
Scalable, Behavior-Based Malware Clustering

Ulrich Bayer∗,Paolo Milani Comparetti∗,Clemens Hlauschek∗,Christopher Kruegel§, and Engin Kirda¶

∗Secure Systems Lab, Technical University Vienna
{pmilani,ulli,haku}@seclab.tuwien.ac.at

§ University of California, Santa Barbara
chris@cs.ucsb.edu

¶Institute Eurecom, Sophia Antipolis
kirda@eurecom.fr

Abstract

Anti-malware companies receive thousands of malware
samples every day. To process this large quantity, a number
of automated analysis tools were developed. These tools
execute a malicious program in a controlled environment
and produce reports that summarize the program’s actions.
Of course, the problem of analyzing the reports still re-
mains. Recently, researchers have started to explore au-
tomated clustering techniques that help to identify samples
that exhibit similar behavior. This allows an analyst to dis-
card reports of samples that have been seen before, while
focusing on novel, interesting threats. Unfortunately, pre-
vious techniques do not scale well and frequently fail to
generalize the observed activity well enough to recognize
related malware.

In this paper, we propose a scalable clustering approach
to identify and group malware samples that exhibit simi-
lar behavior. For this, we first perform dynamic analysis
to obtain the execution traces of malware programs. These
execution traces are then generalized into behavioral pro-
files, which characterize the activity of a program in more
abstract terms. The profiles serve as input to an efficient
clustering algorithm that allows us to handle sample sets
that are an order of magnitude larger than previous ap-
proaches. We have applied our system to real-world mal-
ware collections. The results demonstrate that our tech-
nique is able to recognize and group malware programs that
behave similarly, achieving a better precision than previous
approaches. To underline the scalability of the system, we
clustered a set of more than 75 thousand samples in less
than three hours.

1 Introduction

One of the major threats on the Internet today is ma-
licious software, often referred to as malware. In fact,
most Internet security problems have malware as their un-
derlying root cause. For example, botnets are commonly
used to send spam and host phishing web sites that are
more difficult to track down and blacklist. Malware comes
in a wide range of forms and variations, such as viruses,
worms, botnets, rootkits, Trojan horses, and denial of ser-
vice tools. To spread, malware exploits software vulnerabil-
ities in browsers and operating systems, or uses social engi-
neering techniques to trick users into running the malicious
code.

An anti-malware company typically receives thousands
of new malware samples every day. These samples are sub-
mitted by users who have found suspicious code on their
systems, by other anti-malware companies that share their
samples, and by organizations (e.g., MWCollect [5], Shad-
owServer [7], VirusTotal [9]) that use technologies such as
honeypots [42] to collect malware. For each sample, it is
important to understand the actions that this program can
perform. This is necessary to determine the type and sever-
ity of the threat that the malware constitutes. Also, this
information is valuable to create detection signatures and
removal procedures. In some cases, the sample may turn
out to be harmless. Furthermore, in many cases, the mal-
ware may turn out to be a variant of a well-known mal-
ware instance. In fact, although the malware may remain
the same, its signature might change just because the mal-
ware author is using a simple obfuscation or polymorphism
technique [34, 38, 44].

Because of the growing need for automated techniques
to examine malware, dynamic malware analysis tools such
as CWSandbox [3], Norman Sandbox [6], and ANUBIS [1,
14] have increased in popularity. These systems execute
the malware sample in a controlled environment and mon-

1

itor its actions. Based on the execution traces, reports are
generated that aim to support an analyst in reaching a con-
clusion about the type and severity of the threat imposed by
a malware sample. However, while automating the analysis
of the behavior of a single malware sample is a first step,
it is not sufficient. The reason is that the analyst is now
facing thousands of reports every day that need to be exam-
ined. Thus, there is a need to prioritize these reports and
guide an analyst in the selection of those samples that re-
quire most attention. One approach to process reports is to
cluster them into sets of malware that exhibit similar behav-
ior. The ability to automatically and effectively cluster an-
alyzed malware samples into families with similar charac-
teristics is beneficial for the following reasons: First, every
time a new malware sample is found in the wild, an analyst
can quickly determine whether it is a new malware instance
or a variant of a well-known family. Moreover, given sets of
malware samples that belong to different malware families,
it becomes significantly easier to derive generalized signa-
tures, implement removal procedures, and create new miti-
gation strategies that work for a whole class of programs.

Grouping individual malware samples into malware fam-
ilies is not a new idea, and clustering and classification
methods have already been proposed previously [13, 26,
30, 31, 28]. These approaches, however, generally do not
scale well and are too slow for the size of malware sets that
anti-malware companies are confronted with. Moreover,
these techniques are imprecise, either because their notion
of similarity is not tied to a program’s actual behavior or be-
cause it does not capture a program’s behavior well enough.
Imprecise in this context either means putting samples of
different types into the same group or failing to recognize
similar malware programs.

In this paper, we present a novel clustering technique that
scales well and produces more precise results than previous
approaches. Our technique is based on a dynamic analysis
system that monitors the execution of a malware sample in a
controlled environment. Unlike many previous systems that
operate directly on low-level data such as system call traces,
we enrich and generalize the collected data and summarize
the behavior of a malware sample in a behavioral profile.
These profiles express malware behavior in terms of oper-
ating system (OS) objects and OS operations. Moreover,
profiles capture a more detailed view of network activity
and the ways in which a malware program uses input from
the environment. This allows our system to recognize simi-
lar behaviors among samples whose low-level traces appear
very different. Finally, we cluster the analyzed samples ac-
cording to their behavioral profile. We employ a scalable
clustering algorithm that avoids calculating n2 distances be-
tween all pairs of n samples, and thus, is suitable for clus-
tering large, real-world malware collections. To summarize,
the contributions of this paper are as follows:

• We present a novel, precise approach to capture a mal-
ware program’s behavior. To this end, we monitor the
execution of a program and create its behavioral profile
by abstracting system calls, their dependences, and the
network activities to a generalized representation con-
sisting of OS objects and OS operations.

• We present an efficient and fast algorithm for cluster-
ing large sets of malware samples that avoids calculat-
ing n2 distances between all pairs of n samples, and
thus, is suitable for clustering large, real-world mal-
ware collections.

• We have evaluated our system on large, real-world data
sets. Our experiments demonstrate that our technique
achieves more precise clustering results than previous
approaches and scales to tens of thousands of malware
samples.

2 System Overview

The goal of our system is to cluster large collections of
malware-samples based on their behavior. That is, we want
to find a partitioning of a given set of malware programs
so that subsets share some common traits. As illustrated in
Figure 1, clustering malware samples is a multi-step pro-
cess. It consists of an initial, dynamic malware analysis
phase, a subsequent extraction of behavioral profiles, and a
final clustering phase.

Dynamic Analysis. The first step in the clustering pro-
cess is the automated analysis of malware samples. For
this purpose, we have extended ANUBIS, our system for
automated, dynamic malware analysis [14]. This system is
based on Qemu [15], a whole-system emulator for PCs and
the Intel x86 architecture. The analysis system works by
executing binaries in the emulated environment, producing
a trace of the system calls that this binary invokes.

We first extended ANUBIS with taint tracking. Simi-
lar to tainting systems in previous work [23, 37, 39], we
attach (taint) labels to certain interesting bytes in memory
and propagate these labels whenever they are copied or oth-
erwise manipulated. Our taint tracking system builds upon
the taint tracking implementation used in a previous pro-
totype [37]. While the propagation of taint labels works
the same as in [37], the tainting systems differ in their use
of taint sources. In our system, system calls serve as taint
sources. More precisely, we taint the out-arguments and re-
turn values of all system calls. At the same time, we check
whether any in-argument of a system call is tainted. The
goal is to identify how the program uses information that it
obtains from the operating system.

While the idea of taint tracking itself is not new, we
leverage this information to obtain a number of novel, im-

2

Figure 1. System overview.

portant features that better capture the behavior of a mal-
ware program. For example, we can observe when a pro-
gram uses the return value of the GetDate system call
in a subsequent CreateFile call. This allows us to de-
termine that a file name depends on the current date and
changes with every malware execution. As a result, the file-
name is generalized appropriately. Furthermore, we taint
the entire code of the executable. This allows us to uncover
cases in which a program reads its own code segment. This
is helpful to detect important propagation patterns, such as
a worm sending itself over the network or a Trojan horse
copying itself into the Windows system directory. Finally,
we record program control flow decisions that are based on
tainted data. This allows us to identify similarities between
programs that perform the same date checks or that attempt
to shut down the same anti-virus software.

To address the problem that a program’s network activ-
ity is not sufficiently captured by system call traces, we
have built a network analysis component that operates on
the network traffic itself. The problem is that on the system-
call level, all network activities are performed through calls
to a single, native API function called NtDeviceIo-
ControlFile - only differing in their arguments. Ide-
ally, we would like to know what emails are sent, what
HTTP downloads are performed, what IRC conversations
take place, etc. To this end, our network analysis compo-
nent leverages Bro [40] and makes use of its capabilities
to recognize and parse application-level protocols (such as
HTTP, SMTP, and IRC).

The output of the analysis step is an execution trace that
is augmented with taint information. This trace lists all sys-
tem calls together with their argument values. Moreover,
it provides taint information for each argument. This taint
information allows us to connect the return values (and out-
arguments) of one system call with the in-arguments of sub-
sequent calls.

Behavioral Profile. In this step, we process the execution
traces provided by the previous step. More precisely, for
each sample, we extract a behavioral profile that accurately
describes the runtime activity of the binary and serves as
input to our clustering algorithm.

Unlike existing systems [26, 31], our clustering algo-
rithm does not operate directly on system calls. The rea-

son is that system call traces can vary significantly, even
between programs that exhibit the same behavior. For ex-
ample, consider the different ways to read from a file: Pro-
gram A might read 256 bytes at once, while program B calls
read 256 times, reading 1 byte with each call. Moreover, it
is easily possible to interleave the read calls with other, in-
dependent system calls so that the system call trace changes.
For this reason, we abstract system call traces into a set of
operating system objects, together with a set of operations
(such as read, write, create) that were performed on these
objects.

An OS object represents a resource, such as a file or
registry key, that can be manipulated and queried via sys-
tem calls. For example, our behavioral profile might in-
clude the file object C:\Windows and its accompanying
operation query directory. An OS operation is a gen-
eralization of a system call that unifies different system
calls with similar semantics but different function signa-
tures (e.g., the system calls NtCreateProcessEx and
NtCreateProcess both map to the same operation).

Based on the information that the tainting system pro-
vides, we infer dependences between OS objects. Copy-
ing a file, for example, is represented as a dependence be-
tween the source file OS object and the destination file ob-
ject. Dependency information implicitly captures the order
of certain operations. This is important, because we do not
explicitly consider the order of OS operations that are per-
formed on a specific OS object. The reason is that a behav-
ior profile should not rely on the order in which unrelated
operations are executed. Moreover, dependences help to de-
termine resource names that are derived from data sources
whose values change between execution traces (such as ran-
dom values or the current time). This information allows us
to generalize the corresponding OS object names.

The output of this step is an abstraction of the program’s
execution trace that contains information about the OS ob-
jects that the program operates on, as well as of the type of
operations and dependences. These abstractions are called
a behavioral profile.

Scalable Clustering. In this step, we cluster a set of behav-
ioral profiles such that samples that exhibit similar behavior
are combined in the same cluster. Given the rapidly increas-
ing number of malware programs, it is clear that one of the

3

most important requirements for a clustering algorithm is
scalability. It must be possible to cluster a large amount of
malware, such as a hundred thousand samples, in a reason-
able time. Most clustering methods require the computation
of the distances between all pairs of points, which invari-
ably results in a computational complexity of O(n2). This
might lead to systems that take three hours to process 400
samples [31].

In this paper, we propose to efficiently solve the cluster-
ing problem using an approximate, probabilistic approach.
Our clustering algorithm is based on locality sensitive
hashing (LSH), which was introduced by Indyk and Mot-
wani [29]. LSH provides an efficient (sublinear) solution to
the approximate nearest neighbor problem (ε-NNS). Clus-
tering is one of the main applications of this technique: LSH
can be used to perform an approximate clustering while
computing only a small fraction of the n2/2 distances be-
tween pairs of points. Leveraging LSH clustering, we are
able to compute an approximate, single-linkage hierarchi-
cal clustering for a data set of more than 75,000 samples in
less than three hours.

3 Dynamic Analysis

Dynamic malware analysis systems have become in-
creasingly popular because they deliver good analysis re-
sults even in case of obfuscated or self-modifying code and
analysis resistance techniques [34, 38, 44]. Since meaning-
ful analysis results are a prerequisite for good clustering re-
sults, we have chosen to further extend ANUBIS, our exist-
ing, dynamic analysis system [14]. More precisely, we have
added support to track dependences between operations on
system code objects, as well as support to analyze control
flow decisions that involve tainted data operands, and we
have improved the network analysis.

3.1 System Call Dependences

Data tainting is a well-known technique for tracking in-
formation flows in a whole-system emulator. In this work,
we are leveraging the tainting approach to capture the de-
pendences between system calls. As noted by Christodor-
escu et al. [21], system call dependences provide valuable
insights into the behavior of an application. For example,
knowledge about dependences allows one to see when a
program searches for files with a specific filename pattern
and then opens all files that were found. In our analysis,
system call dependences are used in the following contexts:

• Generalization of execution traces: An execution trace
inherently includes many execution-specific events
and names (filenames, host names). These execution--
specific tokens change every time the binary is exe-

cuted. Based on dependence analysis, such execution-
specific artifacts can be recognized. For example,
knowing that a filename depends on the current time
helps to remove the filename as a characteristic for a
program’s behavior. Also, tainting the return value of
the Windows function GetTempFileName puts us
into a position where we can identify temporary file
names.

• Copy Operations: Tainting allows us to recognize data
movements, such as the case when data is copied. This
allows us to determine the malware’s propagation vec-
tor. For example, we see when the malware copies it-
self to the Windows system directory or sends a copy
of its code over the network.

Taint Sources. Although our behavioral profile is primarily
based on system calls and their dependences, we are not fo-
cusing on the native API interface1 alone. Instead, we also
include several Windows API functions. This is different
from previous systems, which either operate on the system
call interface [25, 39] or perform whole-system taint analy-
sis [46]. In the latter case, taint sources are typically devices
such as a network card or the keyboard.

The Windows API is a large collection of user mode li-
brary routines, which in turn invoke native API functions
when necessary. Considering the Windows API is impor-
tant for several reasons: First, some functionality is man-
aged and provided exclusively by user-mode portions of the
operating system. That is, no calls to native API functions
are performed. Among other things, this is true for the ran-
dom number generator, the path-related Windows API func-
tions (e.g. GetTempFileName, GetTempPath), and
DLL-management functions (e.g., GetProcAddress).
Second, there are Windows API functions that have
semantically-equivalent native API functions, but, because
of performance reasons, have been implemented in a way
that does not require invoking the appropriate system ser-
vice. An important instance are the time-related Windows
API function, such as GetTickCount or GetSystem-
Time. These functions do not invoke a system call but work
by reading from a special page in the virtual address space.
This page is always mapped read-only to a fixed address in
the user-mode, virtual address space of a processes. The
kernel maps the same page with write access and updates
the time-related information in the timer interrupt handler.

Memory-Mapped Files. Memory-mapped files, officially
termed section objects in Windows NT, pose a special chal-
lenge to the analysis system. When a process maps a file
into its virtual address space, reading and writing to the file
is possible by simply reading and writing to the mapped

1In Windows NT, the operating system call interface is termed native
API.

4

memory region. These read and write operations do not re-
sult in any system calls. Thus, in current analysis systems
such as [1, 3, 6, 8], all read and write activity to a memory-
mapped file will go unnoticed. However, it is crucial to add
support for Windows section objects to obtain a complete
view of the operations of a program.

To keep track of indirect write operations to a file, we
modified the function that is responsible for writing to the
physical memory in our emulation. Whenever the process
writes to memory, we check whether the address is in a
memory-mapped area. If this is the case, we report this op-
eration as a write to the corresponding, mapped file. Track-
ing read operations from a memory-mapped file requires
tainting the appropriate region in memory whenever a pro-
gram maps a file into its address space. However, Windows
does not load the contents of the file into physical memory
at the time of the section creation. Instead, Windows defers
loading (portions of) the file into the physical memory until
the time when a virtual address in this region is accessed.
Because our tainting system is only able to taint values in
the physical memory and the CPU registers, we have to wait
until the file is eventually mapped into physical memory be-
fore we can taint it. We solve this problem by monitoring all
invocations of the page fault handler. When the page fault
handler brings in a page that is part of a memory-mapped
region, we taint the page after the handler returns.

3.2 Control Flow Dependences

Taint information is useful to track dependences between
system calls. However, it is also interesting to analyze how
tainted data is used by the program itself. More specifically,
we would like to identify the control flow decisions that in-
volve data that a process has obtained via system calls. In-
formation about such control flow decisions reveals many
interesting aspects about a program. For example, it allows
us to discover which processes a malware sample poten-
tially wishes to terminate by observing all comparisons that
take place as the program iterates over the list of running
processes. Since the list of running processes has to be re-
trieved by means of system calls, the process names that
this system call returns are tainted. Hence, we are aware
of all comparisons that involve the retrieved process list as
argument.

On the x86 architecture, many different assembler in-
structions for comparing two values exist. Fortunately, in-
side the Qemu intermediate language, all of these different
compare instructions (such as CMP, CMPS, SCAS) map to
the same intermediate language construct. Thus, we can
easily handle all compare instructions by building our anal-
ysis on top of Qemu’s intermediate language. The REP in-
struction prefix is correctly handled as a consecutive exe-
cution of the same compare instruction. However, as ex-

plained in the following paragraphs, consecutive compare
instructions are merged into a single one during our analy-
sis.

To detect comparisons with tainted values, the following
extensions were necessary:

Representation. In the Qemu intermediate language a
compare instruction has two operands with a size of either
one, two, or four bytes. For each comparison, we can exam-
ine the taint labels that are attached to the bytes of both ar-
guments (if there are any). When a taint label is present, we
can determine the system call and the exact argument where
the corresponding data byte was retrieved from. Based on
this information, we can also determine the original data
type of a tainted byte. This is possible because the Win-
dows native API header files declare all system calls and
the types of their arguments. Based on the data type, we
consider the operand of a comparison as signed/unsigned
integer or as a character string. Knowing the data type also
allows us to pinpoint the exact member of a structure. For
example, we do not only see that a value ’6’ is compared
with struct SYSTEMTIME, but we can also determine
that the value is compared to the struct’s wDay member.

One problem arises when more complex data structures
(e.g., structs, strings, etc.) are involved in a comparison. In
this case, we observe several, consecutive cmp instructions
that operate on a few bytes of the data structure. To handle
such cases, consecutive compares on successive labels are
merged. Also, when comparing for equality, the compari-
son terminates as soon as the first differing byte is encoun-
tered. In these cases, we cannot see the complete values
that the program actually compares. However, the complete
data structure exists in the computer’s main memory. Thus,
when string comparisons are involved, we try to recover the
entire string by reading it from the main memory. To this
end, we assume that the operand being compared marks the
beginning of the string and check until a null byte is found.

There are two types of comparisons that we record as
part of an execution trace: A comparison of a labeled value
(i.e., at least a single byte of an operand is tainted) with
an unlabeled value (called a label-value comparison) and a
comparison of a labeled value with another labeled value
(called a label-label comparison). In both cases, we do not
output the concrete values of the labeled (tainted) data but
the source where this data originates from. More precisely,
for tainted data, we record the function name, the function
argument, and, if applicable, the name of the structure that
holds the data together with the member name. This allows
us to identify which inputs to the program are used for com-
parisons. In case of a label-value comparison, we also learn
the concrete value that the program checks for.

Filtering. An important part of analyzing control flow de-
pendences is to filter out the irrelevant ones. Compare
instructions occur very frequently, and a raw execution

5

trace typically contains millions of compares with tainted
operands. To focus on compare instructions that are done
by the actual malware program, we discard those that were
executed on behalf of (user-mode) Windows API functions.
In this way, we ignore comparisons that do not represent the
direct intent of the program’s author, but that are present as
a result of standard Windows behavior. The only exception
to this rule are a number of Windows API functions that
are used for comparing more complex data types, such as
strings or dates. Obviously, the comparisons that occur in-
side these API functions are the direct consequence of the
programmer’s intent. For this reason, we catch all compar-
isons that take place inside strcmp, for example.

3.3 Network Analysis

The network activities of a malware sample provide one
of the most important and characterizing insights into a
sample’s behavior. Thus, the analysis of a sample’s network
activity plays an important role in our approach.
Environment. A successful network analysis requires that
a sample is able to perform the network activities that it has
been programmed to do. Dynamic analysis cannot observe
email activity of a program when it fails to establish a TCP
connection to a mail server. Thus, as a first step, we run the
sample in an environment that permits a sample to perform
its built-in network activities.

To create the environment for malware execution, we al-
low an analyzed sample to download files via HTTP and to
contact IRC servers directly on the Internet. All other traf-
fic is rerouted to a specially-prepared server, called the vic-
tim machine, which has been configured to accept incoming
connections on a number of ports that are frequently used
by malware programs. For example, the victim machine
runs its own SMTP server that answers all SMTP requests
(but does not deliver any emails). Moreover, we have set
up nepenthes [11] - a honeypot system that emulates known
vulnerabilities of popular services. Of course, we are not us-
ing the nepenthes server as a honeypot system in the usual
sense, i.e., as a way to gain new malware samples. Instead,
we have deployed nepenthes only for having a basic ser-
vice listening on ports that are frequently used for spreading
(such as the Windows Samba ports).
Analysis. The goal of our network analysis is to extract
high-level semantic operations from the low-level socket
system calls. For example, instead of reporting that a TCP
connection was established, together with the amount of
bytes that were exchanged, we aim to report that an HTTP
GET request was sent to download the file “foo.bar.” We
have chosen to build our analysis on top of the packets that
are sent and received at the network level. This is easier and
more comprehensive than attempting to infer all informa-
tion from the arguments of the DeviceIoControlFile

system call, which serves as a funnel for all network-related
activity on Windows. To capture network traffic, we have
modified our system emulator’s network card to simply
dump all packets to a log file in PCAP-format. This way, we
have a wide range of standard network analysis tools at our
disposal to aid us in our analysis efforts. Also, by parsing
network packets and parsing application protocols, such as
HTTP, we are able to identify network activity on a higher
level of abstraction. We use Bro [40] for our analysis, a
system that has built-in support for identifying and parsing
HTTP, IRC, SMTP, and FTP protocols. For these protocols,
we extract information such as names of downloaded files,
names of IRC channels, or mail subjects.

4 Behavioral Profile

When the dynamic analysis step finishes processing a
sample, the next task is to transform the augmented exe-
cution trace into a behavioral profile. As mentioned previ-
ously, a behavioral profile captures the operations of a pro-
gram at a higher level of abstraction. To this end, we model
a sample’s behavior in the form of OS objects, operations
that are carried out on these objects, dependences between
OS objects and comparisons between OS objects. More for-
mally, a behavioral profile P is defined as an 8-tuple

P = (O,OP, Γ,∆, CV,CL,ΘCmpV alue,ΘCmpLabel)

where O is the set of all OS objects, OP is the set of
all OS operations, Γ ⊆ (O × OP) is a relation assign-
ing one or several operations to each object, and ∆ ⊆
((O × OP) × (O × OP)) represents the set of depen-
dences. CV is the set of all compare operations of type
label-value, while CL is the set of all compare operation
of type label-label. ΘCmpV alue ⊆ (CV × O) is a relation
assigning label-value compare operations to an OS object.
ΘCmpLabel ⊆ (CL×O ×O) is a relation assigning label-
label compare operations to the two appropriate OS objects.
OS Objects. An OS object represents a resource, such as
a file or registry key, that can be manipulated and queried
via system calls. Formally, an OS object is a tuple of the
following form:

OS Object ::= (type, object-name)
type ::= file|registry|process|job|

network|thread|section|
driver|sync|service|random|
time|info

That is, an OS object has a name and a type that together
uniquely identify the object in the operating system. The
‘file‘ type covers file, named pipe, and mailslot resources,
‘registry‘ consists of registry keys, ‘process‘ includes pro-
cesses, and ‘job‘ denotes Windows NT jobs, which allow

6

for combining individual processes into a group. The ‘net-
work‘ category describes network objects, ‘thread‘ repre-
sents thread activity, ‘section‘ refers to memory-mapped
files, and ‘driver‘ captures the loading and unloading of
Windows device drivers. The type ‘sync‘ abstracts all syn-
chronization activities, such as operations on semaphores
and mutexes, and ‘service‘ contains objects that represent
Windows services. The type ‘random‘ includes several
sources of randomness, each of which can be used by a pro-
gram to generate a random number. The type ‘time‘ consists
of time sources, and ‘info‘ contains only two objects. One
is the object info-executable, which represents the loaded
executable. The other one is info-general, which represents
information such as pathnames of the windows system di-
rectory and the temporary directory.

OS Object OS Operation
Type Name Name Attributes
net http server contact ‘www.gson.com‘,‘80‘
net http request get ‘/down/s.htm‘
net dns resolver query ‘Type A‘,‘mx.gmx.net‘
net port listener listen ‘TCP‘,‘6777‘
net smtp attmts send ‘fpw.exe‘
net smtp content send ‘Test yep.‘
net smtp subjs send ‘Hi‘

Table 1. Example network OS objects.

To create OS objects, we search the execution trace for
all system calls that produce new OS resources. For ex-
ample, the function NtCreateFile creates new files.
For each such system call, we extract the object name
from the argument list, deduce the object type from the
type of the system call, and then create a new OS ob-
ject. Typically, native API calls have a parameter, named
ObjectAttributes, that can be directly translated to
an object name. In a few cases, it is more difficult to deter-
mine the object name. For example, NtCreateProcess
expects a handle argument that points to a section object (a
memory-mapped file), instead of an argument that specifies
the filename of the executable. To address this problem, we
have extended our system call logger to resolve handles to
NT kernel objects and provide this information.

Since network activities are not directly represented in
the execution trace, we rely on the network analysis com-
ponent for extracting the virtual network OS objects. De-
pending on the type of network traffic observed, we create
different kinds of network objects. Table 1 lists some ex-
ample network objects, together with their corresponding
operations.

OS Operations. An OS operation is a generalization of a
system call. Formally, an operation is defined as:

OS operation ::= (operation-name,
operation-attributes?,
successful?)

An operation must have a name, it may have one or more
attributes that provide additional information about the op-
eration, and it may have a value describing whether the op-
eration was successful.

We map system calls to OS operations with the intent of
abstracting from API-specific details. For example, we ig-
nore whether a process is created by means of NtCreate-
Process or NtCreateProcessEx and unify these two
system calls into the single OS operation create. Our
mapping function only considers the most essential system
calls, such as functions for reading, writing, and creating
operating system objects. This allows us to abstract from
many unimportant details. For example, we ignore all func-
tions relating to NT’s Local Procedure Call functionality,
because this is an undocumented feature that is not avail-
able via the Windows API. Currently, we map 130 native
API and Windows API functions to 55 OS operations.

System calls that operate on a resource typically have a
(handle) parameter that references the target resource. This
is necessary for the OS to know the resource to which an
operation should be applied. We make use of these handles
to map operations to the appropriate OS objects. There are
few cases where a function that logically constitutes an op-
eration on an object does not have a handle parameter that
specifies this object. The NtQueryAttributesFile
function, for example, uses a filename instead of a handle
to indicate the file object that it works on. After assigning
operations to OS objects, our implementation stores all of
an object’s operations in a set. As a consequence, the order
of OS operations is irrelevant. This is important, because it
is very easy to reorder system calls on a resource without
changing the semantics of a program. Thus, we are able
to generalize our behavioral profile by neglecting the order
of operations. System call dependences are used to capture
the order between those OS operations where the actual or-
der is implied by a data dependence. Moreover, the number
of operations on a certain resource does not matter in our
system. This sacrifices some precision, but makes the be-
havioral profile more general, and thus, harder to evade by
introducing superfluous operations.
Example of a Behavioral Profile. Figure 2 shows an
example of a behavioral profile. Note that although
this example is shown in C code, our profile extrac-
tion algorithm works on execution traces. This exam-
ple shows code that copies the file C:\sample.exe
to C:\Windows\sample.exe by memory-mapping the
source file. As one can see, independent of the number
of times the write operation in Line 14 is executed, the
write operation appears only once in the corresponding be-
havioral profile. It is also noteworthy that the NtQuery-

7

Figure 2. Example Behavioral Profile

AttributesFile operation in Line 6 is assigned to the
object C:\Windows\sample.exe, although it does not
use a handle argument to reference its OS object.

Object Dependences. We abstract dependences between
system calls to dependences between OS objects. While a
system call dependence is a dependence relation between
two system call instances, an OS object dependence is a
dependence between two OS objects and their operations.
For each existing system call dependence, we first check
whether the two involved system calls map to OS opera-
tions. If this is the case, we introduce an object dependence
between the corresponding OS objects. The behavioral pro-
file shown in Figure 2 contains a dependence between the
section OS object of the source file and the file object of the
destination file. This dependency reflects the fact that data
from the source was copied to the destination file.

Due to the fact that all our object dependences origi-
nate from system call dependences, we would lack network-
related dependences. As explained previously, this is be-
cause the extraction of network OS objects is a separate
process that is mostly based on the captured network traf-
fic. To address this problem, we have partly reverse-
engineered the semantics of the NtDeviceIoControl-
File function. NtDeviceIoControlFile is a uni-
versal interface that allows user-mode programs to com-

municate with device drivers, including the network stack.
It is possible to recognize network-related invocations of
NtDeviceIoControlFile by checking two of its ar-
guments, the handle argument as well as its IO control
code. In addition, NtDeviceIoControlFile has an
input buffer and an output buffer argument for transfer-
ring data. For each call to NtDeviceIoControlFile
that represents network activity, we insert an artificial sys-
tem call into the execution trace that represents a decoded
form of the original call. In particular, we have to decode
the buffer arguments. In the case of network activities,
NtDeviceIoControlFile’s buffer arguments contain
pointers to network-specific structs. There are four different
artificial system calls:

AfdSend(SocketHandle h, char *buffer)
AfdReceive(SocketHandle h, char *buffer)
AfdBind(SocketHandle h, short localPort)
AfdConnect(char *foreignAddress,

short foreignPort)

We insert AfdSend when we determine that a process
calls NtDeviceIoControlFile to send data. Anal-
ogously, we insert AfdReceive when data is received,
AfdBind when a socket is bound to a specific port num-
ber, and AfdConnect, when a TCP connection is estab-
lished. The arguments of the four artificial calls reflect the

8

taint information of their corresponding system calls. The
SocketHandle parameter allows us to attribute the individ-
ual invocations to the appropriate network connection.

Based on our representation of objects and their depen-
dences, it is straightforward to find execution-specific ar-
tifacts. For example, we recognize random or temporary
filenames by checking whether there is a dependence be-
tween a file object and a random source. If this is the
case, we do not want to keep the actual object in the pro-
file, since it is different for each execution. Thus, we re-
place the concrete object name with a placeholder token
that indicates the source of the object name (such as TEM-
PORARY for a temporary filename). Moreover, we append
the value of a counter that is increased by one until the ob-
ject name becomes unique in this profile. When compar-
ing two behavioral profiles that both contain objects with
temporary filenames, it is possible to match these two ob-
jects. However, we have to avoid that an object a1 of pro-
file A matches with object b1 of profile B, when the op-
erations associated with the object make it actually more
similar to object b2 of profile B. We address this problem
by calculating a checksum over all OS operations, using
the resulting value as part of the new object name. That
is, execution-specific names are replaced with a new name
of the form <token><checksum><counter>. The
checksum guarantees that only objects with the same OS
operations will receive the same name in two different pro-
files, and consequently match.
Control Flow Dependences. Control flow dependences
are translated into comparisons between OS objects. De-
pending on the type of the comparison, a control flow de-
pendency is associated with either one or two OS objects.
A label-label comparison involves two OS objects (one
for each operand), while a label-value comparison involves
only a single one. To find the appropriate OS resource, the
labels are used. That is, we search for the OS operation that
created a particular label. Then, we search for the object
that the operation is associated with.

5 Scalable Clustering

Clustering a set of n points in a high-dimensional space
is a computationally expensive task. Most clustering algo-
rithms require to compute the distances between all pairs of
points in the set. In this case, computational complexity is
at least O(n2) evaluations of the distance function, which is
unacceptable for large data sets.

There exist algorithms, such as the k-means algorithm
(Lloyd’s algorithm) [36], that only compute the distance
from the n points to k cluster centers, and repeat this com-
putation for each of i iterations required to converge to a
local optimum. The computational complexity is, there-
fore, O(nki) evaluations of the distance functions. Unfor-

tunately, there are no guarantees that the value of i is small
(in fact, the number of iterations is super-polynomial in n
in the worst-case [10]). Furthermore, the accuracy of k-
means is limited (the solution is only locally optimal), and
the number of clusters k has to be specified a priori.

In this work, we employ locality sensitive hashing
(LSH), introduced by Indyk and Motwani [29], to com-
pute an approximate clustering of our data set that requires
significantly less than n2 distance computations. Our clus-
tering algorithm takes as input the set of malware samples
A = a1, .., an, where ai ⊆ F , and F is the set of all
features. LSH algorithms have been proposed for metric
spaces where the similarity between two points is defined by
one of a few simple functions, such as Jaccard index [16], or
cosine similarity [20]. In this work, we employ the Jaccard
index as a measure of similarity between two samples a and
b, defined as J(a, b) = |a ∩ b|/|a ∪ b|. A similarity value
of J(a, b) = 1 indicates that two samples have identical
behavior. While other, more complex similarity functions,
such as normalized compression distance [13], may be more
accurate measures of the similarity between behavioral pro-
files, choosing this simple set similarity measure allows our
clustering approach to leverage LSH and to scale up to the
size of real-world malware collections.

In the following Section 5.1, we explain how we map
a behavioral profile into a set of features that are suitable
for LSH. Section 5.2 briefly explains the LSH algorithm.
In Section 5.3, we discuss how we can use the output of
the LSH algorithm to compute an approximate, hierarchi-
cal clustering of our malware sample set. Finally, in Sec-
tion 5.4, we discuss the asymptotic performance of our ap-
proach.

5.1 Transforming Profiles into Features Sets

Before we can run the clustering algorithm, we have
to transform each behavioral profile into a feature set.
Informally, a feature is a behavioral characteristic of a
sample, such as “file xy was created.” We use the fol-
lowing algorithm to transform a behavioral profile P =
(O,OP, Γ,∆, CV,CL,ΘCmpV alue,ΘCmpLabel) into a set
of features: For each object oi ∈ O, and for each assigned
opj ∈ OP |(oi, a) ∈ Γ, create a feature:

fij = ”op|” + name(oi) + ”|” + name(opj)

where name() is a function that returns the name of an OS
object, operation, or comparison as string, quotes (”) denote
a literal string, and + concatenates two strings. Moreover,
for each dependence δi ∈ ∆ = ((oi1, opi1), (oi2, opi2)), we
create a feature:

fi = ”dep|” + name(oi1) + ”|” + name(opi1)+

9

+” → ” + name(oi2) + ”|” + name(oi2)

For each label-value comparison θi ∈ ΘCmpV alue =
(cmp, o), we create a feature:

fi = ”cmp value|” + name(o) + ”|” + name(cmp)

For each label-label comparison θi ∈ ΘCmpLabel =
(cmp, o1, o2), we create a feature:

fi = ”cmp label|” + name(o1)+

+” → ” + name(o2) + ”|” + name(cmp)

The output of this transformation step is a set of features
that captures the behavioral characteristics of a sample in
a form that is suitable for the clustering algorithm. We
then discard all features of a sample that are unique with
regards to all other samples in the data set. That is, we do
not consider a feature for clustering when it does not occur
in at least one other sample’s feature set. This is because
a unique feature of a sample does not help us to find other
samples that behave similarly (i.e., the information gain of
this feature is very low). Moreover, our experiments show
that the robustness of our clustering to the selection of the
threshold t improves when we discard such unique outliers.

5.2 Locality Sensitive Hashing (LSH)

The idea behind locality sensitive hashing is to hash a
set A of points in such a way that near (or similar) points
have a much higher collision probability than points that are
distant. We achieve this by employing a family H of hash
functions such that Pr[h(a) = h(b)] = similarity(a, b),
for a, b points in our feature space, and h chosen uniformly
at random from H . By defining the locality sensitive hash
of a as lsh(a) = h1(a), .., hk(a), with k hash functions
chosen independently and uniformly at random from H , we
then have Pr[lsh(a) = lsh(b)] = similarity(a, b)k.

In the case of sets for which the Jaccard index is used as
similarity measure, a family of hash functions H with the
desired property has been introduced in [16]. A hash in H
imposes a random order on the set of all features. The hash
value for a feature set a is then determined by the index of
the smallest element of a according to this order. Since it is
inefficient to generate truly random permutations, random
linear functions in the form h(x) = c1x + c2 mod P are
used instead [27], with P a prime number larger than the
total number of features in F .

Given a similarity threshold t, we employ the LSH al-
gorithm to compute a set S which approximates the set T
of all near pairs in A × A, defined as T = {(a, b)|a, b ∈
A, J(a, b) > t}. Given the threshold t, we first choose the
number k of hash functions in each LSH hash, and the num-
ber of iterations l. Furthermore, we initialize the set S of
candidate near pairs to the empty set. Then, for each itera-
tion, the following steps are performed:

• choose k hash functions h1, .., hk at random from H

• compute lsh(a) = h1(a), .., hk(a) for each a ∈ A

• sort the samples based on their LSH hashes

• add all pairs of samples with identical LSH hashes to
S

LSH Parameters. For a given similarity threshold t, we
must choose appropriate values of k and l. For a pair
p = (a, b) such that similarity(a, b) = v, we have
Pr[p ∈ S] = 1− (1− vk)l = g(v). Thus, given t, we can
choose k and l such that g(t) is close to 1 and g(t/(1 + ε))
is small, for any ε > 0. That is, t is the only parameter that
needs to be chosen. For a threshold value of t = 0.7 we
selected k = 10 and l = 90.

5.3 Hierarchical Clustering

The result of the locality sensitive hashing step is a set
S, which is an approximation of the true set of all near pairs
T = {(a, b)|a, b ∈ A, J(a, b) > t}. Because LSH only
computes an approximation, S might contain pairs of sam-
ples that are not similar. To remove those, for each pair a, b
in S, we compute the similarity J(a, b) and discard the pair
if J(a, b) < t. Then, we sort the remaining pairs by similar-
ity. This allows to produce an approximate, single-linkage
hierarchical clustering [35] of A, up to the threshold value
t. Single-linkage clustering allows us to simply iterate over
the sorted list of pairs to produce an agglomerative cluster-
ing. We stop the clustering when there are no more near
pairs left.

In some cases, one would like to continue the hierar-
chical clustering process until all elements are merged into
a single cluster. However, all subsequent clustering steps
would require to merge two clusters that have a similar-
ity value below t. Of course, this information is not read-
ily available. The reason is that the LSH algorithm avoids
the calculation of distances between elements that have a
similarity value below t. To solve this problem and to ob-
tain an exhaustive, hierarchical clustering, we use the fol-
lowing technique: We choose a representative element for
each cluster, calculate the distances between all represen-
tatives, and then perform exact, hierarchical clustering be-
tween these elements. We create the representative element
r of a cluster C by adding all features to rC that exist in at
least half of all the feature sets in C. Of course, exact hier-
archical clustering has a complexity of O(n2). This is ac-
ceptable because the number of representatives is very low.

5.4 Asymptotic Performance

The LSH scheme described previously requires the com-
putation of nkl hashes. The computational complexity of

10

each hash of a sample a is O(|a|). Therefore, the over-
all complexity of the hashing step is O(nkld), where d =
avg(|a|), a ∈ A, is the average number of features in
a sample. After hashing, |S| similarity functions must be
computed.

The set S is an approximation of the true set of all near
pairs T . We may, therefore, have false negatives (T − S),
and false positives (S − T). We have |S| ≤ |T |+ |S − T |.
Clearly, |T | < nc, where c is the maximum cluster size for
the given threshold. Unfortunately, we cannot provide a the-
oretical bound for the fraction of false positives |S−T |/|S|
without making some assumptions on the distribution of the
distances between pairs in A. However, in practice, the
value is small (below 0.19 in our experiments). Therefore,
the number of similarity computations is limited by the size
of |T | and the complexity of O(nc). Since a single similar-
ity computation is O(d), computational complexity of this
step is O(ncd). Finally, the pairs in S need to be sorted to
perform hierarchical clustering. This step is O(nc log(nc)).

For large data sets, the cost of the similarity computa-
tions, which is O(ncd), dominates. Note that while in prac-
tice nc is significantly smaller than n2, the asymptotic per-
formance has not improved. The reason is that c can still
be O(n) in the worst case. Consider, for instance, a trivial
dataset where all n samples are identical. Clearly, for such a
dataset we would have a single cluster of size n (and, there-
fore, c = n) for any t. More generally, if the threshold value
t is too low, it may lead to most samples being concentrated
in a few large clusters. However, for meaningful datasets
and reasonable values of t, nc is significantly smaller than
n2. The performance gained by using LSH is therefore suf-
ficient to allow us to cluster large, real-world malware data
sets, as we will show in Section 6.3.

For extremely large datasets, on the other hand, more ag-
gressive approximate clustering techniques may need to be
employed (at the cost of some accuracy), such as the ones
described in [27]. In [27], LSH is used to generate the set of
approximate near pairs |S|, but there are no similarity com-
putations. A pair (a, b) ∈ S is not verified to be near by
computing similarity(a, b), but by using a faster approxi-
mate method that is based on the already computed hashes.

6 Evaluation

To verify the effectiveness of our approach, we used
our system to cluster real-world malware data sets. In the
next section, we discuss the quality of the generated clus-
ters. Then, in Section 6.2, we compare our solution with
previously-proposed clustering techniques [13, 31]. In Sec-
tion 6.3, we present performance measurements of running
our prototype on a very large data set. Finally, in Sec-
tion 6.4, we discuss some examples of the clusters produced

by our tool and of the insight they provide to the malware
analyst.

6.1 Quality

Assessing the quality of the results that are produced by
a clustering algorithm is an inherently difficult task. Ob-
viously, it is possible to quantify the number of clusters,
the average number of samples per cluster, or the relative
sum of all pairwise distances for a cluster. Alternatively,
one could randomly pick a few clusters and manually ver-
ify that the samples in these clusters are similar. The best
option for demonstrating the correctness of a produced clus-
tering, however, is to compare it with an existing reference
clustering. Unfortunately, no such reference clustering ex-
ists for malware samples2. As a result, to verify that our
clustering approach is meaningful, we first needed to create
a reference clustering.
Reference Clustering. To create a reference clustering,
we took the following approach: First, we obtained a set
of 14,212 malware samples that were submitted to ANU-
BIS [1] in the period from October 27, 2007 to January
31, 2008. These samples were contributed by a number
of security organizations and individuals, spanning a wide
range of sources (such as web infections, honeypots, bot-
net monitoring, peer-to-peer systems, and URLs extracted
from other malware analysis services). Then, we scanned
each sample with six different anti-virus programs. For the
initial reference clustering, we selected only those samples
for which the majority of the anti-virus programs reported
the same malware family (this required us to define a map-
ping between the different labels that are used by differ-
ent anti-virus products). This resulted in a total of 2,658
samples. For each sample, we examined the corresponding
ANUBIS [1] report and manually corrected classification
problems.
Precision and Recall. To evaluate the quality of the cluster-
ing produced by our algorithm, we compared it to the refer-
ence clustering described above. To quantify the differences
between the two clusterings, we introduce two metrics, pre-
cision and recall.

The goal of precision is to measure how well a clus-
tering algorithm can distinguish between samples that are
different. That is, precision captures how well a cluster-
ing algorithm assigns samples of different types to different
clusters. Intuitively, we strive for results where each cluster
contains only elements of one particular type. More for-
mally, precision is defined as follows: Assume we have a
reference clustering T = T1, T2, .., Tt with t clusters and a
clustering C = C1, C2, .., Cc with c clusters (for a sample

2In fact, providing a reference clustering for a set of malware samples
is a difficult problem by itself, mostly because it requires human expertise
to compile such a clustering or confirm the correctness of existing results.

11

set A = a1, a2, .., an). For each Cj ∈ C, we calculate a
cluster precision value as:

Pj = max(|Cj ∩ T1|, |Cj ∩ T2|, .., |Cj ∩ Tt|)

The overall precision value is:

P =
(P1 + P2 + .. + Pc)

n

In addition to precision, we use recall to measure how
well a clustering algorithm recognizes similar samples.
That is, recall captures how well an algorithm assigns sam-
ples of the same type to the same cluster. Clearly, we prefer
a clustering where all elements of one type are assigned to
the same cluster. We formally define recall as follows: As-
sume we have a reference clustering T = T1, T2, .., Tt with
t clusters and a clustering C = C1, C2, .., Cc with c clus-
ters. For each Tj ∈ T , we calculate a cluster recall value
as:

Rj = max(|C1 ∩ Tj |, |C2 ∩ Tj |, .., |Cc ∩ Tj |)

The overall recall value is:

R =
(R1 + R2 + .. + Rr)

n

The primitive algorithm that creates a cluster for each
sample achieves optimal precision, but the worst recall. The
algorithm that combines all samples in a single cluster, in-
stead, achieves optimal recall but the worst precision. In
practice, an algorithm should provide both high precision
and recall. That is, each cluster should contain all samples
of one type, but no more.
Clustering Results. We have run our clustering algorithm
on the reference set of 2,658 samples. For this run, we se-
lected a similarity threshold of t = 0.7. The value of this
threshold was determined based on our experience with ini-
tial experiments on a small malware sample set with less
than a hundred programs. Later in this section, we discuss
in more detail the considerations for selecting an appropri-
ate threshold. Moreover, we will show that the algorithm is
quite robust with regard to the choice of the concrete thresh-
old value.

Our system produced 87 clusters, while the reference
clustering consists of 84 clusters. For our results, we de-
rived a precision of 0.984 and a recall of 0.930. This demon-
strates that our approach has produced a clustering that is
very close to the reference set. The excellent precision
shows that the system was able to differentiate well between
different malware classes. The recall shows that, in almost
all cases, samples of the same class were grouped in the
same cluster. A quantitative comparison to other cluster-
ing techniques is presented in the following Section 6.2. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
lu

s
te

r
M

e
tr

ic
s

Number of clusters

Precision

Recall

Figure 3. Precision and recall.

Section 6.4, we discuss a number of interesting, qualitative
observations about the clustering that our system produced.
Threshold Selection. The value of the similarity threshold
t determines how aggressively the clustering algorithm con-
siders two different profiles as similar. Therefore, selecting
a correct threshold often depends on the desired level of
granularity of the clustering. For example, an analyst might
be interested only in a rough partitioning of a set of mal-
ware samples into a few high-level categories (such as di-
aler, worm, or bot). Another analyst, instead, could be more
interested in splitting a single malware family into different
variants. In these cases, the first analyst would select a small
t, while the second one would use a larger value for t.

For our experiments, we decided to use a threshold value
such that our results would differentiate between malware
families (that is, only similar variants of the same family
should be clustered). As mentioned previously, a concrete
value of t = 0.7 was selected, based on our experience with
initial, small-scale experiments. However, the selection of
the correct value of t is quite robust. Figure 3 shows how
precision and recall vary with respect to different choices of
t. One can see that a broad range of choices for t ∈ [0.6, 0.9]
yield good results for both precision and recall.

6.2 Comparative Evaluation

In the previous section, we have shown that our system
has performed accurate clustering. However, we need to put
these numbers into context with other approaches to be able
to better assess the quality of our results. In this section, we
present a comparative evaluation with the current state-of-
the-art clustering approach, introduced by Bailey et al. [13].
Moreover, we analyze the impact of our behavioral abstrac-
tion and compare our clustering to one that is directly based
on system call traces [31].

12

Bailey et al. [13] proposed a system for clustering
malware based on the Normalized Compression Distance
(NCD), using zlib-compression. NCD is based on the Kol-
mogorov complexity theory [33] and exploits the fact that
similar data, when concatenated, compresses better than
more differing data. Moreover, Bailey performs a coarse-
grain abstraction from system calls and also uses profiles
to represent malware behavior (we refer to these profiles
as Bailey-profiles from now on). The difference to our ap-
proach is that Bailey-profiles contain only behavior in terms
of non-transient state changes that a malware sample causes
on the system (i.e., changes to the file-system, registry), as
well as names of spawned processes and some basic infor-
mation about network connections and scans. A detailed
impression of the contents of Bailey-profiles can be gained
from [12]. To evaluate Bailey’s system on our reference
data set, we adapted our dynamic analysis system to gener-
ate Bailey-profiles. Concerning NCD, we made use of the
library provided by the Complearn-Toolkit [22].

A number of previous systems (e.g., [31]) based their
behavioral profiles essentially on the raw system call traces.
Thus, to evaluate the performance of such systems, and to
obtain a baseline that shows the improvements due to gen-
eralized behavior profiles, we also performed clustering on
the raw system call traces.

We used our reference clustering and the precision and
recall metrics to directly compare the quality of the pro-
duced clusters for the different techniques. As an over-
all measure of clustering quality, we use the product of
precision∗recall. For each of the combinations of profile-
types, similarity measures, and clustering methods pre-
sented in Table 2, we selected the threshold value which
produces the highest quality score. In the clustering col-
umn, “exact” means that all n∗n/2 distances between pairs
of samples were computed, while “LSH” means that local-
ity sensitive hashing was used. The last two rows show
that the difference between exact and LSH-based clustering
is minimal, demonstrating the effectiveness of LSH-based
clustering as an approximation.

As can be seen in Table 2, the quality of our clustering
approach (last two rows) outperforms the clustering pro-
posed by Bailey et al. (first row). This is because our pro-
files represent the actual behavior of a malware sample in a
more comprehensive and accurate way. For example, cer-
tain samples exhibit behavior that cannot be captured using
Bailey-profiles. As a result, such profiles remain empty, or
almost empty. Even more troublesome is the fact that Bai-
ley’s approach produces significantly worse results when
using the Jaccard index as a similarity metric instead of
NCD (second row). Unfortunately, a clustering algorithm
based on NCD cannot take advantage of LSH to avoid com-
puting all n2 distances. Thus, a clustering approach that
uses Bailey-profiles [13] either produces results that are sig-

nificantly less precise than ours (by using the Jaccard index
and LSH), or it does not scale to real-world datasets (when
using NCD). When analyzing the results for raw system call
traces (third row), the results are significantly worse than for
the other two techniques. This is not surprising, since the
traces contain far too much noise to effectively find similar-
ities between even closely-related malware instances.

6.3 Performance

To demonstrate the scalability of our clustering algo-
rithm, we ran our system on a set of 75,692 malware sam-
ples (obtained from the complete database of ANUBIS). We
performed our experiments on a XEN virtual machine that
was hosted on a PowerEdge 2950 server equipped with two
Quad-Core Xeon 1.86 GHz CPUs and 8 GB of RAM. We
allocated about 7GB RAM and one physical CPU to the
XEN VM.

As shown in Table 3, our prototype implementation suc-
ceeded to cluster the set of 75,692 samples in 2 hours and 18
minutes. This time could be further reduced by exploiting
the inherent parallelism: Both the LSH hashing and the dis-
tance calculation step can be easily performed in parallel.
The memory requirements of our prototype never exceeded
3.7 GB of virtual memory. For each sample, we store a be-
havioral profile on disk, which consumes about 96 KB of
disk space on average. To load the samples, the clustering
algorithm had to read and process 6.9GB of behavioral pro-
files.

We ran the clustering algorithm with the same thresh-
old value t = 0.7. The LSH algorithm computed a set
S, our approximation of the set of near pairs, that con-
tained 66,528,049 pairs. Only 57,024,374 pairs were indeed
above the similarity threshold t, i.e., LSH hashing resulted
in about 14% false positives. Nevertheless, employing LSH
hashing allowed us to calculate only 66,528,049 instead of
(75, 6922)/2 = 2, 864, 639, 432 distances.

Algorithm Step Time (Virt.) Mem. Used
Loading the samples 58m 1.6 GB
l iterations of LSH hash. 1h 0m 3.6 GB
Distance calculation 16m 3.7 GB
Sorting all pairs 1m 3.7 GB
Hierarchical clustering 3m 3.7 GB
Total 2h 18m 3.7 GB

Table 3. Runtime for 75K samples.

Compared to previous work, our prototype shows signif-
icantly improved performance. To classify malware based
on NCD as in Bailey et al. [13], all of the n2/2 distances
between the n samples need to be computed. Moreover, it
is possible to derive from the run-time graphs presented in

13

Behavioral Profile Similarity Measure Clustering Optimal Threshold Quality Precision Recall
Bailey-profile [13] NCD exact 0.75 0.916 0.979 0.935
Bailey-profile [13] Jaccard Index exact 0.63 0.801 0.971 0.825
Syscalls [31] Jaccard Index exact 0.19 0.656 0.874 0.750
Our profile Jaccard Index exact 0.61 0.959 0.977 0.981
Our profile Jaccard Index LSH 0.60 0.959 0.979 0.980

Table 2. Comparative evaluation of different clustering methods.

their paper that a single distance calculation between two
pairs takes about 1.25 milliseconds. As a result, the dis-
tance calculation step of their algorithm would require 995
hours (almost 6 weeks) to perform the necessary 75, 6922/2
distance calculations. This is despite the fact that Bailey
profiles are rather small (about 1KB on average). Applying
our NCD implementation to the (much larger) behavioral
profiles produced by our tool yields even more prohibitive
computation times: a single NCD computation takes on av-
erage 43 milliseconds. Therefore, clustering 75, 692 sam-
ples would take at least 6 months, even if the implementa-
tion were parallelized to run on 8 CPUs.

6.4 Qualitative Discussion of Clustering Results

In this section, we present a number of observations on
the quality of our clustering techniques. First, we discuss
the four largest clusters (with regard to the number of sam-
ples that they contain). These are Allaple.1 (1,289 samples),
Allaple.2 (717 samples), DOS (179 samples), and GBDi-
aler.j (106 samples). Together, they account for 86% of all
samples.

Allaple.1 and Allaple.2 are two different variants of the
Allaple worm [4]. Allaple is a polymorphic malware, which
explains why there are so many different samples in each
cluster. It also demonstrates the ability of our system to
quickly dispose of polymorphic malware instances that ap-
pear different but exhibit the same behavior. Interestingly,
we found that virus scanners were inconsistently assigning
different variant names to samples in both clusters (recall
that we only used the malware family names that the virus
scanners reported to perform the initial reference cluster-
ing). However, closer manual analysis showed that our
clustering correctly identified two different Allaple vari-
ants. While all of the samples in both clusters perform
ICMP scans, the Allaple.2 variant is much more aggres-
sive at immediately attempting to exploit the target sys-
tems using a wider variety of propagation vectors. For in-
stance, almost all Allaple.2 samples perform DNS lookups
for the addresses of hosts they have successfully scanned,
and attempt to connect to TCP port 9988, which corre-
sponds to the Windows remote administration service. On
the other hand, in none of the samples in the Allaple.1 clus-

ter is there any DNS or port 9988 activity. Furthermore, all
samples in Allaple.1 make a copy of themselves to the file
“C:\WINDOWS\system32\urdvxc.exe,” while none of the
samples in Allaple.2 do. Moreover, in the Allaple.1 cluster,
we observe the following, interesting object dependences:

Section|C:\sample.exe->Network|TCP
File|C:\WINDOWS\system32\urdvxc.exe ->

File|C:\(..)\Temporary Internet Files\
\(..)\ccxebztz.exe

Random|Random Value Generator ->
File|C:\(..)\Temporary Internet Files\
\(..)\ccxebztz.exe

The first dependency indicates that the sample has suc-
ceeded in propagating itself over the network (to our ne-
penthes honeypot). Since our taint-system correctly handles
memory-mapped files, we see that the malware propagates
by reading a memory-mapped file and writing it to the net-
work. The second and third dependences provide a strong
indication that this is polymorphic malware, since data from
the malware sample and from a random number generation
API is written to the new file “ccxebztz.exe.” This shows
how system call dependences can provide valuable insight
on malware behavior.

GBDialer.J is the biggest of several dialer clusters in our
sample set. It is interesting that we were able to correctly
group the samples in this cluster, because our analysis en-
vironment does not directly support the analysis of dialers.
That is, there is no modem (emulation) present that would
allow dialers to perform their main task. Nevertheless,
the remaining behavior (such as startup actions and system
modifications) was sufficiently characterizing to differenti-
ate between the various dialer variants. This is not the case
for the forth cluster, called “DOS.” This cluster contains
various DOS malware samples. The reason for not being
able to distinguish between different DOS variants is that
our analysis environment can only execute Windows PE ex-
ecutables. The Windows loader treats all non-Windows PE
files as DOS executables, and attempts to execute them by
emulating them in the ntvdm.exe process. This activity
was recognized as similar behavior.

In addition to the four large clusters, there are several in-
teresting, smaller clusters. For example, there is a cluster of

14

only two samples that are labeled as “Keylogger.Ghostbot”
by the Kaspersky virus scanner. Our dynamic analysis dis-
covered that this malware constantly checks for key presses
using the Windows API function GetKeyState. The pro-
file contains the following interesting comparisons:

cmp_val|registry|HKLM\SOFTWARE\MICROSOFT\
\WINDOWS\CURRENTVERSION\RUN
NtEnumerateValueKey-KeyValueInformation
- PCCNTMON

This tells us that the malware looks for known anti-virus
and firewall programs in the list of autostart registry values.
Please note that the above is only an excerpt. In total, the
profile lists 98 different program names that are compared
against the result of NtEnumerateValueKey. We also
have a cluster that consists of four samples that are recog-
nized as “Mabezat” by the majority of virus scanners. Our
behavioral profile shows that it is a file infector that searches
for executable files on the local hard disk and infects them.
This characteristic behavior was correctly identified and re-
sulted in one cluster that precisely captured all four sam-
ples in the data set. We also discovered, with the help of
control flow dependences, that the program is searching for
different kinds of document files in the directory that Win-
dows uses for temporarily storing data that is scheduled to
be written to a CD. Again, we show only parts of the list of
comparisons.

cmp_val|file|
C:\Documents and Settings\user\Local
Settings\Application Data\Microsoft\
\CD Burning\
NtQueryDirectoryFile-FileInformation
- .TXT

According to the virus description database of AVG [2],
the malware program checks whether the current date is
greater then 2012/10/16, and if so, starts encrypting user
documents. Our system was only partly able to find this
date check. Our profile is shown below:

cmp_val|time|System Time
GetSystemTime-
lpSystemTime.struct _SYSTEMTIME.wYear
-2012

As one can see, the system correctly recognizes the fact that
a comparison between the current year and the value 2012
takes place. As this comparison already fails, the rest of the
date is not further checked. That is why we cannot deter-
mine the complete date. However, we are considering to
improve our system with the ability to read the entire data
structure from the main memory (in a fashion that is similar
to our current approach for strings).

Of course, there are also malware programs for which
our system did not produce the correct results. One com-
mon case is when a sample did not show any suspicious
activity in our analysis environment. This could be because
the malware program is damaged, or because it detects the
presence of the analysis environment and exits prematurely.
In any case, it underlines the dependence of our system on
the quality of the behavioral profiles. One cluster in particu-
lar is composed of 25 samples which belong to 10 different
clusters according to the reference clustering. Manual anal-
ysis reveals that these samples all crash, which causes the
Dr. Watson debugger application to be executed, generate a
crash report, and display a pop-up window asking the user
permission to send the report to Microsoft. Clearly, this be-
havior is not specific to the malware family and it leads to
misclassification.

7 Limitations and Future Work

Trace Dependence. As mentioned previously, a limitation
of any dynamic malware analysis approach is that it is trace-
dependent. Analysis results will be based only on the sam-
ple’s behavior during one (or more) specific execution runs.
Unfortunately, some of a malware’s behavior may be trig-
gered only under specific conditions. A simple example of
trigger-based behavior is a time-bomb. That is, a malware
that only exhibits its malicious behavior on a specific date.
Another examples is a bot that only performs malicious ac-
tions when it receives specific commands through a com-
mand and control channel. Also, malware aimed at identity
theft may only exhibit certain behavior when the user per-
forms certain actions, such as logging into specific bank-
ing websites. Since we run malware samples automatically
with no human interaction, such behavior will not occur in
our traces.

Interestingly, our clustering may still succeed in group-
ing similar samples even when their most significant mali-
cious behavior is not triggered, as is the case for the GBDi-
aler.J cluster discussed in Section 6.4. The reason is that the
behavioral features used for clustering encompass all mal-
ware behavior, not just malicious actions. Also, one could
use techniques that explore multiple execution paths [37] to
obtain a more comprehensive picture of the functionality of
a program.

Evasion. Clearly, a malware author could manually mod-
ify a malware sample until its behavior is different enough
from the original that the two are assigned to different clus-
ters by our tool. We are not interested in this kind of labor-
intensive, manual evasion. Instead, we consider an adver-
sary who attempts to automatically produce an arbitrary
number of mutations of a malware sample in such a way that
all (or most) such mutations are assigned to different clus-

15

ters by our tool. To this end, a malware author could ran-
domly mutate parts of the malware’s behavior that are not
essential to its functionality. An example would be the often
arbitrary file names under which the malware copies itself
on the file system. These could be replaced with random
strings, hard-coded into each malware instance. Nonethe-
less, adding enough randomness to make each mutation dif-
ferent is not a simple task. A sample in our dataset has more
than one thousand features on average, many of which rep-
resent behavior from inside system libraries that is only in-
directly a consequence of the malware writer’s intent. Also,
since our tool discards features that are unique to a single
malware instance, simple random variations would just lead
to these features being discarded. In addition, we could add
more aggressive generalization to our algorithm for extract-
ing behavioral profiles. As an example, we could consider
the name of any file created by the malware as irrelevant,
and replace it with a special token (as we currently do for
the names of temporary files).

Another issue is that dynamic data tainting of untrusted
software is vulnerable to evasion. A malicious binary could
inject fake data dependencies, using NOP-equivalent oper-
ations to taint clean data without modifying its value. Fur-
thermore, it could hide data dependencies from our tool,
using implicit flows to ”clean” tainted data [19]. Unfortu-
nately, there is no easy defense against such techniques. To
address this issue, we would have to disable dynamic data
tainting, sacrificing some of the system’s accuracy.

8 Related Work

The recent advances in the field of automated malware
analysis (e.g., [17, 25, 37, 45, 46]) have created a rising in-
terest in the automatic grouping of the analysis results (and
reports) that are created. For this purpose, researchers have
proposed supervised as well as unsupervised machine learn-
ing techniques. Because it is crucial that these techniques
can process a large number of samples, their scalability is
one of the decisive properties.

At the core of every system that aims to find malware
families is the notion of similarity. Therefore, these sys-
tems need to solve two problems. First, they need to find
a suitable representation of a malware sample. Second,
based on these representations, they need to compute a dis-
tance between two samples. In the literature, content-based
and behavior-based comparison approaches have been pro-
posed.
Content-Based Analysis. The first attempts to cluster mal-
ware samples were based on static analysis of the mal-
ware samples. In [26], the author proposes an automated
virus classification system that works by first disassembling
the binaries, and subsequently, comparing their basic code
blocks. Other researchers have proposed to represent a mal-

ware program as a hex-dump of its code segment, building
a classification system on top of this [30]. In [24], Dullien
proposes a system for comparing executables based on their
control flow graph.

All content-based analysis approaches share the prob-
lem that they need to disassemble the binary. This is of-
ten difficult or even impossible, given that malware is fre-
quently obfuscated and packed. Also, it is possible to write
semantically-equivalent programs that have large difference
in their code. Thus, it is possible for malware authors to
thwart content-based similarity calculations.

Behavior-Based Analysis. Recently, Holz et al. [28] pre-
sented a system that classifies unknown malware samples
based on their behavior. A significant limitation is that the
system requires supervised learning, using a virus scanner
for labeling the training set. Lee et al. developed a sys-
tem for classifying malware samples that relies on system
calls for comparing executables [31]. The scalability of the
technique is limited; the system required several hours to
cluster a set of several hundred samples. Also, the tight fo-
cus on system calls implies that the collected profiles do not
abstract the observed behavior.

The approach that is closest to ours was presented by
Bailey et al. [13]. Their proposed system abstracts from
system call traces and clusters samples that exhibit simi-
lar behavior. Unfortunately, Bailey’s system does not scale
well (it requires to compute O(n2) distances), and, com-
pared to our system, their generated behavioral profiles lack
important information that we can obtain via a fine-grained
analysis and behavioral abstraction. This results in a clus-
tering that is less accurate.

Leita et al. [32] suggest classifying malware based on the
epsilon-gamma-pi-mu model. In this model, additional in-
formation on how the malware is originally installed on the
target system is considered for classification. This can in-
clude information on the exploit and exploit payload used to
install the malware dropper, and on the way the dropper in
turn downloads and installs the malware. Since in [32] the
malware itself is characterized by simply using anti-virus
names, this approach is complementary to the one described
in this paper.

Dynamic Data Tainting. Taint analysis is a technique that
has been extensively used in the field of computer security.
For example, it has been successfully applied to the detec-
tion of exploits that hijack the control flow of a program
and, in some cases, automatic signature generation against
detected threats [23, 39, 41]. Similar to our approach, there
are systems that employ tainting for extracting characteris-
tic information flows from malware binaries. Yin et al. [46]
extended Qemu with data tainting to capture system-wide
information flows. Recently, dynamic taint analysis has
been also used for the automatic analysis of network pro-
tocols [18, 43].

16

9 Conclusion

In this paper, we propose a novel approach for clustering
large collections of malware samples. The goal is to find
a partitioning of a given set of malicious programs so that
subsets exhibit similar behavior. Our system begins by ana-
lyzing each sample in a dynamic analysis environment that
we have enhanced with taint tracking and additional net-
work analysis. Then, we extract behavioral profiles by ab-
stracting system calls, their dependences, and the network
activities to a generalized representation consisting of OS
objects and OS operations. These profiles serve as the in-
put to our clustering algorithm, which requires less than a
quadratic amount of distance computations. This is impor-
tant to handle large data sets that are commonly encountered
in the real world. Our experiments demonstrate that our
techniques can accurately recognize malicious code that be-
haves in a similar fashion. Moreover, our results show that
we can cluster more than 75 thousand samples in less than
three hours.

Acknowledgments

This work has been supported by the European Commis-
sion through project FP7-ICT-216026-WOMBAT, by FIT-
IT through the Pathfinder project, by FWF through the Web-
Defense project (No. P18764) and by Secure Business Aus-
tria. We would like to thank Luca Foschini for his assistance
and for providing his expertise in the area of large-scale data
clustering.

References

[1] ANUBIS. http://anubis.seclab.tuwien.ac.
at, 2008.

[2] AVG Virus Database - Mabezat. http://www.avg.
com/virbase?nam=win32/mabezat, 2008.

[3] CWSandbox. http://www.cwsandbox.org/, 2008.
[4] F-Secure Malware Information Pages - Allaple.A.

http://www.f-secure.com/v-descs/
allaple_a.shtml, 2008.

[5] MWCollect. http://www.mwcollect.org/, 2008.
[6] Norman Sandbox. http://www.norman.com/

microsites/nsic/, 2008.
[7] Shadowserver. http://shadowserver.org/wiki/,

2008.
[8] ThreatExpert. http://www.threatexpert.com/,

2008.
[9] Virus Total. http://www.virustotal.com/, 2008.

[10] D. Arthur and S. Vassilvitskii. How slow is the k-means
method? In SCG ’06: Proceedings of the twenty-second
annual symposium on Computational geometry, pages 144–
153, New York, NY, USA, 2006. ACM.

[11] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freil-
ing. The nepenthes platform: An efficient approach to col-
lect malware. In D. Zamboni and C. Kruegel, editors, RAID,
volume 4219 of Lecture Notes in Computer Science, pages
165–184. Springer, 2006.

[12] M. Bailey. Malware clustering results. http://www.
eecs.umich.edu/˜mibailey/malware/, 2008.

[13] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jaha-
nian, and J. Nazario. Automated classification and analysis
of internet malware. In Proceedings of the 10th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID’07), September 2007.

[14] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for
Analyzing Malware. In 15th European Institute for Com-
puter Antivirus Research (EICAR 2006) Annual Conference,
April 2006.

[15] F. Bellard. Qemu, a Fast and Portable Dynamic Translator.
In Usenix Annual Technical Conference, 2005.

[16] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. Comput. Netw. ISDN Syst.,
29(8-13):1157–1166, 1997.

[17] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. Automatically iden-
tifying trigger-based behavior in malware. In Book chapter
in ”Botnet Analysis and Defense”, Editors Wenke Lee et. al.,
2007.

[18] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Au-
tomatic Extraction of Protocol Message Format using Dy-
namic Binary Analysis. In Proceedings of ACM Conference
on Computer and Communication Security, Oct. 2007.

[19] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits of In-
formation Flow Techniques for Malware Analysis and Con-
tainment. In GI SIG SIDAR Conference on Detection of In-
trusions and Malware & Vulnerability Assessment (DIMVA),
2008.

[20] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth an-
nual ACM symposium on Theory of computing. ACM, 2002.

[21] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifi-
cations of malicious behavior. In ESEC-FSE ’07: Proceed-
ings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 5–14, New
York, NY, USA, 2007. ACM.

[22] R. Cilibrasi and P. Vitányi. Complearn version 1.15. http:
//www.complearn.org/, 2008.

[23] J. Crandall and F. Chong. Minos: Architectural support for
software security through control data integrity. In Interna-
tional Symposium on Microarchitecture, 2004.

[24] T. Dullien and R. Rolles. Graph-based comparison of Exe-
cutable Objects. In In Symposium sur la Sécurité des Tech-
nologies de l’Information et des Communications (SSTIC),
June 2005.

[25] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dy-
namic spyware analysis. In Proceedings of USENIX Annual
Technical Conference, June 2007.

[26] M. Gheorghescu. An Automated Virus Classification Sys-
tem. In Virus Bulletin conference, 2005.

17

[27] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable tech-
niques for clustering the web. In WebDB (Informal Proceed-
ings), pages 129–134, 2000.

[28] T. Holz, C. Willems, K. Rieck, P. Duessel, and P. Laskov.
Learning and Classification of Malware Behavior. In Fifth
Conference on Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA 08), June 2008.

[29] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proc. of
30th STOC, pages 604–613, 1998.

[30] J. Z. Kolter and M. A. Maloof. Learning to detect and clas-
sify malicious executables in the wild. J. Mach. Learn. Res.,
7:2721–2744, 2006.

[31] T. Lee and J. J. Mody. Behavioral Classification. In EICAR
Conference, 2006.

[32] C. Leita and M. Dacier. SGNET: a worldwide deployable
framework to support the analysis of malware threat mod-
els. In EDCC 2008, 7th European Dependable Computing
Conference, May 7-9, 2008, Kaunas, Lituania, 2008.

[33] M. Li and P. Vitányi. An Introduction to Kolmogorov Com-
plexity and Its Applications. Springer-Verlag, New York,
second edition, 1997.

[34] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and com-
munications security, pages 290–299, New York, NY, USA,
2003. ACM.

[35] L.Kaufman and P. Rousseeuw. Finding groups in data: An
introduction to cluster analysis. New York: John Wiley &
Sons, 1990.

[36] J. B. Macqueen. Some methods of classification and analy-
sis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, pages 281–297, 1967.

[37] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple ex-
ecution paths for malware analysis. In Security and Privacy,
2007. SP ’07. IEEE Symposium on, pages 231–245, 2007.

[38] A. Moser, C. Kruegel, and E. Kirda. Limits of Static Analy-
sis for Malware Detection. In ACSAC, pages 421–430. IEEE
Computer Society, 2007.

[39] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In 12th Annual Network and
Distributed System Security Symposium (NDSS), 2005.

[40] V. Paxson. Bro: a system for detecting network intruders in
real-time. Comput. Networks, 31(23-24):2435–2463, 1999.

[41] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Em-
ulator for Fingerprinting Zero-Day Attacks. In Proc. ACM
SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

[42] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[43] G. Wondracek, P. Milani Comparetti, C. Kruegel, and
E. Kirda. Automatic Network Protocol Analysis. In 15th
Symposium on Network and Distributed System Security
(NDSS), 2008.

[44] T. Yetiser. Polymorphic Viruses - Implementation, Detec-
tion, and Protection. http://vx.netlux.org/lib/
ayt01.html, 1993.

[45] H. Yin, Z. Liang, and D. Song. HookFinder: Identifying and
understanding malware hooking behaviors. In Proceedings
of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08), February 2008.

[46] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In CCS ’07: Proceedings of the
14th ACM conference on Computer and communications se-
curity, pages 116–127, New York, NY, USA, 2007. ACM.

18

