for such combinations are
stored along with the parity fragments.

2. Maintenance: As already explained, a repair in traditional erasure codes requires the
transfer of the whole parity block (i.e. 1 parity fragment) from d participating peers to

5Note that replacing the identity matrix with random coefficients transforms the code from a systematic one
to an unsystematic one.
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the newcomer. The newcomer then builds the new parity block performing a random
linear combination of the d received parity fragments. Again, the resulting coefficients
are stored along with the new block.

3. Reconstruction: The owner of the file downloads k parity blocks (i.e. k parity frag-
ments) from k other peers and uses these parity blocks to reconstruct the file. The
procedure consists of inverting, if possible, the matrix composed by the coefficients of
all the received parity fragments, and multiplying the inverted matrix by the parity
fragments. The results of the multiplication are the original fragments, i.e. the original
file.

4.6.2 Random Linear Regenerating Codes

For traditional erasure codes, random linear implementation is straightforward, because
nfile = k and nblock = 1. This means that the size of a parity block is equal to the size of a
parity fragment and can be used as the basic unit of information in all the linear combina-
tions and in the decoding.

For Regenerating Codes things are different because:

• They allow the amount of data stored |block| to be different from the amount of data
transmitted by a participant upon a repair |repairup|.

• They do not require that the amount of data downloaded by a newcomer |repairdown| be
not a multiple of |block|.

In other words, the basic unit of information, which is the size of the fragments we cut the
original file into, will not be the size of the block stored on a peer anymore. We can write the
constraints as follows:

|file| = nfile · |fragment|
|block| = nblock · |fragment|

|repairup| = nrepair · |fragment|
(4.6)

where nfile, nblock and nrepair are integers. Using eq. 4.2 and eq. 4.3, we can compute:

nblock

nrepair
=

|block|
|repairup|

=
p(d, i)
r(d, i)

= d− k + i + 1

and:
nfile

nrepair
=

|file|
|repairup|

=
1

r(d, i)
=

2k(d− k + 1) + i(2k − i− 1)
2

Both ratios are integers. This means that we can set nrepair = 1, which corresponds to setting
|fragment| = |repairup|, and consequently:

nfile =
2k(d− k + 1) + i(2k − i− 1)

2
(4.7)
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nblock = d− k + i + 1 (4.8)

Given these parameters, we can describe the operations needed for Random Linear Regen-
erating Codes:

1. Insertion: We cut the file in nfile equal size original fragments, and compute any of
the k + h parity blocks as nblock random linear combinations of them. The random
coefficients used for such combinations are stored along with the parity block. They
form a (nblock, nfile) matrix6.

2. Maintenance: A repair involves d existing peers, which send data to the newcomer.
The data sent by any of the d peers correspond to the results of one random linear com-
bination of the nblock parity fragments contained in the stored parity block, as depicted
in figure Fig. 4.4a. The newcomer receives thus d parity fragments and the correspond-
ing coefficients and obtains its new parity block as nblock random linear combinations
of them, as depicted in Fig. 4.4b. Note that in the particular case of d = nblock the new-
comer does not need to perform linear combinations of the received parity fragments,
since they constitute already the new parity block.

3. Reconstruction: The owner of the file downloads k parity blocks from k peers, which
correspond to nblock · k parity fragments, along with the coefficients which form a
(nblock · k, nfile) matrix. It tries to find nfile independent rows in the coefficient matrix,
then it inverts the resulting square submatrix and finally multiplies this matrix by the
concerned parity fragments. An important observation is that if the file owner down-
loads k redundant blocks, it potentially downloads an amount of data quite bigger than
the file size. In [42] it is stated that this can represent a significant drawback for Regen-
erating Codes. In our implementation, we eliminated this shortcoming: the owner
downloads only the coefficients, then extracts a full-rank square submatrix, inverts it,
and finally he downloads only the nfile parity fragments corresponding to the invertible sub-
matrix that was extracted. In this way the owner downloads always an amount of data
equal to the file size, without paying any extra-cost.

For reference we summarize in Table 4.1 all the symbols adopted and their meaning.

4.7 Analytical Evaluation

In this section we perform an analytical evaluation of the Random Linear Regenerating
Codes. To do this, we give a formal description of the linear operations performed.

As explained in section 4.6, all the data handled can be interpreted as a sequence of values,
called elements, in a given Galois Field. Usually the size of such field is chosen to be equal
to 2q, since this speeds up the computation. In this case every value is a sequence of q bits, a
common choice is q = 16, which corresponds to an element size of 2 bytes. Every fragment

6In the present notation a (n, m) matrix is a matrix with n rows and m columns.
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(a) Participant side

(b) Newcomer side

Figure 4.4: Repair scheme on the participant side and on the newcomer side. Every arrow indicates a
participation to a random linear combination.

symbol description
|file| Size of a file inserted in the system.
|block| Size of the parity block by a peer.

k Number of parity blocks needed to reconstruct the file.
h Number of additional redundant blocks stored in the system.
d Repair degree. Number of peers participating to a repair.
i Block expansion index, determining the size of the parity block |block|.

|storage| Total amount of data stored for a file (with redundancy).
|repairup| Amount of data uploaded by each peer participating in a repair.
|repairdown| Amount of data downloaded by a newcomer upon a repair.

CPU(encoding) Computational cost to encode data upon insertion.
CPU(repair)up Computational cost sustained by each peer participating to a repair.

CPU(repair)down Computational cost sustained by the newcomer upon a repair.
CPU(reconstruction) Computational cost sustained upon reconstruction by the file owner.

nfile Number of fragments every file is cut into.
nblock Number of parity fragments a parity block is composed by.

|fragment| Size of a fragment.

Table 4.1: Table of symbols used in analysis and implementation of Regenerating Codes.

is thus represented by a vector of lfrag = (|fragment|/q) elements. The whole file is thus repre-
sented by the matrix of the original fragments with size (nfile, lfrag) and denoted as Onfile,lfrag . A
set of n parity fragments is represented as a (n, lfrag) matrix Pn,lfrag , this matrix can be always
represented as a set of linear combinations of the original fragments:

Pn,lfrag = Cn,nfileOnfile×lfrag

where Cn,nfile are elements in the field and represent the coefficients associated with the set of
parity fragments.
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Figure 4.5: Coefficient overhead of RC(32, 32, d, i) for a 1 MByte file.

4.7.1 Impact of coefficients

The first question we address is the impact of the coefficients on the storage and communi-
cation costs. Since every fragment is associated to a set of nfile coefficients, the relative impact
of the coefficients is given by the ratio:

rcoeff =
nfileq

|fragment|
=

n2
file

|file|
· q (4.9)

this ratio can be interpreted as the overhead due to coefficients: for every bit of data we need
rcoeff bits of coefficients. Note that this ratio is inversely proportional with the size of the file
we store, this means, as one could expect, that the bigger the file the smaller is the coefficient
overhead. More importantly, the overhead increases with the square of nfile, which increases
significantly as we increase the parameters d and i in Regenerating Codes (see eq. 4.7).

To understand the impact of this additional cost, let us consider the class of regenerating
codes RC(32, 32, d, i) and let us assume that the field size is q = 16, which corresponds to an
element size of 2 bytes. In Fig. 4.5 we plot the values of the coefficient overhead when the
original file size is |file|=1 MByte for all the possible values of d and i.

For such a small file size, the coefficient overhead is non negligible: in the “most expensive”
configuration for 1 bit of data, more than 4 bits of coefficients are needed, which is clearly unac-
ceptable. By increasing the file size, this overhead decreases (see eq. 4.9). The implication
of these results is that when using Regenerating Codes, system designers need to choose
a minimum size for storage objects that is significantly bigger than for traditional erasure
codes.
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4.7.2 Computational Complexity

One of the main concerns when coding is used in real systems is the computational cost
they introduce. In this section we propose a formal analysis of the costs of Random Linear
Regenerating Codes.

All the operations are performed in a Galois Field. Therefore, we need to make sure to control
the cost of the operations by choosing the right field size. If we set the field size equal to 2q,
with q = 16 all the operations are performed on unsigned short integers (2 bytes). In this
case

• Additions and subtractions correspond to an XOR operation between two elements.

• Multiplication and division are performed in the log-space. For example: a · b becomes
exp(log a+log b). log and exp for all the possible values in the field are computed offline
and stored, which requires 256 KB of memory for q = 16. The operations log and
exp can then be implemented as value lookups in a table, which allows to implement
division and multiplication in 3 lookups and 1 addition.

All the operations we perform for Regenerating Codes can be reduced to: (1) Linear Combi-
nations and (2) Matrix inversions. Let us analyze them in details:

1. A linear combination of n vectors of length l consists of n · l additions and n · l multi-
plications for a total of 5nl operations.

2. The inversion of a square (n, n) matrix consists of n3 additions and n3 multiplications
that can be implemented 5n3 operations. Actually, for Regenerating Codes the situation
is slightly different: we have a (m,n) matrix, m ≥ n from which we need to extract n
rows that are linearly independent, which will result in a (n, n) submatrix that can
then be inverted. Extraction and inversion are done in parallel and the cost will vary
accordingly to the particular matrix between the bounds 5n3 and 5mn2.

Now we have all the basic tools to compute the complexity of Regenerating Codes along the
lifetime of a file:

1. Insertion: In this phase we perform (k + h) · nblock linear combinations of nfile original
fragments for a total number of operations equal to:

CPU(encoding) = 5(k + h) · nfile · nblock · lfrag

Using the definitions of the different parts we obtain:

CPU(encoding) =
5
2
(k + h) · nblock · |file| (4.10)

2. Maintenance: As already explained, in a repair, part of the work is done on the partic-
ipating peers and another part is done on the newcomer. On every participating peer
we perform one linear combination of nblock parity fragments, which corresponds to:

CPU(repair)up = 5 · nblock · lfrag
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doing some manipulations we obtain that the number of operations is proportional to
the size of the parity blocks expressed in bytes:

CPU(repair)up =
5
2
· |block| (4.11)

On the newcomer we perform nblock linear combinations of d parity fragments, which
corresponds to:

CPU(repair)down = 5 · d · nblock · lfrag = d · CPU(repair)up (4.12)

Note that every parity fragment is also associated with a set of coefficients. This means
that every time that a new parity fragment is generated as a linear combination of
other existing parity fragments, this linear combination must be performed also on the
corresponding coefficients, in order to obtain the coefficients associated with the new
parity fragment. In terms of computation cost, this can be taken into account assuming
that the fragment size is virtually increased by the size of coefficients, which is given
by the overhead in section 4.7.1.

3. Reconstruction: We can split the reconstruction in two phases: (1) we need to extract
nfile linear independent rows from a k ·nblock×nfile matrix, and then invert the obtained
submatrix (2) We multiply this submatrix by the correspondent parity fragments. Ac-
cording to these two phases, the cost of reconstruction can be split in two components
as well:

CPU(reconstruction) = CPU(inversion) + CPU(decoding)

As explained before the cost of the inversion is bounded by two limits:

5 · n3
file < CPU(inversion) < 5 · k · nblock · n2

file (4.13)

The decoding, then, corresponds to nfile linear combinations of nfile parity fragments,
which leads to:

CPU(decoding) = 5 · n2
file · lfrag =

5
2
· nfile · |file|

Note that all the costs, except from the inversion cost, are linearly dependent to the file size
|file| (This holds also for repair, since |block| is in turn proportional to |file|).

4.8 Experimental Evaluation

In this section we evaluate the resource requirements of Regenerating Codes. For this pur-
pose, we wrote an optimized C implementation of Random Linear Regenerating Codes that
we executed on an Intel Core 2 Duo CPU at 2.66GHz.

We execute all the operations performed in the life cycle of a stored file, as described in
section 4.7, and measure the time needed to perform these operations. All the experiments
have been done for a file of 1 MByte in size and the Regenerating Code parameters are fixed
to k = 32, h = 32, and can take all possible values for i and d.
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Figure 4.6: Encoding computation overhead for RC(32, 32, d, i).
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(a) Participant side.
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(b) Newcomer side.

Figure 4.7: Repair computation overhead for RC(32, 32, d, i).

4.8.1 Computational Cost

To have a basis for comparing different configurations of Regenerating Codes, we first
show the results obtained for a traditional erasure code, (i.e. a Regenerating Code with
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(a) Matrix Inversion.
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(b) Decoding.

Figure 4.8: Reconstruction computation overhead for RC(32, 32, d, i).

RC(32, 32, 32, 0)) when a file of 1 MByte is stored. Let td,i denote the time needed by a partic-
ular operation for a Regenerating Code RC(32, 32, d, i). Table 4.2 shows the time t32,0 needed
for each operation.

t32,0[sec]
Encoding 0.52
Participant Repair 0
Newcomer Repair 0.01
Matrix Inversion 0.002
Decoding 0.25

Table 4.2: Time needed for operations by a (32,32) traditional erasure code for a file of 1 Mbyte.

Note that the participant repair has a computation time of zero because in traditional erasure
codes repairs do not require any computation at the participant side, which simply sends to
the newcomer its entire parity block.

Let us now introduce the results obtained for the general case of Regenerating Codes
RC(32, 32, d, i). To understand the computational overhead of these codes, we consider the
ratio between the time td,i and the time t32,0 measured for traditional erasure codes. We call
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this ratio computation overhead coh:

cohd,i =
td,i

t32,0

The computation overhead says how much a given Regenerating Code is slower than a tra-
ditional erasure code. Following the life cycle of a file:

1. Insertion: we show in Fig. 4.6 the computation overhead of the initial encoding of the
file. The plot shows that the overhead grows linearly with i and d. This is consistent
with eq. 4.10, which says that the cost is proportional to nblock, which is in turn linear
with d and i as one can see from eq. 4.8.

2. Maintenance: Fig. 4.7a shows the computation overhead on the participant side7, in
this case the computation overhead grows slightly more than linearly with d and i,
since as we know from eq. 4.11 it is proportional to the parity block size, which in turn
has the behavior shown in Fig. 4.3a. Fig. 4.7b shows the computation overhead on
the newcomer side. From eq. 4.12, this cost is proportional to d times the cost on the
participant side, which is confirmed by the roughly quadratic relation with d shown by
the plot. Note that for i = k − 1 the overhead falls to zero, since for this configuration
the newcomer does not need to combine the received parity fragments, but simply
stores them (cf. section 4.6.2).

3. Reconstruction: The reconstruction requires the inversion of the matrix coefficients
and then the decoding of the fragments. Fig. 4.8a shows the computation overhead for
the inversion, which as we know from eq. 4.13 grows roughly as n3

file. Inversion can
be computationally very expensive, in particular for large values of d and i. Fig. 4.8b
shows the computation overhead of the decoding, whose shape closely resembles the
one for encoding (see Fig. 4.6), which is expected since both perform analogous opera-
tions.

4.8.2 Bottleneck Network Bandwidth

As outlined in section 3.3, a redundancy scheme introduces three different costs, namely
computation, storage and communication. So far we have only considered computation.
However, what it is really interesting is to evaluate which resource (computation or commu-
nication) is the overall performance bottleneck of the system.

In a distributed storage system the data handled must be transferred over the network. Let us
assume that the transfer operation is pipelined with the coding, which means in the case
of insertion that each parity fragment is transmitted as soon as it is produced by the initial
encoding step. If the transfer takes longer than the computation, then the bottleneck is com-
munication, and the use of a computationally more efficient code will not make the insertion
operation faster. This means that whether or not computation has an impact on the overall
performance of the system depends on the available network bandwidth of the participating

7Note that this cost is equal to zero in traditional erasure codes, for this reason the normalization is done by
the smallest value larger than zero which occurs for d = 33 and i = 0 and is equal in terms of computation time
to 0.0003 sec.



4.8. EXPERIMENTAL EVALUATION 67

peers. For this purpose we want to know the minimum network bandwidth of a peer, for
which the computation represents the bottleneck for the overall performance. We call this
bandwidth bottleneck network bandwidth, which is denoted as bnb.

The bottleneck network bandwidth can be computed as the bandwidth for which the transfer
time is equal to the computation time. If td,i denotes the time needed to perform an operation
for RC(32, 32, d, i) and |data|d,i denotes the amount of data handled by that operation that
need to be transmitted over the network. We have:

bnbd,i =
|data|d,i

td,i

From the above definition it is clear that the bottleneck network bandwidth also gives the
amount of data that can be processed by the coding/decoding operation.

The values of |data|d,i for the different operations are computed as follows:

• Encoding: This operation produces the (k+h) initial parity blocks. The amount of data
produced that is sent over the network is given by the size of these blocks:

|data| = (k + h) · |block|

• Participant Repair: This operation produces a single parity fragment plus the corre-
sponding coefficients. The amount of data that is sent over the network is:

|data| = (1 + rcoeff) · |fragment|

• Newcomer Repair: This operation produces a new parity block and his coefficients
from d received parity fragments and their coefficients. The amount of data that is
received from the network is given by the size of d fragments plus the corresponding
coefficients:

|data| = (1 + rcoeff) · d · |fragment|

• Inversion: This operation extracts nfile independent rows form the received (k ·
nblock, nfile) matrix (which describes the k parity blocks used for reconstruction), and
inverts the submatrix obtained. This means that the amount of data that is received for
this operation is given by the size of the coefficients of the k parity blocks:

|data| = k · rcoeff · |block|

• Decoding: This operation produces the original file by multiplying the matrix obtained
from the inversion by the correspondent parity fragments. The amount of data that is
received for this operation is given by the size of nfile fragments, i.e. the file size:

|data| = |file|

Table Table 4.3 picks some significant values of the parameters d and i and shows the vol-
ume of repair traffic |repairdown| and the total amount of data stored in the system |storage|,
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d i |repairdown| |storage|
Traditional EC 32 0 1MB 2 MB

Extreme RC 63 30 42.47 KB 2.61 MB
Reasonable RC 1 32 30 62.18 KB 3.76 MB
Reasonable RC 2 40 1 128.40 KB 2.006 MB

Table 4.3: Communication and storage costs for some RC(32, 32, d, i) for a 1 MByte file.

Bottleneck Network Bandwidth

d i Encoding
Repair Reconstruction

Participant Newcomer Matrix Inversion Decoding
32 0 31.2 Mbps ∞ 777.3 Mbps 7.8 Mbps 24.6 Mbps
63 30 655 Kbps 11.0 Mbps 10.2 Mbps 383 Kbps 482 Kbps
32 30 1.9 Mbps 21.6 Mbps 21.6 Mbps 1.6 Mbps 1.3 Mbps
40 1 3.1 Mbps 70.5 Mbps 76.8 Mbps 1.5 Mbps 2.5 Mbps

Table 4.4: Resource requirements of RC(32, 32, d, i) for a 1 MByte file.

while table Table 4.4 shows the corresponding bottleneck network bandwidths for all the
operations in the life cycle of a file.

The first row with d = 32, i = 0 presents the results for a traditional erasure code, which
minimizes the storage requirement at the expense of a very large volume of repair traffic
(|repairdown| = |file|). In the second row we consider an extreme regenerating code with d = 63
and i = 30, which minimizes the repair traffic. However, as we showed in figures 4.6, 4.7,
and 4.8, this particular code has the highest computational costs and results in bottleneck
network bandwidth values that can be as low as a few hundred Kbps.

However, if we remember the results presented in Fig. 4.3b, which show the savings in repair
traffic for Regenerating Codes, we know that most of the savings are already achieved by
quite small values of d, i.e. where d = k or where d is slightly larger than k. For this reason,
the next two rows of table 4.4 consider two reasonable Regenerating Codes with values of
d = 32 and d = 40 that illustrate how we can trade off storage requirement and repair traffic:

• If we have plenty of storage space, we can use a big value for the block expansion
index i: For d = 32, i = 30 the storage space required as compared to the one required
by traditional erasure codes almost doubles. However, the reduction in repair traffic
as compared to traditional erasure codes is still almost as good as for the Regenerating
Code with d = 63, i = 30, which minimizes the repair traffic.

• On the other hand if storage space matters, we can choose a code with a small i, and a
d slightly larger than k, which still preserves most of reduction in repair traffic. Results
for d = 40, i = 1 are shown in the fourth row of table 4.4. If we compare the results to
the best one achievable for each resource (see first two rows), we see that we achieve a
close to minimal storage requirement (2.006 MB vs. 2.0 MB), and a repair traffic (128.40
KB) that is almost one order of magnitude less than for traditional erasure codes.

From the results presented so far, we can conclude that Regenerating Codes, as compared to
traditional erasure codes, can provide substantial reductions in repair traffic, at a small extra
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Figure 4.9: Illustration of the trade-offs provided by Regenerating Codes.

cost in terms of storage space required. However, this gain comes at the price of a much
higher computational cost as can be seen when looking at the encoding and reconstruction
costs, which are nearly one order of magnitude higher than for traditional erasure codes.
With the current implementation, we can encode/decode in the order of 1 GByte of data per
hour.

This performance may be too low for a large data center. Therefore, Regenerating Codes are
best suited for those systems that do not insert or retrieve very large amounts of data and that
need to do a significant amount of repairs: An example is given by peer-to-peer data backup
systems where the data maintenance due to the high node churn, is far more frequent than
data insertion or retrieval.

Moreover, if higher encoding/decoding rates are required, one can consider delegating en-
coding and decoding to particular peers equipped with (i) higher computation power or (ii)
exploit the capabilities offered by GPUs (Graphic Processing Units), as has been advocated
recently [22].

4.9 The impact of d on the repair policies

Before concluding the chapter, we discuss in this section one practical aspect of the use of
Regenerating Codes in a real system. In particular we discuss briefly how the parameter d
may impact the repair policies.

As explained before, maintenance consists of building periodically the redundancy lost due
to peer failures. One crucial point in the design of such a system is the repair policy, i.e. the
mechanism used to decide when to do repairs.
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From a theoretic point of view, to provide data durability, a repair is needed only when a peer
storing data fails permanently, i.e. he abandons the system or deletes what he stores. Doing
this is not trivial for two basic reasons: (1) it is impossible to distinguish between permanent
and transient failures, (2) even if we have an oracle able to tell apart permanent and transient
failures, when a repair is triggered we might not be able to perform it because not enough
parity blocks are available. In [51] it is argued that this means that it is practically unfeasible
to guarantee durability without availability.

A classical way to design a repair policy is threshold based, i.e. a repair is triggered when the
number of available parity blocks goes below a certain threshold. To provide data availability
(and durability), this threshold TH is such that in any moment the number of available parity
blocks is above k: TH > k, the actual value depends on how far from data loss the system
should run.

In traditional codes, this implies that in any moment there are enough parity blocks to per-
form a repair. However this property is not always assured for Regenerating Codes when
d > k. Indeed there might be cases in which the number of available parity blocks is between
k and d preventing to perform the repair.

To face this problem, we have two alternative solutions (1) Increasing the threshold to guar-
antee that d parity blocks are always available (2) Changing d on the fly accordingly to the
actual number of available parity blocks.

The first solution is always possible, but as we will show for Hierarchical Codes in chapter 5,
it produces a higher number of repairs that could annul the positive effect of Regenerating
Codes with respect to bandwidth consumption.

The second solution requires a more detailed discussion. As described in section 4.5, given
the parameter i, the choice of d determines the minimum amount of data that needs to be
sent upon a repair. Let us assume that in the design phase we fixed a particular value for d
and we set nfile and nblock through equations 4.7 and 4.8. If, upon a repair, we need to use a
value d′ < d, in theory we need only to increase the amount of data transmitted accordingly
to this new value. In practice, when Random Linear Regenerating Codes are used, this is not
straightforward. The reason for this is that linear codes require that all the operations are
performed over fixed size fragments, whose size depends on nfile. In other words since in
linear codes data are not liquid, we cannot increase arbitrarily the amount of data transmitted,
this quantity instead is quantized by the size of the fragments.

The correct procedure to perform a repair with d′ peers for a Regenerating Codes RC(i, d) is
thus the following:

• Every participating peer computes through eq. 4.3 the quantity |repairup|i,d′ , which is
the amount of data that the peer would transfer to the newcomer, if the regenerating
code was originally designed with a repair degree d′:

|repairup|i,d′ = r(i, d′) · |file|

• Every participating peer computes nrepair linear combinations of the parity fragments it
is storing, where nrepair is such that

nrepair · |fragment|i,d ≥ |repairup|i,d′
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Note that if d′ = d then nrepair = 1.

• The newcomer receives nrepair · d parity fragments and performs nblock linear combina-
tions of them to obtain the new parity block.

Even if we did not address this apsect in the experiments we proposed in the previous sec-
tion, an important remark is that this procedure does not only increase the communication
cost, but also the computation cost, since more linear combinations need to be done on the
participant side and more fragments need to be combined on the newcomer side.

4.10 Conclusion

Regenerating Codes can be seen as a generalization of previously known redundancy
schemes based on replication and erasure codes. They allow to trade off not only communi-
cation and storage requirements, but also computational costs. We schematically depict this
trade-off in figure 4.9.

We proposed a practical implementation of Regenerating Codes, based on Random Linear
Codes. We evaluated its performance trade-offs. We showed that the important savings
provided in terms of repair traffic do not come for free, as Regenerating Codes have much
lower coding and decoding rates.

However, we feel that Regenerating Codes have a lot of potential in environments where
repairs of lost blocks are frequent and the available bandwidth to carry the repair traffic is
limited, as is for instance the case in Internet-wide peer-to-peer backup systems.
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CHAPTER5
Hierarchical Codes

5.1 Introduction

In chapter 4 we discussed and evaluated Regenerating Codes. We showed how they present
a new trade-off that involves not only storage and communication but also computation.
In this chapter we propose a new class of codes, called Hierarchical Codes, which pursue
the same objective of Regenerating Codes, i.e. to provide the same storage efficiency as tra-
ditional erasure codes, reducing at the same time the communication required by mainte-
nance. However, Hierarchical Codes differ from Regenerating codes in the way they achieve
this objective and do not suffer from the higher computation requirements of Regenerating
Codes.

To introduce the basic idea behind Hierarchical Codes, we propose in section 5.2 the effi-
ciency analysis of Fragment Replication. In section 5.3, we describe a formal tool called
Information Flow Graph, which represents the evolution of data in a storage system based
on linear codes and can be used to determine the minimum repair degree that must be used.
Thanks to the Information Flow Graph, we can introduce in section 5.4 our Hierarchical
codes and we can perform an efficiency analysis of them. Finally, in section 5.6 we test Hier-
archical Codes through simulations using both, synthetic and real traces of the peer behavior.
This chapter introduces also a number of theorems, whose proofs are all collected at the end
of the chapter in section 5.8.

5.2 Erasure Codes vs. Fragment Replication

In this section we describe a replication scheme, called fragment replication, whose essence
is to replicate the fragments of a file, instead of the whole file. Through a comparison between
the performance of fragment replication and traditional erasure codes, we can introduce
some of the ideas at the basis of our Hierarchical Codes.
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Figure 5.1: Fragment replication scheme compared to erasure codes with k = 8 and Nrep = 3 .
P (failure|l) as function of the number of concurrent losses l.

Consider a file and cut it into k original fragments, then create Nrep replicas for every frag-
ment and place every single replica on a different peer. Now the number of peers involved
is k ×Nrep, the redundancy factor is β=Nrep. Whenever a fragment is lost, a repair operation
will make a copy of another replica of the same fragment, which means that, as in the case
of replication, the repair degree is d=1. The analysis of the reliability of this scheme is more
complex. As introduced in section 3.3.1, it corresponds to the computation of the probabil-
ity P (failure|l). The problem is that in the case of fragment replication, there is not a single
number that says how many peers we can lose without compromising the file as the survival
of the file depends on which particular peers fail. In a very fortunate case we can lose all the
redundancy, i.e. k × (Nrep − 1) fragments, and still be able to retrieve the original file, in the
opposite case if all the replicas of a single fragment disappear, the file is lost when as few
as Nrep fragments are lost. The probabilistic expression of the reliability is very helpful in
this case. Exploring exhaustively all the possible combinations of losses for the case k=8 and
Nrep=3, we obtain the solid curve in Fig. 5.1.

To compare the efficiency of fragment replication against the efficiency of erasure codes, let
us consider an erasure code with k=8 and h=16, which leads to a redundancy factor β=3. This
configuration is comparable with the example proposed for fragment replication, since k and
β are the same. The starred curve in Fig. 5.1 shows that the reliability provided by coding is
much higher: It can sustain always until 16 losses, while replication is able to do that only
in a very small percentage of the cases. This example illustrates that fragment replication
presents a reduced reliability but a very small repair degree, while erasure codes provide a
high reliability, paying the price of a large repair degree.

If one wants to adopt fragment replication, instead of erasure codes, one has to accept the
reduced reliability and has to be ready to perform repairs more often. This simple example
raises a question, which the idea of hierarchical codes relies on: are there cases in which,
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in spite of the larger number of repairs required by fragment replication, the saving in the
repair degree results in a reduced communication cost?

More generally, Hierarchical Codes strive to investigate the trade-off between communica-
tion efficiency and reliability and try to provide operating regions in which the communica-
tion cost is reduced with respect to traditional erasure codes.

5.3 Repair degree in linear codes

To understand the way hierarchical codes are built it is essential to understand the theory
behind linear codes. A general description of linear codes and random linear codes has al-
ready been given in section 4.6.1. What we discuss here is the mechanisms that determine
the repair degree needed by these codes.

Consider a (k,h) traditional erasure code, based on a random linear implementation. When a
parity fragment is lost and needs to be repaired, one may be tempted, to use less than k other
parity fragments, reducing in this way the repair degree. However, only a repair degree of
d=k is able to preserve the properties of the code. In particular for a repair degree of d < k,
there will be sets of k parity fragments that are not sufficient to reconstruct the k original
fragments.

This result can be derived from the literature about network coding [21, 66] and its appli-
cation to distributed storage systems [42]. We will reformulate here some of the results in a
slightly different but equivalent way, which will help us to derive Hierarchical Codes. In par-
ticular, in the next subsection we describe a tool to analyze the evolution of a linear erasure
code, called Information Flow Graph.

5.3.1 The Information Flow Graph

An Information Flow Graph represents the evolution of the stored data across time. In
particular, each node represents a fragment of data at a specific point in time t. The time
evolves in discrete steps and every step corresponds to one or more losses and repairs. At
the time t = 0 the graph is populated only by k source nodes representing the k original
fragments denoted as O = o1, o2, . . . , ok. At time t = 1, the graph consists of k + h nodes that
represent the k + h parity fragments initially inserted in the storage system and denoted as
P1 = p1,1, p2,1, . . . , pk+h,1. The graph at time t = 1 is referred to as the code graph. At t > 1,
the graph is augmented at each step with k+h nodes that represent the k+h parity fragments
present in the system at time t, which are denoted as Pt = p1,t, . . . , pk+h,t. Connections
between nodes are only possible among nodes of consecutive time steps and are always
oriented from t to t− 1. The possible connections and their semantics are:

1. A generic node p1,1 at time step 1 is connected to one or more original fragments, de-
noted as R(p1,1). These connections are determined by the equations of the code used
and for this reason the graph obtained is called code graph. In particular R(p1,1) is the
set of fragments linearly combined to produce p1,1.
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Figure 5.2: Example of a Code Graph for a classical (2,1)-linear erasure code. All the parity fragments
p1, p2 and p3 are obtained as a linear combination of the two original fragments o1 and o2.

Figure 5.3: Example of one step of an Information Flow Graph. Parity fragments p2 and p3 have sur-
vived at time t − 1. Parity fragment p1 has been lost at time t − 1 and has been repaired at time t
combining the parity fragments p2 and p3.

2. A generic node pi,t−1 in Pt−1 can be connected to the node pi,t. In this case node pi,t

must not be connected to any other nodes in Pt−1. This means that the parity fragment pi

has survived at time t− 1.

3. Alternatively, a generic node pi,t−1 is not connected to any node in the following step.
In this case node pi,t is connected to d nodes P d

t−1 in Pt−1, where pi,t−1 /∈ P d
t−1. This

means that the parity fragment pi has been lost at time t − 1 and it has been repaired
linearly combining the d parity fragments in P d

t−1.

In Fig. 5.2 we show an example of code graph for a classical (2,1)-linear erasure code, while
in Fig. 5.3 we show one generic step of the Information Flow Graph.

The Information Flow Graph we presented is a variant of the one proposed by Dimakis et
al. [42]. It allows us to formulate the following disjoint path theorem, which follows Propo-
sition 1 of [42]:
Theorem 1. A selection of k nodes P k

t ⊆ Pt, is sufficient to reconstruct the original fragments (with
a probability that depends only on the size of the Galois Field in which the random coefficients are
drawn), only if it is possible to find k disjoint paths from the k nodes in P k

t to the k source nodes in
O.

The disjoint paths condition is obviously related to the choice of the repair degree d. The
following proposition holds:
Proposition 1. At any time t, any possible selection of k nodes P k

t is sufficient to reconstruct the
original fragments only if the disjoint paths condition is provided at time step t = 1 (by the code
graph) and the repair degree is d ≥ k.
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The proof is given in section 5.8.2 at the end of the chapter . The Proposition 1 requires that
the disjoint paths condition be provided by the code graph. In that case this condition can be
interpreted as the existence of a perfect matching between any selection P k

1 and the k source
nodes in O. A Random linear code clearly provides this condition, since by design any node in
P1 is connected to all the source nodes in O.

5.4 Hierarchical Codes

The previous section showed that for a traditional linear erasure code the repair degree d
cannot be smaller than k. Indeed, if d < k, there will be selections of k parity fragments that
are not sufficient to reconstruct the original fragments. From this point of view, the fragment
replication scheme presented in section 5.2 can be considered as a limit case of a (k,(Nrep-
1)k)-code in which the repair degree is chosen to be d = 1. In this case, only a small subset
of all possible choices of k parity fragments (replicated fragments) is able to reconstruct the
original file, which may result in a lower reconstruction probability for a given number of
losses as we saw in Fig. 5.1.

However, d = 1, which corresponds to fragment replication, and d = k, which corresponds
to a traditional erasure code, are two limit cases. We believe that there is an interesting design
space between these two limits that can be explored to find a better trade-off between storage
efficiency and repair degree.

In the generic case of random linear codes, The naïve approach of using d < k poses two
main difficulties:

1. There is not an easy way to analyze the final reliability of the code, as we did in frag-
ment replication.

2. There is not a trivial policy for choosing the d parity fragments (to be combined) that
are able to prevent a degradation of the reliability of the code through the maintenance
process. Note that in fragment replication there is such a way: replace a lost replica
with a copy of an identical one.

To overcome these difficulties we need to give a structure to the way we combine fragments.
For this reason, we propose a new class of codes which we call Hierarchical Codes. A gen-
eral instance of such a code can be generated through its code graph built according to the
following procedure:

1. Choose two parameters k0 and h0 and build a (k0, h0)-code using the eq. 4.5 with the
coefficients ci,j chosen randomly in GF (2q). If we set k0=2 and h0=1 we obtain the code
graph in Fig. 5.4a.

The generated parity fragments constitute a group denoted as Gd0,1, where d0=k0 is the
degree used to generate the fragments and it is called combination degree. In Fig. 5.4a,
d0=2.

2. Choose two parameters g1 and h1. Replicate the group structure Gd0,1 for g1 times
to obtain g1 groups denoted as Gd0,1 . . . Gd0,g1 . Then add other h1 parity fragments,
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(a) Hierarchical (2,1)-code

(b) Hierarchical (4,3)-code

Figure 5.4: Samples of Code Graphs for Hierarchical Codes.

obtained combining (with random coefficients) all the existing g1k0 original fragments
O. This corresponds to a combination degree d1=g1k0=g1d0. If we set g1=2 and h1=1 we
obtain the code graph in Fig. 5.4b.

All the parity fragments constitute a group denoted as Gd1,1, which corresponds to a
hierarchical (d1,H1)-code, where H1=g1h0+h1. The example in Fig. 5.4b is a hierarchical
(4, 3)-code.

3. The previous step can be repeated several times, adding levels to the code. In the
generic step s, we need to choose two parameters gs and hs. Replicate the structure
of the group Gds−1,1 for gs times. Then add other hs parity fragments, obtained com-
bining all the existing original fragments, which corresponds to a degree ds=gsds−1.
All the parity fragments constitute a group denoted as Gds,1, which corresponds to a
hierarchical (ds,Hs)-code, where Hs = gsHs−1+hs.

5.4.1 Efficiency analysis of Hierarchical Codes

The redundancy factor β of a generic hierarchical (k, h)-code does not change with respect
of a traditional erasure code: β = (k + h)/(k). The other metrics are more complex.
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Reliability The analysis of the reliability consists, as usual, in computing the probabilities
P (failure|l). These probabilities can be computed if we know what sets of k parity fragments
are able to reconstruct the original fragments. Using Theorem 1 applied to the code graph we
can state the following:
Proposition 2. Consider P k, a set of k parity fragments in the code graph of a hierarchical (k,h)-code.

If the nodes in P k are chosen fulfilling the following condition:

|Gd,i ∩ P k| ≤ d ∀Gd,i belonging to the code (5.1)

which means that in P k there can be a maximum of d parity fragments chosen from any group Gd,i,

Then the nodes in P k are sufficient to reconstruct the original fragments.

The proof is given in section 5.8.3. In the hierarchical (4,3)-code in Fig. 5.4b, the condi-
tion (5.1) means that no more than 2 parity fragments can be chosen from G2,1, no more
than 2 parity fragments can be chosen from G2,2 and no more than 4 parity fragments can be
chosen from G4,1

1 .

Using Proposition 2 we can compute the generic probability P (failure|l), exploring all the
possible configurations of losses and check in each case if there is still a possible choice of
parity fragments that allows reconstruction, as explained in section 5.9.

Repair Degree In the case of Hierarchical Codes, as in the fragment replication, there does
not exist a single number that expresses the repair degree required. In particular, the repair
degree required changes accordingly to which parity fragment needs to be repaired and
which parity fragments are still alive. For each situation we would like to know which is the
right choice to prevent the code from degrading, i.e. to preserve the guarantees provided by
the code before maintenance, as described in the previous paragraph.

We can use again the Theorem 1 to formulate:
Proposition 3. Consider an Information Flow Graph of a hierarchical code at time step t. Consider
a node p repaired at time step t. Denote as G(b) the hierarchy of groups that contains p and as R(p)
the set of nodes in Pt−1 that have been combined to repair p.

If ∀t and ∀p, R(p) fulfills the following conditions:

|Gd,i ∩R(p)| ≤ d ∀Gd,i belonging to the code (5.2)

and

∃ Gd,i ∈ G(p) : R(p) ⊆ Gd,i, |R(p)| = d (5.3)

where, (i) condition (5.2) means that in the set of parity fragments combined R(p) there can be a
maximum of d parity fragments chosen from any group Gd,i and (ii) condition (5.3) means that there
must exist a group in the hierarchy G(b) that contains all the combined parity fragments and that
their quantity has to be equal to the combination degree used in that group.

Then the code does not degrade, i.e. preserves the properties of the code graph expressed in Proposition
2.

1This last constraint is unnecessary, since G4,1 represents in this case the whole code.
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The proof is given in section 5.8.4. For the hierarchical (4,3)-code in Fig. 5.4b, this means that
the parity fragment p1 can be repaired in one of the following two ways:

1. Using other 2 parity fragments belonging to the same group G2,1, i.e. parity fragments
p2 and p3.

2. Using other 4 parity fragments belonging to the whole group G4,2, paying attention
not to pick more than two parity fragments from the group G2,2, for example parity
fragments p3, p7, p4, and p6.

When a repair is performed, according to the parity fragment that needs to be repaired,
multiple repair degrees are allowed. The repair degree that is actually used will depend on
the parity fragments that are available on the moment of the repair2.

Using the Proposition 3 and exploring all the possible combinations of losses, we can com-
pute the probability P (d|l). The procedure to compute this probability closely resembles the
procedure to compute the failure probability P (failure|l) explained in section 5.9.

P (d|l) indicates what is the probability that, if we have l concurrent losses, the repair of a
parity fragment, in the worst case, requires a degree d. Note that worst case means that among
the l parity fragments that we could repair, we decided to repair the one that requires the
highest repair degree.

Note that the worst case formulation of P (d|l) is quite pessimistic. In the reality, the particular
repair performed depends on the repair policy and its repair degree can be lower than d.

We collected the results obtained for the hierarchical (4,3)-code in Fig. 5.4b in the table 5.1:

l (losses)
1 2 3

P (d = 2|l) 0.86 0.42 0
P (d = 4|l) 0.14 0.58 0.77
P (failure|l) 0 0 0.23

Table 5.1: P (d|l) and P(failure|l) as function of the number of concurrent losses l for the hierarchical
(4,3)-code of Fig. 5.4b.

The first two rows show the repair degree probability, while the last row shows P (failure|l).
This last row represents the cases in which the original fragments cannot be reconstructed.
Note that these cases correspond also to the cases in which there is at least one parity frag-
ment that cannot be repaired. For these last cases, thus, the failure probability replaces the
probability P (d|l), since the repair in the worst case cannot be performed. This is also the
reason for which the values in each column sum up to 1. The table covers up to 3 losses,
because for a higher number of losses it is clear that repairs are never possible and the failure
probability is 1.

An alternative graphical representation of table 5.1 can be given by the histogram plot in
Fig. 5.5. Every bar in the plot corresponds to a column in the table, while the height of the

2In the example of Fig. 5.4b, if p1 needs to be repaired and either p2 or p3 is not available, the repair degree
must be d = 4.
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Figure 5.5: Examples of a Hierarchical (4,4)-code. P (d|l) and P(failure|l) as function of the number of
concurrent losses l.

sections in a bar represent the probabilities of repair degree or failure given the correspond-
ing number of losses.

In Fig. 5.6a, we propose the graphical representation of the characteristics of a hierarchical
code (64,64)-code, built using 6 levels and setting k0=2, gs=2 and hs=1 for all the levels, except
for the last level where h5=2.

This figure nicely shows the properties of Hierarchical Codes. They are able to reduce the re-
pair cost significantly: in a traditional (64,64)-code, the repair degree is always 64, while in
this hierarchical (64,64)-code, it varies from 2 to 64. At a first look, the price to pay for this ad-
vantage seems to be reduced reliability; indeed a traditional (64,64)-code does never fail for
fewer than 64 losses, while the hierarchical code may fail even for as low as 32 losses. How-
ever, by adjusting the repair policy, as we will explain in the next section, one can achieve
the same reliability.

We believe that Hierarchical Codes give a new possibility to system designers to determine
the right trade-off between costs and benefits with respect to the characteristics of the en-
vironment in which the system is going to operate. Note that different choices of the pa-
rameters {k0, gs, hs} produce different codes with the same level of redundancy, but with a
different trade-off between reliability and repair degree.

In this sense, the configuration we proposed in Fig. 5.6a is just one of the many instances of
Hierarchical (64,64)-codes. For some environments other choices of the parameters might be
better. For example, if it is not acceptable to have a non-zero failure probability for 32 losses,
one can choose the alternative configuration depicted in Fig. 5.6b. This configuration is built
in 4 levels, setting k0=8, gs=2 and hs=4 for all the levels, except for the last level where h3=8.
The histogram in Fig. 5.6b shows how failures occur for higher values of losses as compared
to Fig. 5.6a. However, there is a price to pay in terms of a higher repair cost: the repair degree
varies from 8 to 64 and the region corresponding to a repair degree of d = 64 is significantly
larger.

In the present work we do not explore the tuning of the parameters, which we leave as
future work. However, we will show through experiments how different parameter choices
can impact the final cost.



82 CHAPTER 5. HIERARCHICAL CODES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4  8  12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
(*

|lo
ss

es
)

losses

2
4
8

16
32
64

failure

(a) Hierarchical Code A.
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(b) Hierarchical Code B.

Figure 5.6: Examples of Hierarchical (64,64)-codes. P (d|l) and P(failure|l) as function of the number
of concurrent losses l.

5.5 Relation between Hierarchical Codes and LT Codes

Hierarchical Codes show some similarities with other classes of codes, such as Tornado
Codes [70] and LT Codes [69]. We believe it is important to show these similarities and
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clearly discuss the differences. In this section we refer in particular to LT Codes, however
the concepts we discuss hold also for Tornado Codes and for all the other similar schemes.

The scenario in which LT codes are used is described as follows. There are k original symbols
that need to be transmitted over a channel. These symbols are encoded in encoded symbols
such that the receiver can reconstruct the original symbols as soon as it has received k of them
(or slightly more). Every encoded symbol is the result of a XOR operation over a subset of
the original symbols. The number of original symbols used is called combination degree and
denoted with d.

In LT codes, for every new encoded symbol, the combination degree d and the original sym-
bols to combine are chosen randomly. It can be shown that if d is drawn from a particular
distribution (e.g. Soliton distribution), then with very high probability the following two
properties hold:

1. Any k encoded symbols are sufficient to reconstruct the k original ones.

2. The decoding operation of any k encoded symbols consists of inverting a matrix which
is triangular, i.e. which is very easy to invert.

When LT codes are used, the receiver waits to receive k encoded symbols and then it is able
to reconstruct the original symbols very quickly. If some of the symbols are lost over the
channel, the source will keep producing new encoded symbols from the original symbols until
the receiver has received k of them.

The fact that LT codes produce encoded symbols from a subset of the original symbols,
i.e. d < k, suggest that they are conceptually very similar to Hierarchical Codes. How-
ever, while LT codes combine original symbols in a completely random fashion, Hierarchical
Codes define a precise tree structure, which confers to the code essential properties in the
maintenance process. To understand this concept let us assume to use LT codes for storage
purposes, as we do with Hierarchical Codes. In this case the k original symbols represent
the original data we want to store, while the encoded symbols, say k + h, represent the re-
dundant data we actually store on the peers. The question we need to ask is: what do we do
when one or more of these k+h encoded symbols are lost because of peer failures? If we had
the original symbols, it would be enough to draw a combination degree d from the Soliton
distribution and combine the correspondent number of original symbols. The problem is
that the original symbols are not available. This means that we have to guarantee that the dis-
tribution of the combination degrees follow the Soliton distribution by re-encoding already
encoded symbols. Unfortunately there is no trivial way to do that.

Hierarchical Codes, thanks to their tree structure, are able, as described in the previous sec-
tion, to define precise rules to recombine in case of losses already encoded blocks preventing
a degradation of the parity blocks (i.e. preserving their original properties).
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5.6 Experiments

The experiments are carried out via an event-driven simulator, which simulates a storage
system for a set of peers whose behavior is described by availability traces that are provided
as input.

The objective is to compare the reliability, the storage, and network communication costs of
traditional erasure codes and Hierarchical Codes.

In both cases we chose a (64,64)-code. In particular, the traditional code is a Reed-Solomon
code, while the Hierarchical Codes correspond to the two configurations presented in
Fig. 5.6. This choice assures that the storage consumption is the same in all the scenarios3.

The reliability provided depends on the repair policy adopted. We consider a hybrid
timer/threshold policy. It assumes the presence of an entity able to monitor the availabil-
ity of the participating peers and trigger a repair operation according to the following rules:

1. When a peer A disconnects and the number of available peers n is smaller or equal to
TH: n ≤ TH:

perform immediately the repair of the parity fragment stored on peer A.

2. When a peer A disconnects and n > TH:

wait for a time T and then if A is still unavailable perform a repair of the parity frag-
ment stored on A.

The timer T is used to distinguish between transient and permanent failures. In the ideal
case in which T is chosen as the maximum possible disconnection time of a peer, whenever
a disconnected peer does not reconnect within T , we are sure that it has abandoned the
system for ever. In the real world, disconnection times may be bigger than T . In such a case,
the parity fragments stored on a reconnecting peer are discarded, because they have already
been repaired4. This is a waste of resources that suggests to increase T . However, when T is
increased, a higher number of peers is allowed to stay offline, in which case the set of online
peers is not able to reconstruct the original fragments or is not able to perform repairs. To be
quite insensitive to the choice of T , we introduced also the threshold, which has to be such
that availability is provided, i.e. reconstruction is always possible.

In the case of Reed-Solomon codes, availability is provided if n ≥ k, which requires that
TH > k. we fix TH = k + x, which means that in the moment of minimum availability,
i.e. in the moment of maximum risk, the system can still support x more losses. In the case
of Hierarchical Codes, there is no a fixed threshold that guarantees availability. As shown
in Fig. 5.6, the minimum number of online fragments that provides availability depends on
the particular losses that occur in the system and varies, in the case of Fig. 5.6a, from 64 to
about 96. To be comparable with Reed-Solomon codes, our approach is the following: when-
ever a loss occurs we recompute the probabilities P (failure|l), which indicate the probability
of failure if additional l losses would occur, taking into account the specific losses that al-

3It is β=2, which means that every object consumes a space twice its size.
4For Hierarchical Codes, reintegration of this parity fragment is in some cases possible and would increase

significantly the efficiency. However, identifying such cases is not trivial and it is left as future work.
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ready have occurred. If we want that, in the moment of maximum risk, the system can still
support additional x losses, we apply the following rule: a repair is performed whenever
P (failure|a) > 0.

Two notable facts are that

1. The repair policy for Hierarchical Codes needs to maintain a larger number of available
parity fragments and tends to perform more repairs.

2. The guarantees in terms of availability in the case of Hierarchical Codes are stronger:
for Reed-Solomon codes, at the moment of maximum risk, if additional x losses would
occur, the object will be unavailable with probability 1, while in Hierarchical Codes,
the object will be unavailable with a probability that can be much smaller than 1.

In the experiments, we test different environments changing the stability of peers, and we
measure the number of parity fragment transfers needed to maintain the code. We chose
a = 10 and T to be three times bigger than the average disconnection time. In any case, we
performed other experiments that showed that changing these parameters does not influence
significantly the results.

5.6.1 Experiments with synthetic traces

In this set of experiments, the peer behavior is synthetically generated. In particular, every
peer behaves according to a simple Markovian model depicted in Fig. 5.7.

Figure 5.7: State machine modeling the behavior of a peer for Hierarchical Codes experiments.

This model is very similar to the one introduced in section 3.2.2. A peer is available for
an exponentially distributed time Ton, then upon disconnection it can abandon the system
with probability Pdeath or can stay temporarily offline with probability (1 − Pdeath) for an
exponentially distributed time Toff, after which it comes back online.

If one compares this model with the one in section 3.2.2 depicted in Fig. 3.1, one will no-
tice that the parameter Tlife has disappeared and has been logically replaced by the death
probability Pdeath. However there is an easy mapping between the two parameters:

Tlife = Ton +
1− Pdeath

Pdeath
(Ton + Toff)
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(b) Total number of fragment transfers.

Figure 5.8: Cost of maintenance for Reed-Solomon and Hierarchical (64,64)-codes as function of the
up ratio α = Ton/(Ton + Toff). a = 10, T = 3Toff.

We tested our hierarchical (64,64)-codes and Reed-Solomon (64,64)-code, using different
combinations of the three parameters. The results suggest that, while Pdeath does not have
a strong influence, Ton and Toff are very important. In particular a fundamental role is played
by the up ratio α = Ton/(Ton + Toff), which represents the percentage of time that a peer
spends online, or alternatively the ratio of peers that on average are online. It is clear that
α has an influence on the number of repairs needed. This influence is different in Reed-
Solomon codes and in Hierarchical Codes, since Hierarchical Codes need on average more
peers to be online.
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Figure 5.9: Gain of Hierarchical (64,64)-codes in terms of number of fragment transfers with respect
of Reed-Solomon (64,64)-codes as function of the up ratio α = Ton/(Ton + Toff). a = 10, T = 3Toff.

We run the simulation for 10000 time units, setting the disconnection time Ton = 10, the death
probability Pdeath = 0.001 and selecting several values for Toff to test different values of the up
ratio.

As already mentioned, we evaluate Reed-Solomon codes and the two instances of Hierarchi-
cal Codes shown in figure 5.6. Fig. 5.8 presents the results obtained; we label with ‘Hierar-
chical A’ the results obtained for the hierarchical code of Fig. 5.6a and with ‘Hierarchical B’
the results for the hierarchical code of Fig. 5.6b. In particular Fig. 5.8a shows the number of
repairs needed by the three redundancy schemes, while Fig. 5.8b shows the total amount of
fragment transfers executed for these repairs.

We see in Fig. 5.8a that, compared to Reed-Solomon codes, the hierarchical code ‘A’ requires
a much larger number of repairs, while the hierarchical code ‘B’ requires only a slightly
larger number of repairs. This is expected since (1) Hierarchical Codes need to be more
reactive as they are more sensitive to losses (2) The trade-off between reliability and repair
cost of the hierarchical code B in Fig. 5.6b is much closer to Reed Solomon with respect to
the hierarchical code A of Fig. 5.6a, (i.e. a non-zero failure probability occurs for a number of
losses closer to 64 and the repair degree is equal to 64 in a larger number of cases).

We also see that the number of repairs decreases when the up ratio increases. This is due to
the fact that a higher up ratio corresponds to a higher percentage of peers on line, which in
turn means fewer repairs.

The advantages of Hierarchical Codes are shown in Fig. 5.8b, where the actual communi-
cation costs introduced by the repairs is expressed in terms of the number of fragments
transferred. Both hierarchical codes, in spite of their significantly higher number of repairs,
generate in most of the cases much less fragment transfers than the Reed-Solomon code. In
other words Hierarchical Codes require more repairs, but most of the repairs are quite cheap
in terms of fragment transfers, which reduces the global repair traffic.
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To have better understanding of the gain achieved in terms of fragment transfers, we com-
pute the gain in terms of number of fragment transfers required by Hierarchical Codes with
respect to Reed-Solomon codes. Formally, if we denote the number of fragment transfers
of one instance of hierarchical codes as ntHC and the number of fragment transfers of Reed-
Solomon codes as ntRS, the gain of the hierarchical code gHC is defined as:

gHC = 1− ntHC

ntRS

Note that for this definition the gain of Reed-Solomon is equal to 0.

We show in Fig. 5.9 the values of the gain for the two instance of hierarchical codes. This
picture clearly shows the trade-off offered by the two different Hierarchical Codes. The in-
stance ’A’ appears to be more suitable for small values of up ratio, i.e. when the nodes are
more unstable, while for a more stable environment the reduction in repair traffic is smaller
and in some cases (namely for up = 0.7) it is even higher than in Reed-Solomon codes. On
the other hand, the hierarchical code ‘B’ produces a smaller gain for unstable environments
(roughly 0.6 vs. 0.8), while it reduces the repair traffic much more in stable environments.
Also this code always achieves a lower repair traffic than the Reed Solomon code (the curve
is always below 1).

5.6.2 Experiments with real traces

To evaluate the codes for a wider set of operating conditions than the ones given by the syn-
thetic traces, we also use availability data of real distributed systems. We use two different
traces:

1. KAD traces: obtained crawling a KAD network. These traces [91] characterize the
availability of about 6500 peers in the KAD network, sampling their status every 5
minutes for about 5 months.

2. PlanetLab traces: obtained monitoring the connectivity of PlanetLab nodes. These
traces [56] describe the availability status of 669 nodes, which was obtained by means of
pings sent every 15 minutes among all pairs of PlanetLab nodes, starting from January
2004 for about 500 days.

The table 5.2 depicts the results for the two traces comparing the total number of repairs
and the total number of fragment transfers for the Reed-Solomon and the two instances of
Hierarchical Codes.

The results confirm the trend that we saw in the previous subsection: Hierarchical Codes re-
quire a higher number of repairs but result in a lower amount of fragments to be transferred. Once
again we see the impact of the two different configurations on the results.

5.7 Conclusion

We presented a new class of codes, called Hierarchical Codes, which offer a flexible way of
adding redundancy in distributed storage systems. Hierarchical Codes combine the advan-
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Repairs Transfers

PlanetLab
Reed-Solomon 472 30208
Hierarchical A 637 4624
Hierarchical B 487 6920

KAD
Reed-Solomon 765 48960
Hierarchical A 3888 39710
Hierarchical B 1072 20992

Table 5.2: Cost of maintenance for Reed-Solomon and Hierarchical (64,64)-codes using real traces of
peer behavior.

tage of reduced repair traffic offered by replication with the higher resilience against failures
offered by coding. We believe that Hierarchical Codes make coding a practical alternative to
replication in peer-to-peer storage systems.

Experiments validated our claims, showing that for a given level of availability, a higher
number of repairs needed by Hierarchical Codes results in most cases in a smaller amount
of repair traffic.

Moreover, we saw that Hierarchical Codes with a given redundancy factor, allow to trade-
off in multiple ways reliability and repair cost. Future developments will focus on better
understanding these trade-offs, which will allow to determine the optimal configuration of
the codes for a given environment.

5.8 Proofs

5.8.1 Useful lemmas

Lemma 1. Consider an Information Flow Graph for a generic (k,h)-code at time step T . Consider
a selection of k parity fragments P k

1 . Assume that there exists a condition C on this selection that
guarantees that the original fragments can be reconstructed.

If for any time step t ≤ T , any selection of P k
t that fulfills the condition C can be perfectly matched

with a selection of k parity fragments P k
t−1 in time step t− 1 that in turn fulfills the condition C,

Then any selection P k
T that fulfills the condition C allows the reconstruction of the original fragments.

Proof. We proceed by steps:

step 1 Consider a selection P k
1 that fulfills the condition C. By assumption we know that the

selection allows the reconstruction of the original fragments. This means, thanks to Theorem
1, that nodes in P k

1 have k distinct paths towards the original fragments F .

step 2 Consider a selection P k
2 that fulfills the condition C. By assumption we know that

the nodes in this selection can be perfectly matched with a selection P k
1 that in turn fulfills

the condition C. Thanks to previous step, we know that nodes in P k
1 have k distinct paths

towards the original fragments O. This means that we can concatenate the perfect matching
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between P k
2 and P k

1 and the k distinct paths between P k
1 and O, obtaining k distinct paths

between P k
2 and O.

The last step can be repeated until the time step T , where thanks to Theorem 1, the lemma is
proved.

Lemma 2. Consider a code graph of a Hierarchical Code. Consider a group Gds,i and denote as
Ods,i the subset of original fragments that are connected with nodes in this group Gds,i. Consider a
selection of nodes P k

1 and consider the subset of this selection that belongs to the group considered:
Ads,i = P k

1 ∩Gds,i.

If |Ads,i| ≤ ds and ∀j : Gds−1,j
⊆ Gds,i, the nodes in Ads−1,j have already been perfectly matched

with |Ads−1,j | nodes in Ods−1,j ,

Then it is possible to find a perfect matching between the nodes in Ads,i and the nodes in Ods,i.

Proof. Consider the nodes in Ads,i that do not belong to the subgroups Gds−1,j ⊆ Gds,i and
denote them as Â. Consider the fragments in Ods,i that have not been matched with the
nodes in the subgroups Gds−1,j ⊆ Gds,i and denote them as Ô. The nodes in Â are connected
with all the nodes in Ods,i and can be thus all matched with nodes in the subset Ô, as long
as |Â| ≤ |Ô|. Since nodes in the subgroups have already been matched, then |Ads,i| − |Â| =
|Ods,i| − |Ô|, where |Ods,i| = ds. This implies that whenever |Ads,i| ≤ ds, |Â| ≤ |Ô| and the
perfect matching is possible.

Lemma 3. Consider an Information Flow Graph of a hierarchical code at time step t. Consider a
selection P k

t that fulfills the condition (5.1). Assume that a subset of α nodes Pα
t ⊂ P k

t has already
been perfectly matched with nodes in the previous step Pα

t−1 that in turn fulfill the condition (5.1).
Consider a node p ∈ P k

t \ Pα
t , i.e. that belongs to the selection but has not yet been matched.

If all the repairs in the graph are done fulfilling condition (5.2) and condition (5.3), and all the parity
fragments pi ∈ Pα

t are such that |R(pi)| ≤ |R(p)|,

Then it is possible to augment Pα
t−1 with another node that is matched with p, without violating the

condition (5.1) on the augmented set Pα+1
t−1

Proof. Let us use the following notation: Ad,i = Pα
t−1 ∩ Gd,i and Rd,i = R(p) ∩ Gd,i. As-

sume that Gds,1 is the group in which condition (5.2) is fulfilled. This condition requires that
|Rds,1| = |ds|. Note that all the nodes in Pα

t have a repair degree d ≤ ds, which implies that
all the nodes in Ads,i are necessary matched with nodes in Pα

t ∩Gds,1
5. Since p ∈ Gds,1, thanks

to condition (5.1), |Pα
t ∩Gds,1| < ds, which in turn implies |Ads,i| < |ds|.

Consider two alternative cases:

case 1: ∃j : 1 ≤ j ≤ gs, |Rds−1,j | > |Ads−1,j |: This means that there is a subgroup of the group
Gds,1 (that belongs to G(b)) that has at least one free node that can be matched with the parity
fragment p. Since |Rds−1,j | ≤ |ds−1|, this node can be added without violating condition (5.1)
and the lemma is proved.

5To be matched with a node po outside Gds,1, the repair degree of po must be bigger than ds, which would
violate the condition of the lemma.
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case 2: ∀j : 1 ≤ j ≤ gs, |Rds−1,j | ≤ |Ads−1,j |: This means that there are no free nodes in the
subgroups. This implies that:

∑gs

j=1 |Rds−1,j | ≤
∑gs

j=1 |Ads−1,j |. Consider the nodes in Ads,1

that do not belong to the subgroups and denote them as Â (they are among the hs additional
nodes), then consider the nodes in Rds,1 that do not belong to the subgroups and denote
them as R̂. We can write

∑gs

j=1 |Ads−1,j | = |Ads,i| − |Â| and
∑gs

j=1 |Rds−1,j | = |Rds,i| − |R̂|.
Since |Rds,1| = |ds| and |Ads,i| < |ds|, we have that |R̂| > |Â|. This means that there is at
least one free node in R̂ that can be matched with the parity fragments p without violating
condition (5.1) and the lemma is proved.

5.8.2 Proof of Proposition 1

Proof. Thanks to Lemma 1, proving Proposition 1 requires to prove that in a generic time
step t, only if repairs are done with a repair degree d ≥ k, then any selection of nodes P k

t can
be perfectly matched with a selection P k

t−1.

Consider a repaired node p ∈ P k
t . All the other k−1 nodes in P k

t can be matched at most with
k−1 nodes in Pt−1. If p has been repaired with a degree d < k, it is possible that all the nodes
in R(p) have already been matched with the k − 1 nodes in P k

t , preventing the matching of
p. If d ≥ k there is at least one free node that can be matched with p. This can be repeated for
all the repaired fragments proving, thanks to Lemma 1, the proposition.

5.8.3 Proof of Proposition 2

Proof. Thanks to Lemma 1, proving Proposition 2 corresponds to prove that if a selection
P k

1 is done fulfilling condition (5.1), then it is possible to find a perfect matching between the
nodes in P k

1 and the original fragments in O. This can be proved using iteratively the Lemma
2 from the innermost group that nodes in P k

1 belong to, to the outest one.

5.8.4 Proof of Proposition 3

Proof. Thanks to Lemma 1, proving Proposition 3 corresponds to prove that in a generic time
step t, where repairs are done fulfilling the condition (5.2) and condition (5.3), any selection
of nodes P k

t that fulfills the condition (5.1) can be perfectly matched with a selection P k
t−1

that in turn fulfills the condition (5.1).

Thanks to Lemma 3, P k
t−1 can be found matching one by one the nodes in P k

t proceeding
from the nodes with the lowest repair degree to the nodes with the highest one.

5.9 Computation of failure probability

Let us consider a Hierarchical (k,h)-code and assume that l losses occurred in this code,
where 0 ≤ l ≤ (k + h). We first define the probability P (k′|l), which is the probability
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that, given that l losses occurred, k′ is the maximum number of alive fragments in the code,
which fulfills the condition (5.1). Note that the definition implies that P (k′|l) exists only for
0 ≤ k′ ≤ k. Given these probabilities, computing the failure probabilities is straightforward:

P (failure|l) = 1− P (k′ = k|l)

To compute the failure probability we proceed as follows:

1. We compute the probabilities P0(k′|l) for the Hierarchical (k0, h0)-code, represented by
the level 0 (the innermost) in the hierarchy as explained in section 5.9.1.

2. We compute the probabilities Ps(k′|l) for the Hierarchical (ds,Hs)-code, represented
by the generic level s, using the probabilities Ps−1(k′|l) computed for the hierarchical
(ds−1,Hs−1)-code, represented by the level s− 1, as explained in section 5.9.2.

5.9.1 Probabilities for level 0

At the level 0 the probability computation is straightforward:

P0(k′|l) =


1 ∀k′ = k0 + h0 − l, k′ < k0

1 ∀k′ > k0 + h0 − l, k′ = k0

0 otherwise

5.9.2 Probabilities for level s

If we have l losses in a generic hierarchical (ds,Hs)-code associated with the s-th level of the
hierarchy we have many different ways in which these losses can be distributed among the
gs groups Gds−1,i this code is made of and the hs fragments associated with this level s. Let
us define the Loss Configuration of l losses denoted as

−→
LCl as a vector of gs + 1 elements

−→
LCl = (l0, l1, . . . , lgs), where each element li indicates how many losses occur in the group
Gds−1,i except from l0, which indicates how many losses occur in among the hs fragments of
the level s. The constraints of

−→
LCl are:{
l0 < hs

li < ds−1 + Hs−1, ∀i = 1, . . . , gs

We denote as P (
−→
LCl) the probability that this configuration take place given that l losses

occurred and we compute it as explained in section 5.9.3.

Every of the last gs values in the configuration (all of them except l0) indicates a number of
losses li in a given subgroup and thus denotes a set of probabilities Ps−1(k′|li), with 0 ≤ k′ ≤
ds−1, which express the probability that k′ is the maximum number of alive fragments from
the subgroup i that fulfill the condition (5.1) for the level (s− 1).

If, for each of this subgroup we select a specific value k′i, we define a Fragment Configuration
of K ′ =

∑gs

i=1 ki alive fragments denoted as FCK′ , whose probability is denoted as P (FCK′)
and given by:

P (FCK′) =
gs∏

i=1

Ps−1(k′i|li)
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The probability P (FCK′) represents one of the components of the probability that, given
the configuration analyzed

−→
LCl, K ′ is maximum number of alive fragments taken from the

subgroups such that the condition (5.1) is fulfilled for the level s. To obtain the maximum
number of alive fragments from the whole group that fulfill the condition (5.1), K ′ must be
augmented with hs − l0 alive fragments of the level s, with the constraint: K ′ + hs − l0 ≤ ds.

Putting the pieces together we can finally define the probability Ps(k′|l):

Ps(k′|l) =
∑
∀
−→
LCl

P (
−→
LCl)f(k′,

−→
LCl)

where the auxiliary function fs(k′,
−→
LCl) is defined as follows

fs(k′,
−→
LCl) =

1 k′ < hs − l0∏
∀FCk′−(hs−l0)

P (FCk′−(hs−l0)) k′ < k, k′ ≥ hs − l0∑ks−l0
j=0

∏
∀FCk′−j

P (FCk′−j) k′ = k, k′ ≥ hs − l0

5.9.3 Loss Configuration probability

We can map the loss configuration problem to the following balls and bin problem. Consider
a set of gs + 1 colors, for each color i there are ni balls, which are inserted in a bin. We extract
form the bin a total of l balls, which will form a color configuration described by a vector
of gs + 1 elements, where each element li indicates how many balls of color i have been
extracted. Considering the original loss configuration problem, our objective is to compute
the probability of a given color extraction, where n0 = hs and ni = ks−1 + hs−1 for 1 ≥
i ≥ g. This probability can be computed dividing the number of possible configurations
corresponding to the extraction by the total number of possible configurations, which gives:

P (
−→
LCl) =

∏gs

i=0

(
ni
li

)(Pgs
i=0 ni

l

)
where

−→
LCl = (l0, l1, . . . , lg) and : (

n

k

)
=

n!
k!(n− k)!
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CHAPTER6
Adaptive Proactive Repair Policy

6.1 Introduction

In the previous chapters we focused our attention on redundancy schemes. In particular, we
analyzed the efficiency of such redundancy schemes with respect to the resources they need:
storage, communication, and computation. The key observation of all our work is that, in
the economy of peer-to-peer file backup systems, the most critical element is the scarcity of
communication bandwidth. From this perspective, the redundancy schemes we studied and
proposed are designed to reduce the communication bandwidth utilization. This objective is
achieved essentially by reducing the amount of data that need to be transferred upon repairs.
In this chapter we try to pursue communication bandwidth savings from a different point
of view. In particular, we investigate the impact of repair policies on the communication
bandwidth.

While a redundancy scheme defines how to produce and maintain data redundancy, a repair
policy decides when to perform the maintenance. In chapter 3 we explained that the main-
tenance process must essentially repair data at a rate that in average is equal to the rate of
permanent losses. However, the exact instant in which repairs are done to guarantee such
average rate can vary a lot. While the choice of these instants has in theory almost no impact
on the durability of data, they can have a strong impact on the communication bandwidth
requirements. In particular a bad choice may cause a bursty use of communication band-
width, which can be unsustainable for the system. The reason for this bad impact is that
bandwidth is a resource that must be used immediately and cannot be put aside for future
use, in other words if the system does not use communication bandwidth for a given pe-
riod of time, it is just wasted. If the repair process operates in bursts, the spikes in network
bandwidth may not be sustainable by the peers and the success of the repair process may
be delayed or compromised. Therefore, one should try to smooth as much as possible the
repair rate by anticipating some of the repair work in order to prevent bursts to occur.

To give a simple example, let us assume a system where an erasure (k,h)-code is used and
assume that every hour 10 parity blocks are permanently lost. Then, the maintenance process
must repair 10 parity blocks per hour to keep up with the losses. If h >> 10, it does not

95
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matter if all the 10 blocks are repaired together every hour or if one block is repaired every
6 minutes. However, if the bandwidth resources are limited, the system could be unable to
perform a burst of 10 repairs at once and the solution of spreading them over time could be
optimal.

In this chapter we introduce a new metric to evaluate the effectiveness of a repair policy,
which is the smoothness of the repair rate and we propose a repair scheme that strives to
maximize it.

Existing approaches for the repair of lost parity blocks are either reactive or proactive. Reac-
tive schemes are able to follow changes in failure behavior of peers and provide availability,
however they tend to perform more repairs than what is strictly needed and make a bursty
use of resources.

Proactive schemes use a constant repair rate and are able to smooth the resource consump-
tion for repairs. However, to provide durability, proactive schemes need an a priori knowl-
edge of failure behavior. In case of imprecise or wrong knowledge, durability may be com-
promised.

We argue that proactive and reactive schemes represent two specific cases of a more general
approach that tunes its reactivity with respect to the expected stability of the peers. In limit
cases, it may result in a purely reactive scheme, if the peer behavior does not follow any
predictable pattern, or a fixed repair rate, if the peer failure behavior remains constant.

We want to draw the attention to one important issue: Any scheme that does a repair to
replace a parity block stored on a node that became temporarily unavailable may do wasted
work. Indeed, if the newly created parity block was stored on a peer that later permanently
leaves, that parity block may disappear before the system needs it. In this case, that parity
block would be completely useless for improving either durability or availability.

Our main contribution in this chapter is a framework based on an ongoing estimation of the
peer failure behavior. The rate R, at which repairs are performed, is periodically updated
according to the changes in the statistical properties of failures. This framework is able to
provide at the same time durability, adaptiveness, and a smooth use of the resources.

The design of this framework requires the solution of an adaptive control problem, presented
in section 6.3, which is based on a period estimation of the peer behavior. In section 6.4 we
discuss the impact of the estimation time, while in section 6.5 we propose a hybrid reactive-
proactive scheme, which improves the availability guarantees of the system. The proposed
system is first validated in section 6.6 and then evaluated using experiments as described in
section 6.7.

6.2 Background

Providing availability or durability is a key issue to be addressed by any distributed storage
system. The classical solution to replace a missing fragment is a purely reactive scheme, also
known in literature as eager repair scheme. These systems [38, 50, 85] make no distinction
between transient and permanent failures and the parity blocks stored on peers that become
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again available after a temporary disconnection are not reintegrated in the system. This
approach is extremely simple and it seems to be very effective, but it does not address at all
the costs of the maintenance. The load due to maintenance may saturate in certain conditions
the network or disk I/O bandwidth available and compromise data durability.

We know from traces of peer availability [28] that temporary disconnections are typically
much more frequent than permanent ones. Therefore, reintegrating parity blocks should
significantly reduce the number of repairs needed.

There exist a number of reactive schemes that use reintegration. These systems are more
complex since they need to track the disconnected peers and react selectively to disconnec-
tion events, by means of a threshold. Carbonite [34] uses a repair threshold THL that cor-
responds to the minimal level of redundancy needed to face transient failures and provide
availability. THL is considered as a lower-bound: any time the number of available parity
blocks runs below THL, a single repair is performed. This threshold-based reactive scheme
is the cheapest one in terms of resources consumed, since only the repairs strictly needed
are performed. Total Recall [29] uses a lower-bound threshold THL as well, but fixes also an-
other threshold THH , which is the amount of redundancy that is initially inserted and that
is restored when the system runs below THL. This means that the system triggers multiple
repairs at once to bring the number of replicas back to the initial number THH . This ap-
proach represents a first step towards a proactive approach, where part of the work is done
in advance with respect to the real needs.

Datta and Aberer [41] are the first to address the evolution over time and the steady state
characteristics of a storage system. They propose the use of a threshold THL but adopt a
proactive approach called random lazy repair strategy, in which the number of repairs done
increases as the system gets closer to the threshold THL. The main intuition behind random
lazy repair is that if one waits until the threshold is reached before repairs are made, the
occurrence of correlated failures may put in danger the durability of the objects. Besides,
this may result in a very bursty use of the resources needed.

To our knowledge, Tempo [90] is the only one that tries to smooth the bandwidth used for
repair. Tempo argues that reactive systems tend to perform repairs in bursts, alternating be-
tween periods of intensive bandwidth consumption and periods of inactivity. The spikes
produced by such a behavior represent both an inefficient use of the resources and a dan-
ger for the object durability. The idea in Tempo is to have a constant repair rate that is not
correlated to the instantaneous condition of the system. This rate is fixed by the system admin-
istrator in terms of a bandwidth budget per node, and if properly chosen, is able to assure
durability. The main weakness of this method is that it is close to impossible to choose a priori
the right repair rate. Even if the bandwidth is used as smoothly as possible, there is neither
guarantee on the object durability nor on the optimality of the resource consumption, which
may be a lot higher than what is strictly needed.

The present work, starting from the considerations made by Tempo, tries to develop a sys-
tem that strives to meet three different objectives: provide data availability, consume an
amount of resources comparable with the one consumed by reactive schemes, and maximize
the smoothness of the repair bandwidth needed.
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6.3 An adaptive control problem

A generic non-adaptive scheme uses a repair rate R that is constant in time to match a target
number of available parity blocks.

In this work, we aim to build an adaptive control scheme that is able to adapt the repair rate to
the changes of the system behavior.

We depict our adaptive control scheme in Fig. 6.1. The scheme is composed by three compo-
nents:

• The system represents the evolution of the status of the peers storing a particular ob-
ject, in terms of temporary disconnections, permanent disconnections, reconnections,
and repairs. It is characterized by a system model explained in section 6.3.1, governed
by three parameters: the disconnection rate µ, the reconnection rate λ, and the death
probability Pdeath. The input of the system is the repair rate, which is a time-dependent
signal R(t), determined by the controller. The output of the system is the number of
peers online n(t) and an additional information, called transition, which signals the
occurrence of a repair or of a reconnection.

• The estimator estimates the parameters that characterize the system, by observing the
output of the system. The output of the estimator are the estimate µ̂ of the disconnec-
tion rate and estimate P̂death of the death probability, which are obtained as explained
in section 6.3.2

• The controller receives as input the estimates (µ̂ and P̂death) from the estimator and the
target number n′ of online peers set by the system administrator. The output of the
controller is the repair rate R(t) needed to match the target n′, which is computed as
explained in section 6.3.3.

Figure 6.1: The adaptive control scheme.

The operations of estimation and control are performed periodically at a rate 1/∆T , where
∆T is the observation period used by the estimator, and the update period, i.e. the interval
between two updates of R(t).

6.3.1 The System Model

The design of the estimator requires the definition of a mathematical model of the system
that captures the behavior of peers.
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We have already introduced such model in chapter 5, as a Markov model depicted as the
state machine of Fig. 5.7. While in the previous chapters we assumed exponentially dis-
tributed session times and disconnection times, now we can relax this assumption, saying
that those times follow a generic distribution. The model we obtain is a Continuous-Time
Semi-Markov chain as depicted in Fig. 6.2. To ease the notation, we also introduce some
auxiliary parameters, in particular we define the following transition rates:

• µ: Single peer disconnection rate, which corresponds to the inverse of the average
session time. µ = 1/Ton.

• λ: Single peer reconnection rate, which corresponds to the inverse of the average
disconnection time λ = 1/Toff.

With this new notation the model can be depicted as in Fig. 6.2

Figure 6.2: The Continuous-Time Semi-Markov chain of a peer life-cycle.

The behavior that describes the life-cycle of a single peer must be translated into a more
complex model that takes into account the participating peers all together and the repair rate
R.

Given the above assumptions, we can use a network of two G/G/∞ queues depicted in
Fig. 6.3 to represent the system behavior: G/G/∞ queues represent pure delay elements
where the delay, which corresponds to the service time, fits a generic distribution. In our
case, Q1 represents the peers in the online state and Q2 represents the peers in the offline state.

We assume that the number of peers is sufficiently large so that every parity block can be
stored on a different peer. With this assumption, the terms peer and parity block are equiva-
lent and this model represents also the availability of the parity blocks in the system.

The customers of the first queue Q1 represent the number of available parity blocks n(t). Its
arrival process, whose rate is denoted with γ1, is given by the parity blocks that are newly
introduced at rate R and the process of parity blocks that are becoming again online after
a period of unavailability. The time spent in Q1 is determined by the service rate µ. The
departure process from Q1 represents the parity blocks becoming unavailable and its rate
is equal to the arrival rate. The customers in the second queue Q2 represent the number of
temporarily unavailable parity blocks m(t) at time t. Its arrival process, whose rate is denoted
with γ2, is given by the parity blocks that have become unavailable and did not abandon
permanently the system, which is: γ2 = (1 − Pdeath)γ1. The time spent in Q2 is determined
by the service rate λ. Finally, the departure process from Q2 represents the parity blocks
becoming available again.
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Figure 6.3: Queuing system representing the overall system behavior.

We want to make a clarification concerning the two parameters µ and λ, which are defined,
in the Continuous-Time Semi-Markov chain of Fig. 6.2, as the single peer disconnection and
reconnection rates. In the rest of the chapter, we will refer to them simply as disconnection
rate and reconnection rate. In the queuing system of Fig. 6.3, µ and λ represent the service
rates of the two queues and must not be confused with the global departure rates, which are
referred to by γ1 and γ2.

To solve this network of queues, we write its balance equations:

γ1 = R + γ2

γ2 = (1− Pdeath)γ1
⇒

{
γ1 = 1

Pdeath
R

γ2 = 1−Pdeath
Pdeath

R
(6.1)

Using Little’s law [99] we can derive the average number of customers in each queue:

n = γ1/µ = R
µPdeath

m = γ2/λ = (1−Pdeath)R
λPdeath

(6.2)

In case the service times and the arrival times are exponentially distributed, Q1 and Q2 be-
come M/M/∞ queues and we can write the analytical expression [99] for the probability
distribution of the number n of available parity blocks as:

f(n) =
nn

n!
e−n ∼ N (n, n) (6.3)

Note that eq. 6.3 can be approximated by the Normal distribution with mean and a variance
being n. This particular model will be used exclusively in the experiments with synthetic
data to validate the system and to get some insights into its functioning.

6.3.2 The Estimator

The estimator is an object that, collecting statistical information on the signal n(t) and on the
input flow in the first queue, is able to estimate the parameters µ and Pdeath needed by the
controller. We obtain:
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• The average number of available parity blocks n̂:

n̂ =
∑

i niti
∆T

(6.4)

where ti is the time spent by the system in the state ni, which implies ∆T =
∑

i ti.

• The disconnection rate µ̂ using the relation:

γ̂1 =
#Disconnections

∆T

and Little’s law as in eq. 6.2:

µ̂ =
γ̂1

n̂
(6.5)

• The death probability P̂death can be computed in two equivalent ways. The first one is:

P̂death = 1− #Reconnections

#Disconnections

while the second, which is the one used in our implementation, relies on the first bal-
ance equation in eq. 6.1 and is:

P̂death =
R

γ̂1
(6.6)

6.3.3 The Controller

The controller receives the estimations µ̂ and P̂death and the target number of available parity
blocks n′ and uses eq. 6.5 and eq. 6.6 to compute the repair rate R as:

R = µ̂P̂deathn
′ (6.7)

Table 6.1 summarizes the symbols used.

6.4 Impact of Estimation Time

The estimation time ∆T , which corresponds also to the time between two updates of the
repair rate R, is the most crucial parameter of our model. In this section we discuss the
tuning of ∆T and explain its implications on the performance of the system.

6.4.1 Impact on Bandwidth Usage

Proactive schemes work well in static environments that exhibit constant statistical proper-
ties, i.e. properties that once estimated never change. In such a case, the ideal choice would



102 CHAPTER 6. ADAPTIVE PROACTIVE REPAIR POLICY

symbol description
µ disconnection rate
λ reconnection rate

Pdeath death probability
R repair rate
Q1 queue of available parity blocks
Q2 queue of temporarily unavailable parity blocks
γi departure/arrival rate for queue Qi

n number of available parity blocks
m number of temporarily unavailable parity blocks
n′ target number of available parity blocks

∆T estimation or update period

Table 6.1: Table of symbols used in the adaptive proactive repair policy .

be to perform a preliminary offline estimation and then select ∆T to be infinite. Any dif-
ferent choice would make the controller follow short-term fluctuations, which will result in
unnecessary work and an uneven use of the bandwidth resources.

Reactive schemes follow instantaneously any fluctuation of the system in the belief that no
properties describing the long-term behavior of the system can be found. This, in principle,
corresponds to setting ∆T = 0, in which case the controller promptly reacts to any change.
An example of such a condition is when we see correlated failures of many nodes where
most of the available parity blocks will suddenly disappear.

Our assumption is that, while real systems may lack long-term statistical properties, they
may have short-term properties that can be still exploited to make a smoother use of the
bandwidth while providing data durability.

If we consider a system in which the model parameters change continuously at a given rate,
our challenge is to choose the maximum ∆T that divides the time in segments in which the
system can be approximated as being statistically stable. This ideal choice would use the
repair bandwidth in the smoothest possible way. In this case, the residual fluctuations in the
repair bandwidth are those strictly necessary to provide durability.

If these fluctuations are not supported by the system, it just means that the available re-
sources are not enough for what we are trying to achieve. At this point, reactive schemes
appear as the safest and the most conservative choice: they may overshoot the instantaneous
repair rate and require, in certain periods, an excessive amount of the repair bandwidth. Re-
active systems have been very popular, because, without any complex tuning, they provide
availability at the price of a bursty resource consumption. Purely proactive schemes, instead,
received much less attention in the literature, because they only work in some theoretical
cases.
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6.4.2 Robustness of the Estimation

The speed of convergence is a key issue for a statistical estimator, and in our case puts a
lower limit on the values of ∆T .

If one tries to push system reactivity too much, it would degenerate to a situation in which
estimation does not make sense and a pure reactive scheme is more reliable.

Furthermore, the time needed to estimate the parameters depends on the parameters them-
selves. This means that in a dynamic environment a fixed choice of ∆T does not make sense.
Therefore, in our implementation we do not fix ∆T , but D, the average number of discon-
nections observed during an estimation period: we use the last estimations of µ̂ and n̂ to
predict the time ∆TD we expect to wait to observe D disconnections, with ∆TD defined as:

∆TD ,
D

γ̂1
=

D

µ̂n̂
(6.8)

6.5 A Hybrid Scheme for Availability

Let us consider the control rule in eq. 6.7 using the real parameters and under the hypothesis
that the average number of available parity blocks is exactly n′:

R = µ̂P̂deathn
′ ⇒ R = Pdeath(µn) = Pdeathγ1 (6.9)

Eq. 6.9 says that the objective of the controller is to make the repair rate equal to the rate of perma-
nent failures, which corresponds to an oracle system that is able to tell apart the permanent
departures from the transient ones. This ability, however, provides only durability, but it
cannot give any guarantee on the availability. Indeed, there might be periods in which a lot
of peers are temporarily disconnected and some objects may temporarily not have enough
available parity blocks to be reconstructed, while their existence in the system in the long
run is not jeopardized.

If we assume, as in our case, that we need at least k parity blocks to replace any lost fragment,
we need availability to assure durability. Therefore, even an oracle may run into situations in
which it cannot respond to a permanent failure because there are not enough parity blocks
left.

In practice this means that when the number of available parity blocks is below the availabil-
ity level (i.e. less than k parity blocks) we can only infer, according to the current estimation
of Pdeath, that the missing parity blocks are on machines that will reconnect later.

If we want to guarantee that a new parity block can be generated whenever required by
our controller, we need to make sure that there are always at least k parity blocks. For this
reason, we propose a hybrid scheme that switches to a purely reactive policy any time the
number of available parity blocks hits a lower threshold THpro. During these reactive periods,
the number of available parity blocks will not decrease as long as the system can keep up
producing a new parity block each time a node disconnects. However, the price to pay are
repair spikes. If THpro is properly chosen, these spikes are strictly needed and the hybrid
scheme maintains in this case the best trade-off.
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6.6 Validation

In the following we will validate the different pieces of our system, starting with the system
model.

To validate the system, we designed and implemented an event-driven simulator that mod-
els a simplified version of a distributed storage system on a set of peers whose behavior is
described by availability traces it receives as input.

For these experiments, we created synthetic traces of the peer behavior using exponentially
distributed disconnection and reconnection times. This assumption is very useful to validate
the system. Indeed, if the model is correct we will obtain a distribution of the number of
available parity blocks matching the expected theoretical one in eq. 6.3. Note, however,
that, since the estimation is independent of the distribution used, a choice of a different
distribution would not affect the results.

6.6.1 System Model Validation

To validate the system model, we observe its behavior when the parameters are known.
We choose a set of fixed parameters: µ = 1, Pdeath = 0.5 and λ = 2 and the repair rate
R = 100 · µ · Pdeath = 50 which should provide, using eq. 6.2, an average number of available
parity blocks n = 100.

Fig. 6.4a shows that the distribution of the number of online parity blocks clearly fits a Nor-
mal distribution as we expected. Fig. 6.4b instead depicts the instantaneous repair rate
denoted as Rinst, which reflects roughly the bandwidth consumption due to the maintenance
process. This measure is computed as the inverse of the time elapsed between two consecutive
repair events:

Rinst =
1

tRi − tRi−1

Since repair times are exponentially distributed, the repair events are not equally spaced,
producing a high variability in the repair rate.1. Such a high variability is an example of
what we want to avoid and suggests that exponential distributed repair times are not a good
choice, even if the average repair rate R is kept constant. A better solution would be to have
constant repair times. To test their impact we repeated the experiments using constant repair
times and we obtained roughly the same distribution as in Fig. 6.4a and a perfectly constant
instantaneous repair rate Rinst = R.

6.6.2 Estimator Validation

In this section we show the efficacy of the estimator. We run several experiments with dif-
ferent fixed values of the parameters and we observe the convergence of the estimation. In

1For graphical reasons we limited the y-range to 500. Rate spikes did attain values up to 50000 repairs per
time unit.
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(a) Distribution of the number of available parity blocks.
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Figure 6.4: Simulation with synthetic data, fixed parameters and exponentially distributed repair
times.

Fig. 6.5 we show only the results of a single case, where µ = 1 and Pdeath = 0.5. The estima-
tor is able to converge in about 5 time units. This convergence time is roughly proportional
to γ1, i.e. the number of samples (disconnections) observed per time unit, which is in turn
proportional to µ.

All the experiments we ran pointed out two different issues that we already discussed in
section 6.4.2:
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(a) Estimation of the disconnection rate µ.
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(b) Estimation of the death probability Pdeath.

Figure 6.5: Estimations with fixed parameters: µ = 1 and Pdeath = 0.5.

1. Convergence of the estimation is not immediate. Even with fixed values it takes some
time to obtain reasonable estimates. When we select a very small ∆T , we increase the
reactivity of the system, but we are not able to infer its statistical properties.

2. The convergence time depends on µ. This leads us to say that in a changing environ-
ment we cannot use a constant estimation period; instead ∆TD should be adapted to
the order of magnitude of the parameter µ as we do in eq. 6.8.
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6.6.3 Controller Validation

In this section we run experiments with parameters that vary as shown in Fig. 6.6 and with
an ideal estimator that knows these parameters. This simulation aims to show that all the
considerations made about a system with fixed parameters are still valid in a dynamic envi-
ronment.

Results are shown in Fig. 6.7 and demonstrate clearly that the controller is able to maintain
correctly the number of parity blocks. Moreover, the distribution of the number of available
parity blocks in Fig. 6.8 still resembles a Gaussian.
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Figure 6.6: Simulation with varying parameters and an ideal estimator. Evolution of the input pa-
rameters µ and Pdeath.

6.7 Experiments

We are mainly interested in two aspects, the capacity to assure durability and the smooth-
ness of the instantaneous repair rate. The durability can be easily evaluated looking at the
distribution of the number of available parity blocks n.

Assessing the smoothness of the instantaneous repair rate is a bit more complex. Note that
the ideal case is not necessarily the one in which the instantaneous repair rate is constant, but
the one in which its variations are minimal given the variations in the system. This minimum
corresponds to the ideal instantaneous repair rate, which is the rate we would select if we
were able to know instantaneously the exact system parameters, as we did in section 6.6.3.

Formally speaking, the ideal instantaneous repair rate is a continuous signal Rideal(t) and is
given by the following relation:

Rideal(t) , µ(t)P (t)n′
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Figure 6.7: Simulation with varying parameters and an ideal estimator. Repair rate R and evolution
of the number of available parity blocks.
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Figure 6.8: Simulation with varying parameters and an ideal estimator. Distribution of the number
of available parity blocks.

For every repair event Ri we compute Rdiff(tRi), which is the instantaneous repair rate we
observe and the ideal instantaneous repair rate in that instant:

Rdiff(tRi) , Rinst(tRi)−Rideal(tRi) (6.10)

The discrete sequence Rdiff(tRi) measures how far is the instantaneous repair rate from the
ideal one. To characterize this measure we use its standard deviation. The closer std(Rdiff) is
to zero, the closer our system is to the ideal case.
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6.7.1 Evaluation with Synthetic Data

In these experiments we use synthetic traces, again with the assumption of exponentially dis-
tributed disconnection and reconnection times. The objective is to show that our approach
obtains a higher smoothness than a reactive scheme and to evaluate the impact of the param-
eter D on the smoothness.

We choose the same sine waves for µ and Pdeath as in Fig. 6.6 . The duration is 300000 time
units and we choose n′ = 100, which we choose because it can nicely show all the dynamics
of our system.

The reactivity is controlled through the parameter D, which in turn influences ∆TD. Since
for too small values of D the estimation is not reliable and for too big values the distribution
of the number of available parity blocks degrades too much, we choose for D values between
50 and 2000.

The basis for our comparison is a generic reactive scheme that performs a single repair when-
ever the number of available parity blocks is below a threshold THreac. In these experiments,
we choose the threshold THreac = 95 , which is the value that produces an average number of
online parity blocks equal to the one provided by our proactive scheme, namely n′ = 100. In
Fig. 6.9a we plot the distribution of the number of available parity blocks, which represents a
very good result since the number of available fragments stays very close to the target num-
ber n′. However, the cost of the reactive scheme is a bursty repair activity shown in Fig. 6.9b,
where the sequence of repair events is depicted.

The objective of our scheme is to equally space the repair events, while still assuring a rea-
sonable distribution of the number of available parity blocks. If we compare the distribution
of the number available parity fragments obtained with D = 50 in Fig. 6.10a and the one
obtained with D = 2000 in Fig. 6.10b, we can see that increasing D, the distribution gets
worse. In particular, the results obtained with D = 2000 are clearly not acceptable, since the
level of availability is very low. This low availability is due to the fact that D is too big with
respect to the parameter dynamics and the estimator is not able to cope with their changes,
as shown in Fig. 6.11b, where the instantaneous repair rate Rinst(tRi) is compared with the
ideal one Rideal(t) in the case of D = 2000. However the higher availability obtained for
D = 50 (Fig. 6.10a) translates in a much lower smoothness as shown by the spiky instanta-
neous repair rate showed in Fig. 6.11a.

The trends suggested by the cases D = 50 and D = 2000, are confirmed by the aggregate
results for all the values of D shown in Fig. 6.12, where the mean, the 5-percentile and the
95-percentile of the number of available parity blocks are shown in Fig. 6.12a and the stan-
dard deviation of Rdiff, as defined in eq. 6.10, is shown in Fig. 6.12b. Note that at D = 0
we associated the results for the reactive scheme. These results give a clear picture of the
trade-off in the choice of D, namely that the increased smoothness has a cost in terms of the
distribution of the number of available parity blocks.

The poor availability for D being too big motivates the need for a hybrid scheme that puts a
lower-bound on the number of available parity blocks.



110 CHAPTER 6. ADAPTIVE PROACTIVE REPAIR POLICY

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50  100  150

fr
eq

ue
nc

y

n
(a) Distribution of the number of available parity blocks.
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Figure 6.9: Reactive Scheme: Simulation with synthetic data.

Experiments with the Hybrid Approach

In these experiments we evaluate the hybrid approach presented in section 6.5, and set the
threshold THpro = 50.

The aggregate results for all the values of D are shown in Fig. 6.13, where the mean, the
5-percentile and the 95-percentile of the number of available parity blocks are shown in
Fig. 6.13a and the standard deviation of Rdiff is shown in Fig. 6.13b. Comparing these plots
with those in Fig. 6.12, the impact of the hybrid approach is evident. On the one hand, the
5-percentile of the number of available parity blocks is raised above 50, i.e. THpro. On the
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(b) D=2000.

Figure 6.10: Adaptive Proactive Scheme: Simulation with synthetic data. Distribution of the number
of available parity blocks for D = 50 and D = 2000.

other hand, the standard deviation of Rdiff increases, which means more fluctuations. Note
that this effect is especially evident for bigger values of D, where the system, due to the lower
reactivity, more likely runs under the threshold and triggers reactive periods.

6.7.2 Evaluation with real traces

We tested our scheme using real availability traces from PlanetLab and KAD.
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Figure 6.11: Adaptive Proactive Scheme: Simulation with synthetic data. Comparison of Rinst and
Rideal for D = 50 and D = 2000.

Since for real traces we do not know what are the real parameters of the system, we can
neither compute Rideal nor Rdiff. To evaluate the smoothness of the repair rate in this case we
use directly the cumulative amount of repairs done over time. This curve, already used in
[90], gives us the total amount of work done by the different algorithms and its derivative
expresses the instantaneous repair rate at which this work was done.

PlanetLab Traces

As already mentioned in chapter 5, these traces describe the availability status of 669 nodes
and were obtained by means of pings sent every 15 minutes between all pairs of the con-
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Figure 6.12: Adaptive Proactive Scheme: Simulation with synthetic data. Reactivity vs. parity blocks
availability and rate smoothness.

cerned PlanetLab nodes, starting from January 2004 for about 500 days. These traces are
publicly available at [56]. We used data from the file pl-app-cleaned.avt.

We run and compare three different schemes:

• Our proactive scheme with the hybrid approach, a threshold of THpro = 50 and a target
number of available parity blocks of n′ = 100.
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Figure 6.13: Adaptive Hybrid Scheme: Simulation with synthetic data. Reactivity vs. parity blocks
availability and rate smoothness.

• A reactive scheme with a threshold THreac = 80. We choose experimentally the value
of 80 that provides an average number of available parity blocks equal to the one pro-
vided by our proactive scheme (n′ = 100).

• An oracle scheme which also starts with the same initial number of parity blocks as
other schemes and represents a system that is able to distinguish transient from per-
manent failures, triggering a repair only in case of a permanent failure.

To easily compare the schemes we selected two values of D: D = 500 and D = 1000.
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In Fig. 6.14 we show the time evolution of our proactive system for D = 500, where the
estimations of µ and Pdeath are shown in Fig. 6.14a, while the repair rate selected and the
evolution of the available parity blocks obtained are shown in Fig. 6.14b.
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(a) Estimation of µ and Pdeath.
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Figure 6.14: Adaptive Hybrid Scheme: Simulation with PlanetLab traces for D = 500.

In Fig. 6.15a the distribution of the available parity blocks with the three schemes is shown,
while in Fig. 6.15b the cost of the repair process is shown in terms of cumulative number of
repairs performed.

The oracle, which is a scheme that is practically not achievable, requires the lowest number
of repairs, since it creates new parity blocks only when peers permanently fail. Although
an oracle system would not perform unnecessary work, its distribution of the number of



116 CHAPTER 6. ADAPTIVE PROACTIVE REPAIR POLICY

available parity blocks is shifted towards lower values of n running into the risk of being
below the level required to assure availability.

The reactive scheme and our proactive scheme have a distribution of the number of available
parity blocks with the same mean value, namely 100; the difference resides in the fact that in
the reactive scheme the threshold mechanism prevents the number of available parity blocks
to fall below 80, while in the proactive schemes we tolerate lower values. This situation is
still acceptable and is compensated by the advantage of having a much smother repair rate as
shown in Fig. 6.15b. While the total number of repairs is comparable, the curves in Fig. 6.15b
show that the reactive scheme is more bursty than the proactive schemes. Moreover, as
expected, a large D produces a better smoothness.

The differences in the dynamics of the two schemes may be understood looking at day 300,
where a lot of transient failures took place. To face such an event, a reactive scheme simply
performs a lot of repairs producing a step in the curve and a spike in the resource consump-
tion. The proactive schemes, instead, up to that moment have already done a higher number
of repairs, i.e. they have done part of the work in advance, and can absorb the massive dis-
connection without negative impact on the repair process. At the next parameter update,
this higher disconnection rate is taken into account slightly increasing the repair rate. If the
disconnection peak was bigger and was not sustainable by the chosen rate, the number of
available parity blocks would have fallen below the threshold THpro triggering the hybrid
scheme to initiate a reactive period in response of the excessive churn.

KAD Traces

In this case we used the traces obtained crawling a KAD network. These traces ([92], [91])
give the availability of about 6500 peers in the KAD network, sampling their status every 5
minutes for about 5 months.

We run and compare the same three different schemes as in the case of PlanetLab. The only
difference is that for the reactive scheme we chose a threshold THreac = 90.

In general, proactive schemes tend to have a higher number of repairs. This, as already
suggested, is due to the fact that proactive schemes work in advance to spread the repairs
over time. This anticipation of repairs is the only way to smooth the rate without compromising the
durability. The price to pay, however, is that part of the parity blocks created in advance may
be lost, because of permanent failures, before they are needed [34]. The higher the death
probability Pdeath the more pronounced this effect will be.

In this experiment we selected two values of D: D = 1000 and D = 3000.

In Fig. 6.16 we show the time evolution of our proactive system for D = 1000, where the
estimations of µ and Pdeath are shown in Fig. 6.16a, while the repair rate selected and the
evolution of the available parity blocks obtained are shown in Fig. 6.16b.

In Fig. 6.17a the distribution of the available parity blocks with the three schemes is shown.
Although the reactive scheme achieve a better result, our proactive seems to be a quite good
compromise. The oracle requires the lowest number of repairs, which is due mainly to two
reasons: on the one hand the average number of available parity blocks is lower and, as
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Figure 6.15: Simulations with PlanetLab traces.

already explained in section 6.5, it might even run in periods of unavailability; on the other
hand part of the repairs done by proactive and reactive schemes is an additional work that
does not always correspond to additional parity blocks, since part of the newly created parity
blocks may have disappeared when needed, making their creation useless.

In Fig. 6.17b we show the cumulative repairs. While the oracle, as expected, does a very
little number of repairs, the amount of work performed by the proactive and the reactive
algorithm is roughly the same. The advantage of the proactive schemes is that they are able
to provide a high level of availability for both values of D and to have a smoother rate as
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Figure 6.16: Proactive scheme with D = 1000 on KAD traces.

compared to the reactive scheme, which alternates between periods in which a high number
of repairs are performed almost at the same time and periods of inactivity.

The fact that both curves for the proactive scheme end in a higher point, i.e. more repairs
are done, can be interpreted considering that the property of a proactive scheme is to do
work in advance to spread it over time. Having this in mind it is clear that is likely that the
instantaneous number of repairs done by such a scheme is higher than the one done by a
reactive scheme. Such a property is useful to have a safer availability, but as explained for
the case of the oracle, may represent in part a wasted work, because of the parity blocks that
disappear before their actual need.
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Figure 6.17: Simulation with KAD traces.

In general, proactive schemes tend to have a higher number of repairs. This, as already
suggested, is due to the fact that proactive schemes work in advance to spread the repairs
over time. This anticipation of repairs is the only way to smooth the rate without compromising the
durability. The price to pay, however, is that part of the parity blocks created in advance may
be lost, because of permanent failures, before they are needed [34]. The higher the death
probability Pdeath the more pronounced this effect will be.
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6.8 Conclusion

We proposed a novel framework for managing redundancy based on the estimation of the
peer behavior.

Our system combines the resilience of reactive schemes with the smoothness of proactive
schemes. It can be considered as a generalization of the purely proactive and reactive
schemes, in which the duality reactive or proactive becomes a specific case of a wider ap-
proach tunable with respect to the dynamics of the failure behavior.

We validated the proposed scheme and demonstrated its effectiveness using synthetic data
and availability traces of PlanetLab nodes.

Some of the open issues and the future work are outlined in the following.

More detailed experiments. It would be interesting to quantify metrics such as the num-
ber of (useless) parity blocks that were not needed to provide availability/durability or the
number of (wasted) parity blocks that are lost before being used. To do so, an association
between parity blocks and specific peers must be simulated. Such an association adds sub-
stantial complexity to the simulator and, moreover, would involve a model of the policy
adopted to choose peers that store the newly generated parity blocks. These aspects could
be easily investigated adopting the scheme presented in a real prototype.

Automatic tuning of the parameter D. Even if the ability of the system to provide durabil-
ity is not very sensitive to the choice of D, it would be nice to find a way to auto-tune D.
The objective would be to build a system that automatically finds a good tradeoff between
reactivity and smoothness of repair.
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Conclusion

7.1 Summary

The need of cheap data backup for ordinary users motivates the research into peer-to-
peer data backup systems. Such systems combine the practical advantages of online backup
services with the economic advantages of peer-to-peer approach.

Our contributions focus on data redundancy and data maintenance. We looked at these
two topics from a cost perspective with the objective of understanding the trade-offs that
these two design aspects arose and how these trade-offs impact the system economy. From
this point of view, we performed, as detailed in chapter 3, a cost analysis of an ideal peer-
to-peer data backup system. In simple terms, this analysis shows that, while replication is
able to consume little communication bandwidth for maintenance, it requires a lot of stor-
age space; on the contrary, erasure coding is able to save storage space but requires a large
amount of maintenance communication bandwidth.

Our goal is to find alternative redundancy schemes and maintenance algorithms able to over-
come the existing duality between replication and erasure coding and provide both, storage
efficiency and bandwidth efficiency. This goal guided our research, whose contributions are
as follows.

Regenerating Codes

Regenerating Codes reduce the communication cost due to repair activity. The original work
by Dimakis proved the existence of such codes and allowed to study their efficiency. We
realized that Regenerating Codes are very interesting, but that a more applied and practical
analysis is needed to understand properly the properties of Regenerating Codes.

We proposed an implementation of Regenerating Codes based on random linear codes and
we performed an analytical and experimental evaluation of the costs generated by these
codes. Our conclusions are as follows:

121



122 CHAPTER 7. CONCLUSION

• Regenerating Codes are able to reduce significantly the communication bandwidth
needed by repairs.

• Regenerating Codes may introduce in some configurations a significant computation
cost that can become the system bottleneck.

• Regenerating Codes generalize the trade-off given by erasure codes and replication.
This generalized trade-off includes not only communication bandwidth and storage
but also computation.

• In the design space of Regenerating Codes it is possible to find points that optimally
exploit the resources present in the system. These points, however, are able to provide
reasonable computation costs only for repair operations, while insert and retrieval op-
erations remain significantly expensive. This fact led us to conclude that Regenerating
Codes are best suited for applications that do not retrieve data very often, which is the
case of data backup systems.

Hierarchical Codes

We proposed Hierarchical Codes, which are a class of codes that aim, like Regenerating
Codes, to reduce the repair communication cost. Hierarchical codes compute the parity frag-
ments as random linear combinations of a subset of the original fragments. This choice allows
to reduce the average repair degree needed for repairs.

We presented the theoretic framework of Hierarchical Codes, proposed a formal analysis of
their efficiency, and then valuated them experimentally. The results obtained are as follows:

• Hierarchical Codes are able in certain configurations to reduce the repair communica-
tion costs. They usually require a higher number of repair operations, which however
in most cases entail only a small number of fragment transfers, which reduces the com-
munication cost.

• Hierarchical Codes with a given redundancy factor allow a flexible trade-off between
reliability and repair cost. The system designer may tune Hierarchical Codes to have
a behavior that can approach either block replication side or traditional erasure codes
side.

Adaptive Proactive Repair Policies

Previous work in the literature distinguished between two kinds of repair policies: reactive
policies and proactive policies. While reactive policies are able to well-adapt to peer behav-
ior, they tend to be bursty in the repair activity. Proactive schemes on the contrary make a
smooth use of bandwidth, but they are not able to adapt to the changes in the peer behavior.

Our approach is to design an adaptive proactive repair scheme, able to overcome this duality
between reactive and proactive policies. Our scheme is based on an ongoing estimation of
the peer behavior.
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(a) Code graph (b) Code hierarchy

Figure 7.1: Code graph and hierarchy for a hierarchical (4,3)-code

We tested our adaptive proactive repair scheme using synthetic and real connectivity traces,
and showed that:

• Our policy represents a flexible and tunable solution that allows the system designer
to select the behavior of the repair policy, trading reactivity for adaptiveness.

• The feedback control system we propose is able to provide data durability and to in-
crease the smoothness of the bandwidth utilization as compared to reactive schemes.

7.2 Open Issues and Future Work

7.2.1 Data Placement and Hierarchical Codes

We already discussed the importance of data placement due to the fact that peers do not
behave randomly. In particular, we mentioned that peers can be clustered accordingly to
their availability or lifetime. In section 1.3.2 we discussed how data placement strategy can
exploit the different behaviors of peers to increase data availability or durability. An idea
that might be investigated is to exploit the features offered by Hierarchical Codes to conceive
effective data placement.

One of the features of Hierarchical Codes is to define parity fragments with different im-
portance. If we consider the sample hierarchical (4,3)-code we presented in section 5.4 and
whose code graph is showed in Fig. 7.1a, we can define a hierarchy among the parity frag-
ments: parity fragment p7 is the most important one, since its loss requires always a repair
degree of d = 4, while all the other parity fragments are less important, since if (only) one of
them is lost the repair degree is d = 2. This hierarchy is represented by the tree structure in
Fig. 7.1b.
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Our intuition is that if we are able to put more important parity fragments on more stable
peers, we can achieve higher reliability and we can reduce the repair bandwidth communi-
cation. In the example of Fig. 7.1b, if we could ideally put the parity fragment p7 on a node
that is always connected, the system could always use a repair degree d = 2 (as long as no
concurrent failures occur).

The challenges that need to be addressed are twofold:

• It is not evident how to determine which are the nodes that are more stable (or with
longer lifetime). We think that one solution could be to exploit the heavy-tailed distri-
bution of peer online time [74], which means that peers that stayed connected longer
have an higher probability to stay connected even longer. In this case, peers that have
been connected the longest would store parity fragments that are on the top of code
hierarchy.

• The concentration of important parity fragments on stable peers may have two collat-
eral effects: (1) stable peers will be involved in a high number of repairs, creating an
unbalanced use of resources. (2) when stable peers disconnect, a lot of high-cost repairs
must be done, which can cause a bursty utilization of the network.

7.2.2 Growing Hierarchical Codes

In the design of Hierarchical Codes we considered parity fragments as static, in the sense that
they occupy a specific position in the tree and never move. Actually, one could allow them
to move down or up the hierarchy. We can say that a parity fragment that has moved down
in the hierarchy is downgraded, since it loses importance, while a fragment that has moved
up is upgraded. It is easy to understand that downgrading a fragment in any position in
the hierarchical sub-tree (the fragment is root of) does not pose any problem: in the example
of Fig. 7.1b, p7 can be downgraded to any position, since it is given by a random linear
combination of all the original fragments. On the contrary a fragment cannot be upgraded
as it is, but it needs to be linearly combined with other fragments: in the example of Fig. 7.1b,
p3 must be combined also other two fragments out of p4, p5 and p6 to be upgraded at the level
of p7.

As amply discussed in chapter 6, it is very important to spread bandwidth utilization over
time, while repair policies tend to alternate periods of intense activity with idle periods. Our
idea is that one can exploit the idle periods to upgrade fragments, combining them with a
growing number of other fragments. This work, which can be done in the background, is not
useless, since increasing the number of high-degree fragments, decreases the probability of
repairs with high repair degree. In the example of Fig. 7.1b, if p3 is upgraded to the level of
p7, even if p7 is lost, the repair degree would be d = 2 instead of d = 4.

It would be interesting to evaluate the effect of this technique on the smoothness of the band-
width utilization. Moreover this upgrade process would automatically store the high-degree
fragments on peers that are connected longer.
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7.3 Concluding remarks

The contributions presented in this dissertation focused on two specific topics in the design
of a specific system, which is a peer-to-peer data backup system for ordinary users. We
believe that these contributions help advance the state of the art:

• We offered a better understanding of the cost trade-offs of such a system.

• We proposed some tunable and reusable techniques to determine the optimum in these
trade-offs.

One of the questions that we ask ourselves in retrospective is whether our contributions may
be useful beyond the specific target context we addressed.

Big companies, like Google, Microsoft, and Amazon, provide the user with services that re-
quire an impressive amount of storage capacity and computation power. Examples of these
services are search engines, mail services, social networks, web applications etc. For this
reason, there has been an increasing interest in the construction of efficient data centers. The
main trend in the design of such data centers is to use commodity hardware in large quan-
tities, instead of high-quality and high-capacity server farms. This choice reduces sensibly
the costs, but poses a number of challenging problems. For example, commodity hardware
fails at a rate considerably higher than high-quality servers, and the communication among
many independent units requires the design of complex network infrastructure, which may
become highly loaded [5]. These issues make the design of data centers to some extent simi-
lar to the design of traditional peer-to-peer systems and for these reasons we believe that our
contributions may be useful also in this domain. This is especially true if one considers that
our main objective is the efficient utilization of the communication bandwidth, which is also
one of the most critical resources of a data center.

Another important point is that data centers could in the near future use also resources that
are at the edge of the network, i.e. they could exploit resources present in the user home,
such as the home gateway. Some moves in this direction have already been done (see for
example the NaDa project [14]): Internet service providers provide the users with devices
(set-top boxes) that are very similar to personal computers and that are managed by the
Internet service provider. The resources of these devices could be used to create peer-to-
peer services, and a backup service could be one of them.
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APPENDIXA
Synthèse en Français

A.1 Motivation

A.1.1 La nécessité d’un système de sauvegarde de données pour les utilisateurs

La quantité de données produite dans le monde augmente à un rythme exponentiel.
Un’étude réalisée en 2003 [71] estime qu’environ 5 exaoctets (5 · 1018 octets) de données orig-
inales ont été produites en 2002, soit une augmentation de plus de 30% par rapport à l’année
précédente. Une partie de cette croissance a été alimentée par les données numériques pro-
duites par les utilisateurs. La Fig. A.1 ([71]) montre que la quantité de données numériques
originales stockés annuellement par les utilisateurs sur le disque dur de leur ordinateur
personnel a augmenté de deux ordres de grandeur de 1996 à 2003. Cette prolifération
est en grande partie due à la numérisation de l’information : photos numériques, vidéos
numériques, et le courrier électronique sont devenus partie de la vie quotidienne de tout le
monde.

Tout cela dit, il est évident que la sauvegarde des données est devenue une nécessité urgente
pour les utilisateurs. De toute évidence, les techniques de sauvegarde de fichiers ne sont
pas une nouveauté : les entreprises ont été confrontés au problème de perte de données
pendant des décennies et sont équipées avec des systèmes de sauvegarde. Toutefois, les coûts
supportés par les entreprises pour ces systèmes ne sont pas abordables par les utilisateurs
ordinaires, qui doivent trouver des solutions à bas prix pour stocker leurs données en toute
sécurité.

A.1.2 Le pair-à-pair est la solution

Il existe un besoin croissant de solutions de sauvegarde des données, et les solutions ex-
istantes ont beaucoup de limites en termes de fiabilité et de coûts. Ces deux facteurs ont
pousse à chercher des nouvelles façons pour sauvegarder les données des utilisateurs.
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Figure A.1: Quantité de données numériques produites par an par les utilisateurs et stockées sur les
disques dures (in Petaoctets : 1015 octets).

Depuis plusieurs années les chercheurs ont proposé de développer des systèmes pair-à-
pair pour le stockage et la sauvegarde des données.

L’architecture traditionnelle des applications distribuées suit le paradigme client-serveur, qui
se compose de deux entités distinctes :

• Le serveur, qui fournit le service et toutes les ressources nécessaires pour le service.

• Le client, qui utilise le service et exploite les ressources fournies par le serveur.

La principale caractéristique des réseaux pair-à-pair est la fusion de ces deux rôles. Dans
un réseau pair-à-pair tous les pairs jouent à la fois le rôle du serveur et du client : tous les
pairs contribuent au service et partagent une partie de leur ressources et, au même temps,
ils sont utilisateurs du service. L’approche pair-à-pair permet d’avoir deux propriétés très
intéressantes :

• self-scaling, qui signifie que la quantité des ressources disponibles augmente avec la
demande.

• fault-tolerance. L’organisation décentralisée des réseaux pair-à-pair profite de
l’indépendance des pairs pour fournir un bon niveau de fiabilité.

Dans un tel système de stockage, chaque pair consacre une partie de son espace de stockage
à la communauté et en échange la communauté (les autres pairs) stocke de manière fiable ses
données.

A.1.3 Faisabilité d’un système de stockage pair-à-pair

Un système de stockage pair-à-pair ne peut être réalisé que si les pairs participants ont suff-
isamment d’espace de stockage. La Fig. A.2 ([8]) montre l’évolution de la capacité des dis-



A.2. DESCRIPTION D’UN SYSTÈME DE STOCKAGE PAIR-À-PAIR 129

ques durs au cours des 30 dernières années, indiquant une croissance exponentielle de la ca-
pacité de stockage. Cette croissance n’a pas été associée à une croissance correspondante des
prix, qui implique une diminution exponentielle du coût par octet. La disponibilité de stock-
age bon marché suggère que les utilisateurs peuvent facilement avoir beaucoup d’espace de
stockage non utilisé. Cette intuition est confirmée par une étude menée sur les ordinateurs
de bureau au sein de Microsoft [46], qui montre que les disques durs en moyenne ne sont
qu’à moitié plein.
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Figure A.2: Evolution de la capacité des disques dures dans le temps.

A.2 Description d’un système de stockage pair-à-pair

La conception d’un système de sauvegarde de fichiers pair-à-pair est une tâche complexe,
ayant un grand nombre d’aspects différents et pose un certain nombre de problèmes. Avant
de discuter les différentes questions impliquées dans une telle conception, nous proposons
une description du système à partir de deux points de vue différents.

Premièrement, nous définissons les propriétés qui sont attendues du système. Nous pro-
posons une sorte de contrat de service qui indique quelles sont les fonctionnalités qu’un
système de stockage doit offrir à l’utilisateur.

Deuxièmement, nous décrivons les contraintes que nous avons sur la construction du sys-
tème. En pratique, nous décrivons la nature pair-à-pair du système et nous expliquons en
détail le comportement attendu et les caractéristiques des pairs participants.

A.2.1 Définition d’un service de stockage de données

Essentiellement, un système de stockage de données devrait fournir un stockage fiable et
sécurisé des données. En particulier, l’utilisateur aura deux primitives très simples : Store
Data et Retrieve Data, qui correspondent à l’insertion des données dans le système et à leur
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récupération. Le système doit garantir les propriétés suivantes par rapport à ces deux prim-
itives :

• Durabilité des données Les données qui sont insérées dans le système sont stockés de
façon fiable et jamais perdues.

• Disponibilité des données. La disponibilité des données implique la capacité de
récupérer les données à la demande des utilisateurs. Notez que cette propriété diffère
de la durabilité : un objet stockée pourrait être durable, mais pas disponible à certaines
périodes.

• Confidentialité des données. Les données insérées ne peuvent être lues que par un
groupe d’utilisateurs autorisés.

A.2.2 Contraintes de l’environnement pair-à-pair

La propriété essentielle d’un système pair-à-pair est que les ressources sont fournies par les
pairs qui participent dans le système. Dans le cas des systèmes de stockage de données, la
ressource la plus importante est la capacité de stockage. Chaque pair fournit une partie de
son espace de stockage, utilisé par le système pour fournir un service de sauvegarde fiable.

Les pairs participants au système, cependant ne sont pas sous le contrôle du système lui-
même. Cependant, les propriétés du service doit être garanties en dépit de ce manque de
contrôle. Le comportement des pairs peut être caractérisé comme suit :

• Connectivité intermittente. Les pairs ne sont pas connectés au système tout le temps
des raisons différentes : les utilisateurs peuvent se déconnecter de l’Internet, les ma-
chines peuvent être redémarrées, ou à cause des pannes temporaire de réseau. Cette
connectivité intermittente implique que les données stockées peuvent être périodique-
ment indisponibles.

• Déconnexions permanentes. Au-delà des déconnexions temporaires, les pairs peu-
vent quitter le système et les données stockées sur ces pairs sont perdus. L’événement
de perte de données peut survenir en raison de départs volontaires, mais aussi en rai-
son de défaillances ou de suppression des données (accidentelle ou volontaire).

• Mauvais comportement des pairs. Les pairs ne sont pas fiables. Ils peuvent se com-
porter mal ou de manière inattendue.

• Bande passante limitée. Les pairs sont connectés au système via une connexion avec
une bande passante limitée. Cette limitation peut être due à des contraintes réelles sur
le lien d’accès ou à un plafond d’utilisation de bande passante que l’utilisateur peut
poser sur l’application pair-à-pair .

Pour comprendre le comportement des pairs, nous introduisons dans la Fig. A.3a un auto-
mate fini qui modélise l’évolution du cycle de vie d’un pair. Chaque pair alterne des périodes
dans lesquelles il est en ligne (online) et des périodes où il est déconnecté (offline). Cette alter-
nance constitue ce que nous avons défini comme connectivité intermittente. Après une péri-
ode, appelée lifetime, les pairs peuvent abandonner le système et deviennent morts (dead).
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Nous appelons cet événement déconnexion permanente, et, comme déjà mentionné, une
déconnexion permanente se traduit par la perte de données.

(a) Comportement reel (b) Comportement observé

Figure A.3: Automate fini modélisant le comportement d’un pair.

Il est important de remarquer que le comportement réel des pairs n’est pas observable, car le
système n’est pas en mesure de distinguer les déconnexions temporaires des déconnexions
permanentes. Dans la Fig. A.3b, nous montrons l’automate fini comme il est observable par
le système. Le manque de connaissance sur l’état réel des pairs, et donc des données qu’ils
stockent, rend la maintenance des données difficile.

A.2.3 Systèmes de fichiers vs. systèmes de sauvegarde de données

Bien que l’accent principal de cette thèse porte sur les systèmes pair-à-pair de sauvegarde
de données, ces systèmes partagent de nombreuses caractéristiques avec les systèmes de
fichiers pair-à-pair . En effet, une partie considérable de la littérature aborde des questions
qui se rapportent au domaine générique de systèmes de stockage pair-à-pair . Pourtant, les
systèmes de sauvegarde des données et les systèmes de fichiers diffèrent beaucoup en termes
d’hypothèses et de propriétés requises et ces différences peuvent avoir une forte influence
sur les choix de conception. Dans cette section, nous soulignons ces différences et discutons
de la manière dont elles se reflètent au niveau de la conception.

A.2.4 Disponibilité et durabilité des données

Nous avons introduit les notions de disponibilité et de durabilité des données. Il est évident
que la disponibilité implique la durabilité, alors que l’inverse n’est pas toujours vrai : un ob-
jet durable ne sera pas disponible à certaines périodes. Une première différence entre les sys-
tèmes de fichiers et les systèmes de sauvegarde consiste dans l’importance différente donnée
à la disponibilité des données et à la durabilité des données. Il est évident que la disponi-
bilité est essentielle dans les systèmes de fichiers, puisque la lecture et l’écriture des fichiers
sont des opérations qui ne peuvent pas tolérer de retard, ce qui implique qu’un fichier doit
être disponible en pratique à n’importe quel moment. Dans les systèmes de sauvegarde de
fichiers, par contre, le propriétaire des données doit accéder à ses données qu’en cas de perte
et peut accepter un certain retard pour leur reconstruction.
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A.2.5 Mises à jour de données

Dans les systèmes de fichiers, les fichiers ne sont pas seulement lus, mais également modifiés.
Un grand défi dans la conception de systèmes de stockage pair-à-pair est de gérer les mises
à jour des données et garantir leur cohérence. Par contre, dans des systèmes de sauvegarde,
les données pourraient être considérées comme immuables (voir par exemple [81]).

A.3 Thème central de la thèse

L’idée d’un système de stockage distribué basé sur le paradigme pair-à-pair n’est pas nou-
velle. Elle a intéressé la communauté des chercheurs depuis une dizaine d’années et il existe
un bon nombre de publications sur ce sujet. Ces publications peuvent être mises dans l’une
des deux catégories suivantes :

• Des systèmes complets, qui décrivent des systèmes de stockage complets et représen-
tent une proof-of-concept. Bien qu’ils proposent des solutions et des techniques intéres-
santes, la complexité de la conception empêche souvent les auteurs de faire un examen
détaillé des choix de conception qu’ils font.

• Solutions de sous-problèmes bien définis . Ces publications se concentrent plutôt sur
des aspects spécifiques et fournissent une analyse et des résultats qui sont réutilisables
par d’autres qui veulent construire un système complet.

Nous avons décidé de suivre cette deuxième approche : les contributions de cette thèse visent
à fournir des blocs de base capables de résoudre des problèmes spécifiques de manière efficace.

Parmi les aspects impliqués dans la conception de systèmes de sauvegarde pair-à-pair , nous
concentrons notre attention sur des aspects spécifiques à la fiabilité des données stockées, tels
que les schémas de redondance et les politiques de réparation. Nos contributions se portent
sur un point essentiel : la bande passante est une ressource limitée. Ce fait a été ignoré
dans de nombreux travaux de recherche qui ont enquêté sur la redondance des données et
sa maintenance.

Beaucoup de schémas de redondance se concentrent sur l’utilisation efficace du stockage,
tout en payant un prix élevé en termes de communication. Les codes correcteurs classiques
en sont un exemple. Ils sont capables de consommer très peu d’espace de stockage, mais ils
consomment beaucoup de bande passante pour la réparation des données. Notre intuition
est qu’il est essentiel d’étudier des systèmes de redondance spécifiquement conçus pour le
stockage distribué, qui tiennent compte à la fois de l’espace de stockage et de la bande pas-
sante. Par rapport à ce sujet nous proposons et étudions des codes correcteurs pour la redon-
dance capables de combiner l’efficacité en bande passante de la réplication à l’efficacité en
stockage des codes correcteurs classiques. En particulier, nous présentons et analysons deux
nouvelles classes de codes: Regenerating Codes et Hierarchical Codes.

Comme dans le cas des schémas de redondance, les politiques de réparation ont besoin de ré-
duire la consommation de bande passante. Dans ce cas, cependant, la question n’est pas com-
bien de bande passante faut-il pour les réparations (car cela est déterminé par les schémas de
redondance), mais quand cette bande passante est nécessaire. Une observation importante est
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que la bande passante ne peut pas être conservée pour une utilisation future : la bande passante
non utilisée est simplement perdue. Les politiques de réparation plus utilisées sont réactives
et basées sur des seuils : quand la quantité de redondance se réduit à un niveau trop bas (elle
atteint le seuil), le système remplace les données perdues. Ces politiques ont tendance à faire
un usage très irrégulière de la bande passante. Un’autre catégorie est représenté par les poli-
tiques proactives, qui sont en mesure de consommer la bande passante d’une façon régulière,
mais ils ne sont pas capables de s’adapter correctement aux fluctuations de comportement
de pairs. Pour cette raison, nous nous concentrons sur la conception d’algorithmes de main-
tenance de données qui visent à la fois à avoir une utilisation régulière de la bande passante
et à s’adapter au comportement réel des pairs. Nous proposons un système de réparation,
nommé "adaptive proactive repair scheme", qui combine l’adaptabilité des systèmes réactifs
avec l’utilisation régulière de la bande passante des systèmes proactifs, en généralisant les
deux approches existantes.

A.3.1 redondance des données

La redondance des données consiste à stocker plusieurs instances des mêmes données sur
des pairs différents. Grâce à cette technique, même si une partie des données stockées est
indisponible, le reste devrait être suffisant pour reconstruire les données d’origine.

Il existe plusieurs de techniques différentes pour ajouter de la redondance aux données et ils
sont généralement appelés schémas de redondance. Chaque schéma de redondance déter-
mine (i) comment créer les données redondantes et (ii) la façon de reconstruire les données
redondantes lorsqu’elles sont perdues. Ces deux opérations génèrent des coûts qui varient
d’un schéma à l’autre. Ici, nous introduisons les schémas de redondance les plus largement
utilisés : la réplication et les codes correcteurs.

La façon la plus simple de stocker des données de manière redondante est la réplication : Si
nous stockons Nrep répliques d’un même fichier, même si Nrep−1 de ces répliques sont stock-
ées sur des pairs qui ne sont pas disponibles, nous sommes encore en mesure de récupérer
notre fichier. L’insertion de données pour la réplication est représentée dans la Fig. A.4a
pour le cas Nrep = 3. Dans le cas de la réplication, la reconstruction d’une réplique perdue
est simple, puisqu’il suffit de créer une copie exacte d’un autre réplique, comme le montre la
Fig. A.5a.

Un autre schéma de redondance est représenté par les codes correcteurs. Un objet qui doit
être stocké dans le system est divise en k morceaux, que l’on nomme fragment d’origine,
puis ces fragments d’origine sont codés pour obtenir k + h fragments de parité, tel que
chaque k d’entre eux sont suffisantes pour reconstruire l’objet original. L’insertion de don-
nées pour les codes correcteurs est décrite dans la Fig. A.4b dans le cas où k = 3 et h = 2.
Notez que les codes correcteurs sont capables de consommer moins d’espace de stockage par
rapport à la réplication, offrant le même niveau de fiabilité. En effet, considérons le schéma
de réplication (avec Nrep = 3) et le code correcteur (avec k = 3 et h = 2) de la Fig. A.4. Dans
les deux cas, le système peut accepter jusqu’à deux pairs déconnectés sans perdre les don-
nées originales : dans ce cas la réplication consomme de l’espace de stockage correspondant
à 3 fois la taille des données d’origine, tandis que le code correcteur ne consomme que 5/3
de la taille des données d’origine.
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(a) Réplication avec 3 répliques.

(b) Code correcteur avec k = 3 et h = 2

Figure A.4: Schémas de redondance : Insertion des données.

Dans les codes correcteurs, les réparations sont plus complexes que dans la réplication.
Quand un fragment de parité est perdu, sa reconstruction nécessite l’accès à k autres k frag-
ments de parité. Notez que pour exploiter la redondance des données, il est essentiel que
les répliques ou les fragments de parité soient stockés sur des pairs différents. Notre choix,
implicitement introduit dans la Fig. A.4, est que chaque réplique ou fragment de parité est stocké
sur un pair différent. Ce choix permet de maximiser la probabilité de la disponibilité des don-
nées, car il exploite au maximum la diversité des pairs, mais implique que toutes les lectures
de données correspondent à des transferts de données. Quand une réparation d’un fragment
de parité est réalisée, le système a besoin de télécharger k autres fragments de parité, qui se
traduit par le transfert de données d’une quantité de données égale à la taille de l’objet entier.
Cette procédure de réparation pour les codes correcteurs est décrite dans la Fig. A.5b dans le
cas où k = 3 et h = 2.

Les politiques de réparation

A cause da la perte de données il est nécessaire que les données stockées soient périodique-
ment réparées.

La politique de réparation définit la période de réparations, c’est-à-dire le moment où de
nouvelles répliques ou de nouveaux fragments de parité doivent être créés. Cette décision
n’est pas facile , car elle doit être prise sans avoir une connaissance complète de l’état des
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(a) Réplication avec 3 repliques.

(b) Code correcteur avec k = 3 et h = 2

Figure A.5: Schémas de redondance : Réparation des données.

données : le système est en mesure d’indiquer si des données sont indisponibles, mais ne
peut pas affirmer si ces données seront disponibles à nouveau ou si elles sont définitivement
perdues.

Une politique de réparation doit au moins garantir que les données stockées sur les pairs qui
abandonnent le système, c’est-à-dire les déconnexions permanentes, soient réparées. Pour
cette raison, une approche très triviale est de réparer toutes les données qui ne sont plus
disponibles, peu importe si elles seront de nouveau disponibles ou pas. Cette politique, que
l’on appelle “eager policy”, est cependant très coûteuse en termes : (i) de stockage, car elle
consomme plus d’espace que ce qui est strictement nécessaire et (ii) de bande passante, étant
donné que chaque réparation correspond au transfert d’une quantité de données égal à la
taille de l’objet entier.

Des politiques de réparation plus intelligentes s’efforcent de réduire ces coûts en évitant
les réparations inutiles. Une approche est basée sur un minuteur, ce qui signifie que le sys-
tème considère comme définitivement perdues les données qui restent inaccessibles pour
une période de temps qui dépasse un seuil de temps. Dans cette politique, que l’on appelle
“lazy policy”, le choix de ce seuil est essentiel, car une valeur trop courte peut causer des ré-
parations inutiles, tandis qu’un valeur large peut détecter les pertes permanentes trop tard,
mettant en péril la durabilité des données.

Une autre “lazy policy” est basé sur un seuil de redondance, qui fixe le montant minimum de
redondance qui doit toujours être disponible. Dans ce cas, les réparations sont déclenchées
lorsque ce seuil est atteint. Cependant, cette approche, rend le processus de réparation très
irrégulière, et par conséquent de nombreuses réparations seront effectuées dans une petite
fenêtre de temps, alors que dans d’autres périodes aucune réparation ne sera effectuée. Ce
comportement irrégulier provoque une utilisation inefficace de la bande passante de com-
munication, qui devrait idéalement être utilisée le plus régulièrement possible.



136 APPENDIX A. SYNTHÈSE EN FRANÇAIS

Enfin, les politiques proactives essayent de choisir un taux fixe de réparation pour parvenir
à une utilisation régulière de la bande passante. Toutefois, le choix du taux correct est très
difficile et un mauvais choix peut causer soit des réparations inutiles soit des pertes de don-
nées.

A.3.2 Structure de cette synthèse

Dans cette synthèse, nous donnons un bref aperçu des deux sujets adressés dans cette thèse
: les schémas de redondance des données et les politiques de réparation.

Pour ce qui concerne les schémas de redondance, nous avons sélectionné un des nos deux
contributions : les “Regenerating Codes”. Dans la section A.4 nous proposons une brève
description des “Regenerating Codes” et nous décrivons quelles sont les principaux résultats
de nos analyses et nos expériences.

Pour les politiques de réparation, dans la section A.5, nous décrivons notre politique de ré-
paration d’adaptation proactive, illustrant les détails essentiels de notre schéma de contrôle.

A.4 Regenerating Codes

Les “Regenerating Codes” sont une classe de codes correcteurs qui fournissent presque la
même efficacité de stockage que les codes correcteurs classiques, avec une réduction impor-
tante de la bande passante nécessaire pour les réparations.

La description originale des “Regenerating Codes” ne définit pas une façon pratique de les
mettre en oeuvre et surtout n’étudie pas tous les coûts de tels codes et leur faisabilité dans le
monde réel.

Notre contribution vise à combler cette lacune. Tout d’abord, nous donnons une description
détaillée des propriétés théoriques des “Regenerating Codes”, puis nous décrivons notre
implémentation basée sur les codes linéaires aléatoires et, enfin, nous procédons à une éval-
uation analytique et expérimentale des différents coûts.

A.4.1 Notation pour le codes correcteurs

Avant d’entrer dans les détails des “Regenerating Codes”, il est essentiel d’établir une nota-
tion unique pour les codes correcteurs.

Considérons un fichier, dont la taille est notée par |file|. L’application d’une code correcteur
(k,h) au fichier consiste à créer à partir de ce fichier k + h blocs de parité d’une façon telle
que n’importe quels k blocs de parité de ces k + h blocs soient suffisants pour reconstituer le
fichier original. Une remarque importante est que dans cette définition générique, il n’y a pas
de contrainte ni dans la façon dont ces blocs sont construits ni sur leur taille. En particulier,
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la taille d’un bloc de parité est de |block| avec la seule contrainte suivante :

|block| ≥ |file|
k

A.4.2 Le cycle de vie d’un fichier

Dans cette section, nous décrivons le cycle de vie d’un seul fichier inséré dans le système. Ce
cycle de vie est composé de trois étapes :

1. Insertion : L’insertion consiste à créer (k + h) blocs de parité à partir du fichier et à les
distribuer sur (k+h) pairs. Quel que soit le schéma redondance utilisé, comme expliqué
dans la section précédente, la propriété de ces blocs de parité est que n’importe quels
k blocks sont suffisants pour reconstituer ce fichier.

2. Maintenance : La maintenance consiste en la reconstruction de la redondance perdue.
La maintenance est effectuée avec les réparations. Une réparation nécessite la coopéra-
tion de d pairs qui envoient des données à un nouveau pair, appelé “newcomer”,
qui à son tour traite les données reçues pour obtenir un nouveau bloc de parité. Le
paramètre d est appelé “repair degree”. Si la réparation est correctement exécutée, le
nouveau bloc de parité a les mêmes propriétés que tous les autres, c’est-à-dire qu’avec
n’importe quels (k−1) blocs de parité, il forme un ensemble de blocs de parité suffisant
pour reconstituer le fichier original.

3. Reconstruction : Si le propriétaire du fichier veut son fichier, une reconstruction doit
être effectuée. La reconstruction consiste à télécharger des données à partir de k pairs
et à les traiter pour obtenir le fichier original.

A.4.3 La quantification des coûts

Nous pouvons maintenant proposer une description formelle des coûts induits par chaque
opération séparément. En particulier, il y a trois types de coûts :

1. Stockage : La redondance implique que le fichier stocké consomme plus d’espace de
stockage que le fichier original. Les besoins de stockage sont facilement calculés par la
formule ci-dessous:

|storage| = (k + h) · |block| > |file|

2. Communication : Toutes les trois phases du cycle de vie d’un fichier nécessitent un
transfert de données entre pairs. À l’insertion, tous les blocs de parité doivent être
transférés, ce qui correspond à un volume de données de |storage|. À la maintenance,
pour chaque réparation, chacun des d pairs transfère une quantité de données égal à
|repairup| sur le “newcomer”, pour un total de |repairdown|, où :

|repairdown| = d · |repairup|

À la reconstruction, le propriétaire du fichier doit télécharger au moins une quantité de
données égale à |file|
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3. Calcul : Quand un code correcteur est utilisé, toutes les trois phases décrites néces-
sitent d’un traitement de données. À l’ insertion, tous les blocs de parité doivent être
codées avec un coût de CPU(encoding). À la réparation, une partie du traitement est
réalisé sur les d pairs participants, noté CPU(repair)up, et une partie est réalisé sur le
“newcomer”, désignées par CPU(repair)down. À la reconstruction, le fichier d’origine
doit être reconstruit à partir de k blocs de parité avec un coût CPU(reconstruction).

Le schéma de redondance définit la façon dont les données redondantes sont générées et ma-
nipulées ainsi que le coût en termes de calcul, communication et stockage. À titre d’exemple,
considérons les codes correcteurs classiques. Ces codes ont les deux contraintes suivantes à
l’égard du “repair degree” d et la taille des blocs de parité :

d = k
|block| = |file|/k

(A.1)

En termes de maintenance, les coûts de communication sont les suivants :

|repairup| = |block|
|repairdown| = |file|

Cela signifie que pour chaque nouveau bit créé au cours d’une réparation, k autres bits
doivent être transférés. Enfin, les coûts de calcul dépendent de l’implémentation.

A.4.4 Description des “Regenerating Codes”

Dans cette section, nous décrivons les propriétés principales des “Regenerating Codes” tels
qu’ils ont été décrits à l’origine par Dimakis et al. [42, 43].

Les “Regenerating Codes” répondent à la question suivante : Si les contraintes définies pour
les codes correcteurs classiques (eq. A.1) sont relâchées, quel serait l’impact sur le coût de
communication?

Considérons un code correcteur (k, h); les “Regenerating Codes” peuvent prendre k · h
valeurs différentes pour la paire de paramètres (d, |block|). En effet les “Regenerating Codes”
peuvent être considérés comme une généralisation des codes correcteurs classiques, qui font
un compromis entre le coût de stockage et le coût de communication.

Plus formellement, un Regenerating Code générique, noté par RC(k, h, d, i), fixe les con-
traintes suivantes sur le “repair degree” d et la taille des blocs de parité :

d ∈ [k, k + h− 1]
|block| = p(d, i) · |file| i ∈ [0, k − 1]

(A.2)

Étant donné un “repair degree” d, le paramètre i, appelé “block expansion index” détermine
la taille des blocs de parité à travers la fonction p(d, i), qui est définie ci-dessous :

p(d, i) = 2
d− k + i + 1

2k(d− k + 1) + i(2k − i− 1)
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Il peut être prouvé que pour un Regenerating Code RC(k, h, d, i), chacun des d pairs partic-
ipants à une réparation doit transférer au “newcomer” une quantité de données au moins
égal à

|repairup| = r(d, i) · |file| (A.3)

où r(d, i) est définie ci-dessous :

r(d, i) =
2

2k(d− k + 1) + i(2k − i− 1)

par conséquent :

|repairdown| = d · r(d, i) · |file| (A.4)

la Fig. A.6 décrit comment la taille des blocs de parité et la quantité de données transférées
lors d’une réparation |repairdown| évoluent en fonction de d et i pour un code où k = 32 et
h = 32. En particulier, toutes les valeurs sont normalisées par la taille des blocs de parité
et le volume du trafic de réparation nécessaire pour un code correcteur classique qui, dans
le cadre des “Regenerating Codes” correspond à RC(32, 32, 32, 0), c’est-à-dire avec d = 32 et
i = 0. Ces valeurs de référence sont :

|block| = |file|/32
|repairdown| = |file|

La Fig. A.6 montre que l’augmentation du “repair degree” d et celle de las taille des blocs
de parité (augmentation du “block expansion index” i) impliquent une très fort réduction du
trafic de réparation.

A.4.5 Evaluation expérimentale

Dans cette section, nous évaluons les besoins en ressources de calcul des “Regenerating
Codes”. Nous avons conçu et implémenté une version optimisée des “Regenerating Codes”
basée sur les codes linéaires aléatoires et nous l’avons testée sur un processeur Intel Core 2
Duo à 2,66 GHz.

Toutes les opérations dans le cycle de vie d’un fichier sont exécutées et le temps nécessaire
pour effectuer ces opérations est mesuré pour un fichier de 1 Mo. Toutes les expériences
ont été faits pour un fichier de 1 Mo. Les paramètres des “Regenerating Codes” sont fixés à
k = 32, h = 32, et nous faisons varier i et d.

Pour avoir une base de comparaison des différentes configurations des “Regenerating
Codes”, nous décrivons d’abord les résultats obtenus pour un code correcteur classique,
(soit un “Regenerating Code” RC(32, 32, 32, 0)) lorsqu’un fichier de 1 Mo est stocké.

Si on note par td,i le temps nécessaire par une opération pour un Regenerating Code
RC(32, 32, d, i), Table A.1 indique le temps t32,0 nécessaire pour chaque opération.
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Figure A.6: Taille des blocs de parité et coût de communication pour les réparations normalisés par
les valeurs d’un un code correcteur classique.

Notez que la réparation n’exige aucun temps de calcul pour un participant car celui-ci par
définition envoie tout simplement un bloc de parité entier au “newcomer”.

Décrivons maintenant les résultats obtenus pour le cas général des “Regenerating Codes”
RC(32, 32, d, i). Pour comprendre les coûts de calcul de ces codes, nous considérons le rap-
port entre le temps td,i et le temps t32,0 mesurés pour les codes correcteurs classiques. Nous
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Figure A.7: Computation overhead pour l’encodage pour RC(32, 32, d, i).

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  5  10  15  20  25  30
 35

 40
 45

 50
 55

 60

 0
 1
 2
 3
 4
 5
 6
 7
 8

co
m

pu
ta

tio
n 

ov
er

he
ad

i

d

(a) Cote participant.
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(b) Cote “newcomer”.

Figure A.8: Computation overhead pour les réparations pour RC(32, 32, d, i).

appelons ce rapport “computation overhead” coh :

cohd,i =
td,i

t32,0
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(a) Inversion de matrice.
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(b) Decodage.

Figure A.9: Computation overhead pour la reconstruction pour RC(32, 32, d, i).

t32,0[sec]
Encodage 0.52
Réparation - côté participant 0
Réparation - côté “newcomer” 0.01
Inversion de matrice 0.002
Décodage 0.25

Table A.1: Temps nécessaire pour les opérations dans le cas d’un code correcteur classique.

Considérons le cycle de vie d’un fichier :

1. Insertion : la Fig. A.7 décrit le “computation overhead” pour l’encodage initial du
fichier. Le graphique montre que le overhead augment linéairement avec i et d.

2. Maintenance : la Fig. A.8a montre le “computation overhead” pour une réparation
du côté des participants, dans ce cas, ce coût augmente un peu plus que linéairement
avec d et i. La Fig. A.8b décrit le “computation overhead” pour une réparation du côté
du “newcomer”.
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3. Reconstruction : La reconstruction nécessite l’inversion d’une matrice de coefficients,
puis le décodage du fichier. La Fig. A.9a décrit le “computation overhead” pour
l’inversion, qui peut être très coûteuse, en particulier pour des valeurs de d et i grandes.
La Fig. A.9b décrit le “computation overhead” pour le décodage.

A.4.6 Conclusion

Les “Regenerating Codes” sont capables de réduire la bande passante nécessaire pour les
réparation; ils peuvent cependant introduire dans certaines configurations, un coût de calcul
important qui peut devenir le goulot d’étranglement du système. Ils peuvent être considérés
comme une généralisation des codes correcteurs classiques et de la réplication. Ils perme-
ttent de trouver un bon compromis non seulement entre les coûts de communication et de
stockage, mais aussi de calcul. Nous avons schématisé cet aspect dans la Fig. A.10.

Figure A.10: Illustration du trade-off posé par le “Regenerating Codes”.

A.5 Adaptive Proactive Repair Policy

Dans cette section, nous introduisons un nouveau paramètre permettant d’évaluer l’efficacité
d’une politique de réparation : la régularité du taux de réparation. Nous proposons ensuite
un système de réparation qui s’efforce à le maximiser.

Les approches existantes pour la réparation des blocs de parité sont soit réactives soit proac-
tives. Les politiques réactives sont capables de suivre les changements dans le comporte-
ment de pairs, mais elles ont tendance à effectuer plus de réparations de ce qui est stricte-
ment nécessaire et de faire une utilisation irrégulière des ressources. Les politiques proac-
tives utilisent un taux de réparation constant et sont en mesure de lisser la consommation de
ressources pour les réparations. Cependant, pour fournir la durabilité, les systèmes proactifs
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ont besoin d’une connaissance a priori du comportement de pairs. Dans le cas des connais-
sances imprécises ou erronées, la durabilité peut être mise en péril.

Nous soutenons que les systèmes proactifs et réactifs représentent deux cas spécifiques d’une
approche plus générale qui accorde sa réactivité avec la stabilité prévue des pairs.

Notre principale contribution dans ce domaine est un schéma de réparation basée sur un
processus continu d’estimation du comportement des pairs. Le taux R de réparation est péri-
odiquement mis à jour en fonction des changements détectés. Cet approche est en mesure
de fournir la durabilité de données, un bon niveau d’adaptation au comportement de pairs
et un’utilisation régulière des ressources.

A.5.1 Un problème de contrôle adaptatif

Une politique proactive non adaptative utilise un taux de réparation R qui est constant dans
le temps. Dans notre solution, nous cherchons à construire un système de contrôle adaptatif qui
est capable d’adapter le taux de réparation aux changements de comportement des pairs.

Nous représentons notre schéma de contrôle adaptatif dans la Fig. A.11. Trois composantes
sont définies :

• Le système (System) représente l’évolution de la situation des pairs qui stocke un objet,
en termes de déconnexions temporaires, déconnexions permanentes, reconnexions et
réparations. Il est caractérisée par un modèle régi par trois paramètres : le taux de
déconnexion µ, le taux de reconnexion λ, et la probabilité de décès Pdeath. Le paramètre
d’entrée du système est le taux de réparation, qui est un signal R(t) qui évolue dans
le temps, déterminé par le contrôleur. Les paramètres de sortie du système sont le
nombre de pairs en ligne n(t) et une information supplémentaire, appelée transition,
qui signale l’événement d’une réparation ou d’une reconnexion.

• L’estimateur (Estimator) estime les paramètres qui caractérisent le système. Les valeurs
de sortie de l’estimateur sont l’estimation µ̂ du taux de déconnexion et la probabilité
de mort P̂death.

• Le contrôleur(Controller) reçoit les estimations (µ̂ et P̂death) de l’estimateur et le nom-
bre ciblé n′ des pairs en ligne sélectionné par l’administrateur système. L’output du
régulateur est le taux de réparation R(t) nécessaire pour obtenir l’objectif n′.

Figure A.11: Le schéma de contrôle adaptatif



A.5. ADAPTIVE PROACTIVE REPAIR POLICY 145

Les opérations d’estimation et de contrôle sont effectuées périodiquement à un taux de 1/∆t,
où ∆t est la période d’observation utilisée par l’estimateur et la période de mise à jour, c’est-
à-dire l’intervalle entre deux mises à jour de R(t).

Le modèle du système

La conception de l’estimateur exige la définition d’un modèle mathématique du système qui
enregistre le comportement des pairs.

Le modèle que utilisons est un réseau de files d’attente, qui consiste en deux files d’attente
G/G/∞, comme illustré dans la Fig. A.12. Les files d’attente G/G/∞ représentent des élé-
ments retard, qui correspond au temps de service et suit une distribution générique. Dans
notre cas, Q1 représente les pairs qui sont connectés et qui se déconnectent avec un taux µ;
Q2 représente les pairs temporairement déconnectés qui se reconnectent avec un taux λ.

Nous supposons que le nombre de pairs est suffisamment large pour que chaque bloc de
parité puisse être stocké sur un pair différent. Avec cette hypothèse, ce modèle représente
aussi la disponibilité des blocs de parité dans le système.

Figure A.12: Réseau de files d’attente modélisant le stockage d’un objet.

Les clients de la première file d’attente Q1 représentent le nombre de blocs de parité disponibles
n(t). Le flux d’arrivée, dont le taux est notée avec γ1, est donné par (i) les blocs de parité qui
sont réparés avec un taux R, et (ii) le flux de blocs de parité qui reviennent de nouveau en
ligne après une période d’indisponibilité. Le temps passé en Q1 est déterminé par le taux de
service µ. Le flux de départ de Q1 représente les blocs de parité qui se déconnectent avec un
taux égal au taux d’arrivée.

Les clients dans la deuxième file Q2 représentent le nombre de blocs de parité temporairement
indisponibles m(t). Le flux d’arrivée, dont le taux est notée avec γ2, est donnée par les blocs
de parité qui sont devenus indisponibles et n’ont pas abandonné définitivement le système,
qui est : γ2 = (1 − Pdeath)γ1. Le temps passé en Q2 est déterminé par le taux de service
λ. Enfin, le flux de départ de Q2 représente les blocs de parité qui deviennent de nouveau
disponibles.
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Pour résoudre ce réseau de files d’attente, on écrit ses équations d’équilibre :

γ1 = R + γ2

γ2 = (1− Pdeath)γ1
⇒

{
γ1 = 1

Pdeath
R

γ2 = 1−Pdeath
Pdeath

R
(A.5)

En utilisant la loi de Little [99], nous pouvons calculer le nombre moyen de clients dans
chaque file d’attente :

n = γ1/µ = R
µPdeath

m = γ2/λ = (1−Pdeath)R
λPdeath

(A.6)

L’estimateur

L’estimateur, en collectant des informations statistiques sur le signal n(t) et sur les flux
d’entrée dans la première file, est en mesure d’estimer les paramètres µ et Pdeath. On obtient :

• Le nombre moyen de blocs de parité disponibles n̂ :

n̂ =
∑

i niti
∆T

(A.7)

où ti est le temps passé par le système dans l’état ni, ce qui implique ∆T =
∑

i ti.

• Le taux de déconnexion µ̂ en utilisant la relation :

γ̂1 =
#Déconnections

∆T

et la loi de Little :

µ̂ =
γ̂1

n̂
(A.8)

• La probabilité de mort P̂death peut être calculée de deux manières équivalentes. La
première est :

P̂death = 1− #Reconnections
#Déconnections

la seconde est :

P̂death =
R

γ̂1
(A.9)

A.5.2 Le contrôleur

Le contrôleur reçoit les estimations µ̂ et P̂death et le nombre ciblé de blocs de parité disponibles
n′ et utilise eq. A.8 et eq. A.9 pour calculer la taux de réparation R :

R = µ̂P̂deathn
′ (A.10)
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A.6 Conclusion

Pour conclure cette syntèse, nous rappelons nos contributions principales :

Regenerating Codes Les “Regenerating Codes”, dont la théorie a été proposée par Di-
makis, sont une classe de codes correcteurs capables de réduire les coûts de communica-
tion dues à l’activité de réparation. Nous croyons que les “Regenerating Codes” sont très
intéressants, mais qu’une analyse plus pratique est nécessaire pour bien comprendre leur
propriétés. Nous proposons une implémentation des “Regenerating Codes” fondés sur les
codes aléatoires linéaires et effectuons une évaluation analytique et expérimentale des coûts
générés par ces codes.

Hierarchical Codes Nous proposons une classe de codes correcteurs, nommés “Hierar-
chical Codes”, qui visent, comme les “Regenerating Codes”, à réduire la communication
nécessaire pour les réparations. Les “Hierarchical Codes” calculent les fragments de parité
comme des combinaisons aléatoires linéaire d’un sous-ensemble des fragments d’origine. Ce
choix permet de réduire la quantité de données téléchargées lors d’une réparation. Nous
présentons le cadre théorique des “Hierarchical Codes” et nous proposons une évaluation
analytique et expérimentale de leur efficacité.

Politique proactive adaptative de réparation Nous proposons une politique de réparation
qui est en mesure de surmonter la dualité entre les politiques réactives et proactives. Notre
système est fondé sur une estimation continue du comportement des pairs. Notre politique
représente une solution flexible et ajustable qui permet au concepteur du système de sélec-
tionner sa réactivité et d’augmenter la régularité du processus de réparation.
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