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Abstract— The communication between a multiple-antenna
transmitter and multiple receivers (users) with either a single or
multiple-antenna each can be significantly enhanced by providing
the channel state information at the transmitter (CSIT) of the
users, as this allows for scheduling, beamforming and multiuser
multiplexing gains. The traditional view on how to enable CSIT
has been as follows so far: In time-division duplexed (TDD)
systems, uplink (UL) and downlink (DL) channel reciprocity
allows for the use of a training sequence in any given uplink
slot, which is exploited to obtain an uplink channel estimate.
This estimate is in turn recycled in the next downlink slot.
In frequency-division duplexed (FDD) systems, which lack the
UL and DL reciprocity, the CSIT is provided via the use of a
dedicated feedback link of limited capacity between the receivers
and the transmitter. In this paper, we focus on TDD systems
and put this classical approach in question. In particular, we
show that the traditional TDD setup above fails to fully exploit
the channel reciprocity in its true sense. In fact, we show
that the system can benefit from a combined CSIT acquisition
strategy mixing the use of limited feedback and that of a training
sequence. We demonstrate the potential of our approach in terms
of improved CSIT quality under a global training and feedback
resource constraint.

I. I NTRODUCTION

Multiple-antenna transmitters and receivers are instrumental
to optimizing the performance of bandwidth and power limited
wireless communication systems. In the downlink (DL), in
particular, the communication between a multiple-antenna
enabled base station (BS) and one or more users with either a
single or multiple antenna each can be significantly enhanced
through the use of scheduling, beamforming and power al-
location algorithms, be it in single user or multi-user mode
(spatial division multiplexing). To allow for beamforming
and/or multi-user multiplexing capability, the BS transmitter
must however be informed with the channel state information
of each of the served users [1], [2], except when the number
of users reaches an asymptotic (large) regime in which case
random opportunistic beamforming scheme can be exploited
[3], [4]. This has motivated the proposal of many techniques
for providing the channel state information at the transmitter
(CSIT) in an efficient manner. Proposals for how to provide
CSIT roughly fall in two categories depending upon the chosen
duplexing scheme for the considered wireless network. In the
case of time-division duplex (TDD) systems, it was proposed
to exploit the reciprocity of the uplink (UL) and DL channels,
so as to avoid the use of any feedback channel [5], [6]. The
way reciprocity is exploited, in the current TDD systems, is
through the use of a training sequence sent by the user on the

UL, based on which the BS first builds an estimate of the UL
channel which in turn serves as an estimate for the downlink
channel in the next DL slot [5]. In frequency-division duplex
(FDD) scenarios, the lack of channel reciprocity motivates
instead the use of a dedicated feedback link in which the user
conveys the information about the estimated downlink channel,
back to the BS. Recently, several interesting strategies have
been devised for how to best use a limited feedback channel
and still provide the BS with exploitable CSIT [7], [8], [9].

Although in the past, the balance has weighed in the favor
of FDD systems when choosing a duplexing scheme (in part
because of heavy legacy issues in voice oriented 2G networks
and also because of interference management between UL and
DL), current discussions in the standardization groups indicate
an increasing level of interest for TDD for upcoming wireless
data-access networks (e.g.WiMax, etc.), caused partly by its
advantages in maintaining system flexibility with respect to
UL and DL traffic loads, and mostly because TDD systems
are seen as more efficient in providing the CSIT required by
several MIMO DL schemes, thanks to the channel reciprocity.

In this paper, we focus on the problem of CSIT acquisition
in a TDD system. We take a step back and shed some
critical light on the traditional approach above consisting in
exploiting channel reciprocity via the use of training sequences
exclusively. In fact we show that this approach fails to fully
exploit the channel reciprocity. The key idea is as follows:
when sending a training sequence in the UL of a traditional
TDD system, the user allows the BS to estimate the channel
by a classical channel estimator (it can be a least-square (LS)
estimator or minimum mean square error (MMSE) based,
just to name a few). However, note that the user itself has
the knowledge of the channel coefficients (from the previous
DL transmission slot) but, regretfully, does not exploit that
knowledge in order to facilitate the CSIT acquisition by the
BS. Instead, it uses this knowledge only for its own detection
purposes.

Interestingly, by contrast, in FDD systems, the user ex-
ploits its channel knowledge by quantizing the channel and
sending the result over a dedicated feedback link (actually
UL bandwidth can be used for this feedback along with UL
data transmission). In this case, UL training is used by the
BS solely for UL data detection as this UL training cannot
give any direct information to the BS about the DL channel
coefficients. Actually in FDD systems, UL and DL portions
of the bandwidth are normally selected quite apart and hence



channel realizations over respective bandwidths can be safely
assumed to be independent of each other, so there is no channel
reciprocity in FDD systems.

We propose that, while dealing with TDD systems, there is
a clear opportunity to combine both forms of CSIT acquisi-
tion strategies. As a result, we investigate a scheme mixing
classical channel estimation using training with the use of
dedicated limited feedback carrying information about the
quantized channel. This gives us a framework for fully uti-
lizing the channel reciprocity in a TDD setup and it improves
the classical trade-off between CSIT estimation accuracy and
training/feedback resource usage. We characterize the optimal
CSIT acquisition structure and then propose a sub-optimal
outage rate based approach which helps us to optimize the
fixed resource partitioning between training and quantized
feedback phases. The results obtained confirm our intuition
and demonstrate the potential of this hybrid (mix of training
and quantized feedback) approach for upcoming TDD systems.

The paper is structured as follows: System model is given in
section II, followed by classical CSIT acquisition in TDD and
FDD systems in section III. Optimal training and feedback
combining strategy is explained in section IV with outage
based optimization framework in section V. Simulation results
appear in section VI followed by conclusions in section VII.
Notation: E denotes statistical expectation. Lowercase letters
represent scalars, boldface lowercase letters represent vectors,
and boldface uppercase letters denote matrices.AT, A†, A−1,
A+ denote the transpose, the Hermitian, the inverse and the
pseudo-inverse of matrixA, respectively. For a vectora, ||a||
andā represent, respectively, its norm and unit-norm direction
vector so thata = ||a||ā.

II. SYSTEM MODEL AND CSIR ACQUISITION

We consider the two way communication in a cell between
a single BS, equipped withM antennas, and a single antenna
mobile user. The channelh ∈ CM is assumed to be flat-
fading with independent complex Gaussian zero-mean unit-
variance entries, whereCM represents theM -dimensional
complex space. We assume block fading channel so each
channel realization stays constant forT symbol intervals [10]
which can be accordingly partitioned between UL and DL
data transmissions. Extensions to OFDM(A) and multi-user
systems are possible and straightforward.

The goal of this paper is to provide a reliable estimate of
the DL channel to the BS, which in turn can be used for
beamforming/precoding purposes. However we focus on the
acquisition issue of the channel knowledge and not about its
use in MIMO transmission schemes.

In the downlink, the received signal at the user forL symbol
intervals is given by

ydl = Xdlh + ndl, (1)

whereXdl ∈ CL×M is the signal transmitted by the BS during
L symbol intervals (satisfying BS power constraint),ndl ∈ CL

is the complex Gaussian noise with independent zero-mean

unit-variance entries andydl ∈ CL is the observation sequence
during thisL-length interval.

If we want to use the above DL system equation for channel
estimation, for identifiability ofM -dimensional channel at the
user’s side, the length of the transmitted data (which wouldbe
the training sequence in this case) should be larger thanM , the
number of BS transmit antennas. Based upon the knowledge
of the transmitted dataXdl (the training sequence) and the
observed sequenceydl, the user can estimate the DL channel
h using various techniques. The LS estimate would be

ĥLS = X+
dlydl. (2)

The user can make a better channel estimate using MMSE
criteria, and the estimate is given by

ĥMMSE = X
†
dl

(

XdlX
†
dl + IL

)−1

ydl. (3)

In the above equation,IL is the identity matrix ofL dimen-
sions.

III. CLASSICAL CSIT ACQUISITION IN FDD AND TDD

We now briefly review the classical approaches for acquiring
CSIT at the BS in FDD and TDD systems.

A. FDD Systems

In FDD systems, the mobile station first obtains the DL
channel estimatêh as described in the previous section. Then
it needs to quantize the channel using some pre-selected
codebook. Quantization is a well-studied subject and a lot of
well developed techniques are available in literature and have
been implemented in practical wireless systems. IfQ denotes
the quantization function, then for the DL channel estimateĥ,
its quantized version (which is actually the index of the closest
channel code in the codebook) is given byQ(ĥ). Afterwards
user maps this index (sequence of bits) into a sequence of
constellation symbols, using the mapping function denotedby
S. Hence the feedback of the DL channel would be

xq = S(Q(ĥ)), (4)

wherexq ∈ C1×Tq is the Tq dimensional row vector of nor-
malized constellation symbols representing the information of
the quantized channel. As we explained earlier, the bandwidths
allocated for UL and DL transmissions in FDD systems are
quite far apart and channel realizations are assumed to be
independent. Hence to decode the feedback properly, BS first
needs to estimate the UL channel (hu ∈ CM ). If xu ∈ C1×Ta

denotes the normalized training sequence of lengthTa in the
UL direction, the signal received at the BS forTa symbol
intervals is given by

Ya =
√

P huxa + Na, (5)

where Na ∈ CM×Ta represents the spatio-temporally white
Gaussian noise andYa ∈ CM×Ta is the received signal atM
antennas of the BS during thisTa-length training interval.P
represents the user’s peak power constraint. After observing
Ya, the BS can make an estimateĥu of the UL channelhu,



knowing xa. Same estimation techniques like LS or MMSE
as described in the previous section can be applied.

Now if user transmits the quantized channel feedbackxq on
the UL, BS can decode this information, having an estimate
ĥu of the UL channelhu.

Yq =
√

P huxq + Nq, (6)

where Yq and Nq are M × Tq matrices of the received
signal and the noise respectively atM antennas of the BS
during this explicitTq length feedback interval. So based upon
the estimate of UL channelhu and the received feedback
Yq, BS tries to recover the DL channel feedback (quantized
version,xq) using the optimum (although relatively complex)
maximum likelihood sequence estimation technique.

ĥ = argmin
h

||Yq −
√

P ĥuS(Q(h))||2 (7)

Actually the search space will be restricted to the codebook,
hence the BS, at best, can estimate the quantized version of
the channel.

B. TDD Systems

If the communication system is operating under TDD mode,
DL and UL channels are reciprocal, hencehu = h. So if a
user transmits pilot sequence on the UL (like eq. (5)), the
simple (UL) channel estimation at the BS furnishes CSIT due
to UL and DL channel reciprocity. In the past, this has been
the classical way of getting CSIT in TDD systems [5], [6]. We
show that this CSIT acquisition through pilots alone, although
very simple, is not the optimal resource utilization for TDD
systems.

IV. OPTIMAL TRAINING AND FEEDBACK COMBINING IN

TDD SYSTEMS

Our system of interest operates under TDD mode and to
improve the CSIT quality is the issue that we focus on. The
classical training based only CSIT acquisition ignores thefact
that user knows the DL channel and CSIT acquisition based
only on the quantized channel feedback does not use channel
reciprocity whereas in TDD systems both can be exploited at
the same time.

We propose a novel hybrid two stage CSIT acquisition strat-
egy which exploits the channel reciprocity and user’s channel
knowledge at the same time. Working under a constraint of
fixed resource available for CSIT acquisition (Tfb symbol
intervals and user’s power constraint ofP ), our strategy
consists of dividing this interval in two phases. The first stage
of this hybrid approach is the transmission of training sequence
from the user to the BS forTa symbol intervals and the
received signal will be

Ya =
√

P hxa + Na. (8)

(See eq. (5) for the dimensions of all parameters.)
The optimal training based estimate based upon the observed
signalYa, knowingxa, will be

ĥa = argmin
h

||Ya −
√

P hxa||2 (9)

The second stage consists of transmission of quantized
channel (digital feedback), already known at the user, forTq

symbol intervals and the received signal will be

Yq =
√

P hxq + Nq, (10)

(See eq. (6) for the dimensions of all parameters.)
where xq = S(Q(h)). This equation reveals the intriguing
aspect that BS needs to acquireh. Now h behaves as channel
and also appears inxq. BS can try to decode only the
quantized channel information based upon the knowledge of
ĥa, eq. (9), obtained through training as

ĥq = arg min
xq

||Yq −
√

P ĥaxq||2. (11)

The optimal CSIT will be obtained by the joint estimation
and detection (ofh and xq) based upon the observation of
Ya andYq, knowingxa, involving an optimal split between
the training and the quantized feedback phases (constrained as
Ta + Tq = Tfb).

ĥ = argmin
h,xq,Ta

|| [Ya Yq] −
√

P h[xa xq] ||2 (12)

The optimal solution requires a double minimization and does
not seem to bear a closed form expression forĥ. Therefore
accepting some sub-optimalities, we give a framework in the
next section, based upon the idea of outage rate, which allows
us to obtain a simplified solution for the hybrid approach.

V. OUTAGE BASED TRAINING AND FEEDBACK

PARTITIONING

A. Definitions and Initial Setup

In this section, we give a strategy, under some assumptions,
which allows optimizing the partitioning of the feedback
resource between the training and the quantized feedback.

For the digital feedback part, we employ vector quantization
rather than scalar quantization of individual channel coeffi-
cients. We restrict the user to quantize the unit-norm channel
direction vector and feed it back. In single-user scenarios,
channel direction information (CDI) is sufficient to beamform
toward user which focuses all energy in the user’s direction.
Even in multi-user broadcast scenarios, CDI plays the key role
as BS can decide to beamform to selected users (maximum
ratio combining) or it can try to beamform so as to render
the zero interference at each of the selected users (so called
zero-forcing strategy) and all of this just requires the CDIof
the selected users. For the quantization of channel directions,
it has been shown that Grassmannian codebooks are the
optimal choice but the formation of such codebooks is quite
complicated from medium to large sized codebooks [11]. On
the other hand, random vector quantization (RVQ) codebooks
are easy to obtain, they have been shown to achieve very good
performances and very nice closed form expressions for the
quantization error are also known [8], [12]. So our analysis
assumes the use of RVQ codebooks for CDI quantization.

The solution for the optimal CSIT estimate,ĥ in eq. (12),
requires joint estimation and detection along with an optimiza-
tion over the resource split between training and feedback.



Even if we focus separately on training based estimateĥa

(given in eq. (9)) and digital feedback based estimateĥq (given
in eq. (11)), two questions arise: i) how the CSIT acquisition
interval Tfb should be split between training and feedback?,
and ii) how the two estimates should be combined to get the
final estimate?

Embracing some sub-optimalities, we propose the use of
quantized feedback based estimateĥq as the final CSIT esti-
mateĥ. Apparently it gives the impression that training based
estimatêha goes wasted but in reality quantized feedbackxq,
which provideŝhq, is decoded based upon this training based
estimatêha. This answers the 2nd question above. For the 1st
question, we have to wait till the next subsection.

The choice of selecting the digital feedback as the final
CSIT estimate makes it clear that the quantization error will
always sneak in the final estimate. Apart from this small error
(depends upon how many bits are used for quantization), the
incorrect detection of digital feedback will wreck a havoc for
the final CSIT estimate. As the channel stays constant for each
feedback interval, we are dealing with slow fading channels
for which deep channel fades (causing outage) are the typical
error events [13].

This two stage outage based strategy consists of first provid-
ing a training based estimate to the BS in the training interval
of lengthTa. In the second interval of lengthTq, user sends
the quantized version (using RVQ) of its unit-norm channel
direction vector which we assume to be perfectly known at the
user. We suppose that channel statistics are such that the user
can sendb bits per symbol interval with an outage probability
of ǫ. So b is the ǫ-outage rate of the UL channel (see [13]
for details). That means the user can send a total ofB = bTq

feedback bits atǫ outage. Now the user should mapB bits
overTq constellation symbols to transmit on the UL channel.
Although the constellations used in practice have2b points
where b must be a positive integer, for the time being we
allow positive real values forb.

We define the CSIT error as thesin of the angle (θ) between
the true channel direction vector̄h and the BS estimated
direction vector̂̄h, denoted asσ2(h, ĥ).

σ2(h, ĥ) = sin2(θ) = 1 − cos2(θ) = 1 − |h̄†ˆ̄h| (13)

When the channel is not in outage and the BS is able to decode
the feedback correctly, there is only quantization error. On
the other hand, when the channel is in outage (happens with
probability ǫ), BS cannot decode the feedback information.
Hence average CSIT errorσ2 can be written as

σ2 = (1 − ǫ)σ2
q + ǫσ2

h̄ 6=ˆ̄h
(h, ĥ)

≤ (1 − ǫ)σ2
q + ǫ

≤ σ2
q + ǫ, (14)

whereσ2
q represents the mean-square quantization error and

σ2

h̄ 6=ˆ̄h
(h, ĥ) represents the mean-square CSIT error when the

channel is in outage (which means feedback error occurs). The

first inequality is obtained asσ2

h̄ 6=ˆ̄h
(h, ĥ) is upper-bounded by

1 and the second inequality is obtained by addingǫσ2
q .

We select this upper bound of mean-square CSIT error
as the performance metric and minimize it following the
constraints on the total feedback interval and user’s power
constraint, obtaining the optimal values forTa, Tq and b

(the number of bits/symbol - this parameter governs the
constellation size and hence quantization error). The results
thus obtained show the superiority of this hybrid approach
over the classical training based only CSIT.

For RVQ, the exact expression for the mean-square quanti-
zation errorσ2

q has been given in [12], [8] as

σ2
q = 2Bβ

(

2B,
M

M − 1

)

, (15)

where B is the total number of bits used for feedback (i.e.
codebook has2B codes) andβ represents the beta function
which is defined in terms of Gamma function asβ(a, b) =
Γ(a)Γ(b)
Γ(a+b) . But we’ll use a very simple and tight upper bound

given in reference [8]

σ2
q ≤ 2

−B
M−1 . (16)

Putting the value ofσ2
q usingB = bTq in eq. (14), we get the

upper bound of average CSIT error as

σ2 ≤ 2
−bTq
M−1 + ǫ. (17)

This equation shows us the basic trade-off involved. If more
outage is allowed in the system, the outage rateb will increase
allowing the user to select a larger codebook (with2B code
words whereB = bTq) but in this case final CSIT estimation
error will be plagued by outages as for a lot of realizations BS
won’t be able to decode the feedback correctly. On the other
hand, if almost no outage is allowed, this condition will ask
the user to transmit at a pessimistic rateb corresponding to
very bad channel conditions. Hence there will be fewer code
words in the codebook and, in this case, CSIT estimate at the
BS will be of poor quality due to large quantization error.

B. Training and Feedback Resource Split Optimization

Pilot sequence transmission from the user to the BS for an
interval of lengthTa, given in eq. (8), can be equivalently
written in a simplified form as

ya =
√

PTa h + na, (18)

whereP is the user’s power constraint andya,h,na are the
received signal, the channel vector and the noise respectively,
all column vectors of dimensionM . BS can make MMSE
estimateĥa of the channelh as

ĥa =

√
PTa

PTa + 1
ya. (19)

As channel entries are i.i.d. standard Gaussian, MMSE esti-
mation errorh̃a = h− ĥa has also i.i.d. Gaussian distributed



entries as̃ha ∼ CN
(

0, σ2
aIM

)

, whereIM represents theM -
dimensional identity matrix and mean-square estimation error
per channel entryσ2

a is given by

σ2
a =

1

PTa + 1
. (20)

Similarly the estimatêha has i.i.d. Gaussian entries and is
distributed aŝha ∼ CN

(

0, PTa

PTa+1IM

)

.
Now we focus our attention on the digital feedback interval

of the CSIT acquisition, given in eq. (10). The signal received
during one symbol interval of this phase is given by

yq =
√

P hxq + nq, (21)

wherexq represents the scalar constellation symbol transmit-
ted by the user andyq,h,nq are M -dimensional column
vectors representing respectively the observed signal, channel
and noise for this particular symbol interval. To decode this
information, BS uses the estimatêha that it developed during
the training phase. So the above equation can be written as

yq =
√

P ĥaxq +
√

P h̃axq + nq. (22)

Average signal-to-noise-ratio (SNR) at the BS with channel
ĥa known can be computed to be

SNR(ĥa) =
P ||ĥa||2
Pσ2

a + 1
. (23)

Putting the value ofσ2
a, SNR will become

SNR(ĥa) =
P ||ĥa||2

P
PTa+1 + 1

. (24)

We can do the magnitude scaling of the estimated channel
vector ĥa so as to convert||ĥa||2 in a standard chi-square
random variable having2M degrees of freedom (DOF), de-
noted asχ2

2M . So the SNR becomes

SNR(χ2
2M ) =

P 2Ta

2(P + PTa + 1)
χ2

2M . (25)

This equation has been obtained by dividing and multiplying
the right hand side of the preceding equation byPTa

2(PTa+1) as
2(PTa+1)

PTa
||ĥa||2 actually represents the sum of squares of2M

real independent zero-mean unit-variance Gaussian variables
which is a standard chi-square random variable with2M DOF.

ǫ, the outage probability of this channel corresponding to
outage rateb, can be written as

ǫ = P
[

log
(

1 + SNR(χ2
2M )

)

≤ b
]

= P

[

log

(

1 +
P 2Ta

2(P + PTa + 1)
χ2

2M

)

≤ b

]

, (26)

whereP denotes the probability of an event. This relation can
be inverted to obtain the outage rateb corresponding to the
outage probabilityǫ, as given below

b = log

(

1 +
P 2Ta

2(P + PTa + 1)
F−1(ǫ)

)

, (27)

whereF−1(.) is the inverse of the standard cumulative distri-
bution function (CDF) ofχ2

2M distributed variable.
Finding the above expression, which relates the outage rate

of digital feedback with the training lengthTa, we can put
formally our optimization problem (the minimization of the
mean-square CSIT error given in eq. (17)) as follows:

min
Ta,ǫ

[

2
−b(Tfb−Ta)

M−1 + ǫ

]

(28)

where we have usedTfb = Ta +Tq andb is given by eq. (27).
The constraints for this minimization are:

Ta ≥ 1 , Ta ≤ Tfb (29)

ǫ ≥ 0 , ǫ ≤ 1 (30)

Apart from these, the user has to take care of its UL power
constraint. The analytical solution to the above optimization
problem does not bear closed form expression but its numerical
optimization is quite trivial.

VI. SIMULATION RESULTS

Our simulation environment consists of a BS withM = 4
antennas and a single user with a single antenna. The channel
model is same as described in Section II. The feedback interval
Tfb is fixed to 20 symbol intervals for all simulations. The
optimization of the objective function described in the previous
section gives us the values for the optimal training lengthTa

and the optimal outage rateb for various values of user’s power
constraint, which is equal to the UL SNR as noise at every BS
antenna has been normalized to have unit variance. We have
plotted the optimal values of training lengthTa, corresponding
values of quantized feedback intervalTq and outage rateb in
Fig. (1).
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Fig. 1. Optimal Lengths and Outage Rate:Tfb = 20 and M = 4. With
increase in SNR, both the length of quantized feedback interval Tq and the
outage rateb increase gradually.

Knowing the values ofb andTq, computed based upon the
optimal values ofTa and ǫ, allows us to compute the upper
bound of the final CSIT error eq. (17). These values have
been plotted in dB scale in Fig. 2. For comparison purpose,
we have also plotted the CSIT error when classical training



spans the full interval reserved for CSIT acquisition. This
plot clearly shows the interest of our hybrid two-staged CSIT
acquisition strategy as, from medium to large SNR values,
CSIT error incurred by this scheme is much less than the error
obtained by training based only CSIT acquisition. At low SNR
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Fig. 2. Mean-Square CSIT Errors:Tfb = 20 and M = 4. Novel hybrid
scheme performs much better than classical training based CSIT acquisition.
Gains are significant even with naive use of practical constellations without
any coding.

values, this two stage scheme performs worse than the training
based traditional scheme. This happens because we have
restricted our final estimate to come from the digital feedback.
Here total feedback resource (SNR andTfb) does not allow
transmission of sufficient number of bits through the channel
so quantization error is quite large. This gets aggravated due to
poor training based estimate based upon which these bits are
decoded, further degrading the performance. This degradation
can be easily avoided by selecting an SNR threshold below
which traditional training based scheme is employed.

A. Transmission with Practical Constellations

Although the plots show the potential of our hybrid ap-
proach over the classical training only scheme, with gains
which are increasing in SNR, yet these results have been
obtained using the real positive values forb. Constellations,
used in practice, have number of points which are an integer
power of2. This practical limitation dictates that theǫ-outage
rate b should be an integer. The CSIT error, obtained by
transmission of QPSK and 16-QAM symbols, has been plotted
for certain SNR values. We remark that these constellations
incur performance degradation as compared to the theoretical
analysis. The reason is analysis might show thatb = 2.7, in
this case if we select smaller constellation i.e., QPSK (b = 2),
we actually let the quantization error increase, if we select
e.g. 16-QAM (b = 4), it will cause the outage probability to
increase. In any case, increase in either the outage probability
or the quantization error will cause to degrade the quality of
the CSIT estimate at the BS.

This performance degradation can be avoided by selecting a
larger constellation (higherb) but doing coding with the help
of extra bits i.e., codebook size is not increased. In this way, all

extra bits are used as parity bits and help combat the channel
noise and outages. This point is the focus of ongoing research
and results will be presented elsewhere.

VII. CONCLUSIONS

We presented a novel approach of acquiring CSIT at the
BS for the DL transmission in a reciprocal TDD MIMO
communication system. Traditional CSIT acquisition in TDD
systems relies on the use of training sequences in an UL slot.
This approach fails to fully exploit the channel reciprocity by
ignoring the shared knowledge of an identical channel between
the BS and the user. Instead, we propose a strategy combining
the use of a training sequence together with a limited feedback
channel. For the transmission of the quantized feedback,
ergodic rates are far beyond the reality due to stringent delay
constraints. We characterize the optimal CSIT acquisition
setup and give an outage-rate based approach which allows
the optimum partitioning of resource between the training and
the quantized feedback. Superior performance is demonstrated
due to better exploitation of the reciprocity principle andCSIT
quality improves significantly.
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