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ABSTRACT

This work presents a summary of a proposal for a feed-
back scheme in a multi-input-multi-output (MIMO) commu-
nication system based on a differential quantization strategy
applied to the channel response. The performance of this
scheme is evaluated using real data and channel measure-
ments obtained with the Eurecom’s MIMO OpenAir Sounder
(EMOS). More concretely, the impact of having a delay in
the feedback link is also studied in terms of a loss of per-
formance in the communication through several simulation
results.
Topics: Precoding and limited feedback, Multi-antenna
channel measurements, MIMO systems.

1. INTRODUCTION

Multi-input-multi-output (MIMO) communication systems
are shown to provide improved performance when compared
to single-antenna configurations, specially when both the
transmitter and the receiver have some kind of channel state
information (CSI). A possibility to obtain CSI at the transmit-
ter consists in the exploitation of a low rate feedback channel
from the receiver to the transmitter.

In the literature, several feedback schemes have been pro-
posed in order to provide CSI to the transmitter side. For
time-varying channels, where the coherence time is higher
than the time difference between consecutive feedback in-
stants, a good approach consists in quantizing the channel
response in a differential way. This lowers the required feed-
back load or improves the quality of the quantization for a
fixed capacity of the feedback link. Taking this philosophy,
there are several techniques, such as the direct scalar quanti-
zation of the entries of the channel variation matrix, or more
sophisticated approaches, such as those based on geodesic
curves over Grassmannian manifolds or correlation-type ma-
trices [1–3].

Another important aspect is the feedback delay. Such a
delay causes a mismatch between the true channel and the
available CSI, and consequently between the actual design
of the transmitter and the optimum one, which results in a
degradation of the performance.

The main objective of this paper is to evaluate experi-
mentally in a real environment the impact of different val-
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ues of the feedback delay on the system performance. This
will be done taking as example the technique presented in [3]
for feedback and channel quantization (this technique will be
summarized in the subsequent sections) exploiting real chan-
nel measurements obtained with the Eurecom’s MIMO Ope-
nAir Sounder (EMOS) [4, 5].

In general terms, differential quantization is based on a
quantization of the difference between the CSI at consecutive
feedback intervals, instead of quantizing the complete CSI
every time [6]. Depending on the design criterion and the
allowed computational complexity, different strategies arise.

Some techniques can be based on the quantization of
the variations of the MIMO channel matrix H(n) itself or
even, on the differential quantization of the strongest right
eigenspaces spanned by such matrices [1]. The technique
that we will use in this paper to evaluate experimentally
the performance of the communication setup corresponds to
reference [3]. It relies on the fact that in general, all the
joint transmitter-receiver designs for MIMO channels and
different quality criteria (SNR, mean square error, mutual
information, etc.) depend on the channel response matrix
H(n) only through the channel correlation matrix defined as

RH(n) = HH(n)H(n) [7]. Taking this into account, a pos-
sible strategy consists in applying a differential quantization
exploiting the intrinsic geometry of the set of positive definite
Hermitian matrices by means of the use of geodesic curves,
as suggested in [2].

2. SYSTEM AND SIGNAL MODELS

This section and the next one summarize some of the ideas
presented in [3] concerning the technique that will be used in
this paper to evaluate a realistic system performance accord-
ing to real channel measurements.

We consider the transmission through a MIMO channel
with nT and nR transmit and receive antennas represented at
time instant n by matrix H(n) ∈ C

nR×nT . The nR received
signals at the same time instant, assuming a linear transmit-
ter, can be expressed as

y(n) = H(n)B
(
R̂H(n)

)
x(n)+w(n) ∈ C

nR , (1)

where x(n) ∈ C
nS represents the nS streams of signals to be

transmitted with E
[
x(n)xH(n)

]
= I, and B ∈ C

nT×nS is the
linear transmitter matrix. Note that we explicitly indicate
that the transmitter depends on the available estimate of the

channel correlation matrix R̂H(n), where the exact matrix is

RH(n) = HH(n)H(n). The AWGN at the receiver is repre-

sented by w(n) ∈ C
nR with E

[
w(n)wH(n)

]
= σ2

wI.



In the system setup, it will be considered that the receiver
knows perfectly the current channel matrix H(n) and that the
transmitter designs B assuming that the available CSI at its

side represented by R̂H(n) is also perfect, despite not be-
ing true in a general situation. The transmitter design can be
done according to different criteria, such as the maximiza-
tion of the mutual information or SNR, or the minimization
of the MSE or the BER, among others. In all the cases, the
optimum transmitter has been shown to depend only on the
channel correlation matrix RH(n) [7]. For each of them a

cost function d(R̂H(n),H(n)) can be defined, where the de-
sign objective is its minimization. A couple of examples of
cost functions are given below, although any criterion can be
applied (we drop the dependency with respect to the time in-
dex n for the sake of clarity in the notation):

• Maximization of the SNR with single beamforming (nS =
1):

d(R̂H(n),H(n)) = − 1

σ2
w

‖HB‖2
F , (2)

where the transmission matrix B ∈ C
nT×1 is defined as

B
(
R̂H(n)

)
=
√

PT umax

(
R̂H(n)

)
, (3)

and umax(·) stands for the unit-norm eigenvector of max-
imum associated eigenvalue. PT represents the maximum
transmission power, i.e., ‖B‖2

F ≤ PT , where subindex F
stands for the Frobenius norm.

• Maximization of the mutual information:

d(R̂H(n),H(n)) = − log2

∣∣∣∣I+
1

σ2
w

BBHHHH

∣∣∣∣ , (4)

where the transmission matrix B ∈ C
nT×nS is defined as

B
(
R̂H(n)

)
= Ũ(n)P1/2(n), P(n) = diag(p1, . . . , pnS

),
(5)

and Ũ(n) consists of nT columns that are the nS eigenvec-

tors of R̂H(n) associated to its nS maximum eigenvalues
{λi}nS

i=1. The power P(n) is allocated according to the
waterfilling solution (pi = max{0,µ −1/λi} where µ is
a constant such that ∑

nS
i=1 pi = PT ) [7].

The next section is devoted to summarize algorithm [3]
for quantizing the actual correlation matrix RH (instead of
H) from the receiver to the transmitter in a differential way.
Since RH belongs to the set of Hermitian positive definite

matrices,1 exploiting its inherent geometry will improve the
performance of the quantization.

3. ALGORITHM DESCRIPTION FOR
QUANTIZATION IN FEEDBACK LINK

In this section first we will give some comments on the con-
cept of geodesic curves on the set of positive definite Hemri-
tian matrices and then we will summarize the basic ideas con-
cerning the algorithm presented in [3] for differential quanti-
zation.

1In the following, it will be assumed that the channel correlation matrix is
strictly positive definite. If this cannot be guaranteed because, for example,
nR < nT , it is possible to work with extended correlation matrices defined as

R̃H = H
H
H+ εI, ε > 0, which are positive definite by construction.

3.1 Geodesic Curves

As shown in [2] the set of Hermitian positive definite matri-

ces S = {R∈C
nT×nT : RH = R,R≻ 0} is a convex cone2,

i.e., ∀R1,R2 ∈ S ,∀s ≥ 0, R1 + sR2 ∈ S [8]. The charac-
terization of this set is described properly by means of dif-
ferential geometry, which states a set of definitions for the
distance, scalar products and routes within this set:

• Scalar product and norm: At any point in this set S

given by R (also named as base point), the scalar prod-
uct between two Hermitian matrices A and B is defined
as 〈A,B〉R = Tr(R−1AR−1B). This definition implies

that the norm is defined as ‖A‖R =
√

Tr(R−1AR−1A).
• Geodesic curve: Let us take two points R1and R2 in

the set S . Then, the geodesic curve, which is the curve
connecting these points with minimum distance and with
all its points belonging to S , is given by

Γ(t) = R
1/2

1 exp
(
tC

)
R

1/2

1 , (6)

where C = log
(
R

−1/2

1 R2R
−1/2

1

)
, Γ(0) = R1, and

Γ(1) = R2. The derivative of the geodesic curve at t = 0,
which is in fact the direction of such curve at t = 0, is

given by the Hermitian matrix Γ′(0) = R
1/2

1 CR
1/2

1 .

• Geodesic distance: The geodesic distance between any
two points in S is given by the length of the geodesic
curve that connects them. According to the previous no-
tation, it can be shown that this distance is given by

distg(Γ(0),Γ(t)) = |t|‖C‖F , ⇒ distg(R1,R2) = ‖C‖F .
(7)

or, using an equivalent expression,

distg(R1,R2) =
(
∑

i

| logλi|2
)1/2

, (8)

where {λi} are the eigenvalues of matrix

R
−1/2

1 R2R
−1/2

1 .

3.2 Differential Quantization

The fundamentals of the algorithm proposed in [3] are based
on a differential quantization of the channel correlation ma-
trix RH(n). The objective is to minimize the cost func-
tion as presented in section 2, which can be related to
the quality measure of the system and, therefore, the re-
ceiver has to know which kind design that the transmit-
ter will perform. If a more general setup is to be applied
so that the feedback can be used for any transmitter de-
sign, another cost function could be added which is sim-
ply the geodesic distance between the actual channel correla-

tion matrix and its fed back estimate, i.e., d(R̂H(n),H(n)) =

distg(R̂H(n),HH(n)H(n)).
The differential quantization algorithm for the feedback

of the channel correlation matrix is an iterative procedure. At
each iteration n the initial situation is described as follows:
the receiver has a perfect knowledge of the current channel
matrix H(n) and both the transmitter and the receiver know
which is the last estimate of the channel correlation matrix
sent through the feedback channel R̂H(n− 1). A possible

2Actually, reference [2] is devoted to the case of real matrices, although
the results and conclusions can be extended directly to the complex case.



 1 2

 ! )(ˆ 1
nR

H

 ! )(ˆ 2
nR

H

 ! )(ˆ)(ˆ 3
nRnR

HH
"

 ! )(ˆ 4
nR

H

1A

)1(ˆ #nR
H

 1 2
H
R

2A

Figure 1: 2-bit differential quantization in the space of chan-
nel correlation matrices.

initialization of the algorithm would correspond to starting
the run of the algorithm from the cone vertex before the first

iteration: R̂H(0) = I.
At each iteration n, the following steps are followed (all

these steps are represented conceptually in Fig. 1):

• STEP 1: Both the receiver and the transmitter gener-
ate a common set of Q random Hermitian matrices us-
ing the same pseudo-random generator and the same
seed. Then, these matrices are orthonormalized using the
Gram-Schmidt procedure [9] according to the definition
of scalar product presented in section 3, producing the

set {Ai}Q
i=1. Finally, each matrix Ai is re-scaled individ-

ually so that Ci = R−1/2AiR
−1/2 has a norm equal to ∆

(‖Ci‖F = ∆) which is, in fact, the quantization step.

• STEP 2: Both the receiver and the transmitter use the
previous matrices to generate a set of Q geodesic curves

{Γi(t)}Q
i=1 having all of them the same initial point

R = R̂H(n− 1) and with orthogonal directions Γi(t) =

R̂
1/2
H (n−1)exp

(
tCi

)
R̂

1/2
H (n−1).

• STEP 3: Each of these geodesic curves is used to gener-
ate two candidates for the feedback in the next iteration
R̂H(n) corresponding to Γi(−1) and Γi(1).

• STEP 4: The receiver evaluates the cost function for each
of the candidates (there are 2Q candidates), and sends
the selected index iFB through the feedback channel to
the transmitter. This index is the one for which the cor-
responding candiadte minimizes the cost function. Ac-
cording to this, the number of feedback bits per iteration
has to be higher than or equal to log2(2Q)). The matrix
corresponding to the selected candidate will be used for
the transmitter design and as the starting point in the next
iteration.

All the previous steps are represented graphically in Fig.
1 for the case of a feedback using 2 bits and taking as op-
timization criterion the minimization of the geodesic dis-
tance to the actual channel correlation matrix RH(n). Start-

ing from R̂H(n− 1), the algorithm generates 2 orthogonal
geodesic routes Γ1(t) and Γ2(t) with velocity matrices A1

and A2, producing four quantization candidates, all of them
at distance ∆ from the initial point. At the receiver, each can-
didate is compared to the actual RH and the one with small-
est distance (in this example candidate 3) is chosen. That is,

(a) Server PC with PLATON boards (b) Powerwave Antenna

(c) Dual-RF CardBus/PCMCIA Card (d) Panorama Antennas

Figure 2: EMOS base-station and user equipment [10]

its index iFB = 3 is sent to the transmitter through the feed-

back channel and R̂H(n) = R̂
(3)
H (n). The next iteration starts

from this point, generates 2 orthogonal routes and 4 quanti-
zation candidates, selects the closest candidate to RH , and so
on.

4. REAL CHANNEL MEASUREMENTS

Realistic MIMO channel measurements have been obtained
using Eurecom’s MIMO Openair Sounder (EMOS) [4,5]. In
this section we first describe the hardware of the EMOS plat-
form and the channel sounding procedure and then the mea-
surement campaign that was carried out for this paper. The
obtained measurements are used in the next section to eval-
uate the previous feedback quantization technique from a re-
alistic point of view.

4.1 Platform Description

The EMOS is based on the OpenAirInterface hardware/soft-

ware development platform at Eurecom.3 It operates at
1.900-1.920 GHz with 5 MHz channels and can perform
real-time channel measurements between a base station and
multiple users synchronously. For the BS, a workstation
with four PLATON data acquisition cards (see Fig. 2(a)) is
employed along with a Powerwave 3G broadband antenna
(part no. 7760.00) composed of four elements which are ar-
ranged in two cross-polarized pairs (see Fig. 2(b)). The UEs
consist of a laptop computer with Eurecom’s dual-RF Card-
Bus/PCMCIA data acquisition card (see Fig. 2(c)) and two
clip-on 3G Panorama Antennas (part no. TCLIP-DE3G, see
Fig. 2(d)). The platform is designed for a full software-radio

3http://www.openairinterface.org
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Figure 4: Map of the measurement scenario. The position
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colors show the received signal strength in dBm along the
routes).

implementation, in the sense that all protocol layers run on
the host PCs under the control of a Linux real time operation
system.

The EMOS is using an OFDM modulated sounding se-
quence with 256 subcarriers (out of which 160 are non-zero).
The sounding sequence contains a synchronization, data and
pilot symbols (see Figure 3). The pilot symbols are taken
from a pseudo-random QPSK sequence defined in the fre-
quency domain. The subcarriers of the pilot symbols are
multiplexed over the four transmit antennas to ensure orthog-
onality in the spatial domain. We can therefore obtain one
full MIMO channel estimate for one group of M subcarriers.
The estimated channels are stored to disk for offline analy-
sis. For a more detailed description of the synchronization
and channel estimation procedure see [10, 11].

4.2 Measurements

The measurements were conducted outdoors in the vicinity

of Eurecom in Sophia Antipolis, France 4. The scenario
is characterized by a semi-urban hilly terrain, composed by
short buildings and vegetation with a predominantly present
LOS. Fig. 4 shows a map of the environment. The BS is
located at the roof of Eurecom’s southmost building. The an-
tenna is directed towards Garbejaire, a small nearby village.
The UEs were placed inside standard passenger cars which

4Eurecom has a frequency allocation for experimentation around its
premises.

Parameter Value
Center Frequency 1917.6 MHz

Bandwidth 4.8 MHz
BS Transmit Power 30 dBm

Number of Antennas at BS 4 (2 cross polarized)
Number of UE 1

Number of Antennas at UE 2
Number of Subcarriers 1

Table 1: EMOS Parameters

were being driven along the routes shown in Fig. 4 (The col-
ors indicate the received signal strength along the measure-
ment routes). The measurement parameters are summarized
in Table 1.

5. RESULTS

In the simulations, we consider a particular real channel mea-
sured as commented in section 4 with 4 transmit and 2 re-
ceive antennas. Note that for the evaluations in this paper
we have selected only one subcarrier to mimic a narrow-
band system. We show results for three cases: perfect CSI
at the transmitter, non-differential Grassmannian packaging
[6], and differential quantization of the channel correlation
matrices RH(n) using geodesic curves [3]. In all the cases,
the performance measure corresponds to the SNR obtained
in the communication using at the transmitter the strongest
eigenmode of the available channel response.

As shown in Fig. 5, the differential strategy exploits
the time-correlation of the channel and converges to perfect
CSIT case, while the performance using the non-differential
quantization is always lower, even using more feedback bits.

Fig. 6 analyzes the impact of the feedback delay in the
performance of the system. The plot shows the averaged
SNR in the window containing frames from 500 to 520 ver-
sus the delay measured in frames (e.g., a delay equal to 10
means that the delay is equal to 10 frames). Three situa-
tion are compared: perfect CSI at the transmitter, differential
feedback with no delay, and differential feedback with dif-
ferent values for the delay in the feedback link. The main
conclusion is that the performance rapidly decreases when
the delay exceeds a threshold. More work is still to be done
in order to avoid such negative effect of the delay by means,
for example, of channel prediction techniques.

6. CONCLUSIONS

This paper has presented a work related to the evaluation
of differential and non-differential feedback strategies for
MIMO systems. The main objective is the study of the im-
pact of such techniques using real channel measurements and
under different situations of delay in the feedback link.

The feedback strategy proposed for MIMO communica-
tions, which is based on a differential quantization of the
channel correlation matrix using geodesic routes, has sev-
eral advantages over other existing feedback strategies. This
technique exploits the intrinsic geometry of correlation ma-
trices (positive definite Hermitian) versus channel response
matrices in order to improve quantization performance.

Simulations using real measurement data show this al-
gorithm achieves better performance than other techniques
based on the direct quantization of the channel response
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matrix or the quantization of the subspace spanned by the
strongest eigenmodes of the MIMO channel, as well as non-
differential strategies like Grassmannian packaging.
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