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Email: shakti.shenoy@eurecom.fr, irfan.ghauri@infineon.com
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Abstract—We address diversity order of linear equalization
for block transmission in fading channels. It is known that
zero-padded (ZP) block transmission allows LE to achieve full
multipath diversity present in frequency selective channels. We
show here that, in a dual fashion, LE can achieve full Doppler-
diversity in time-selective channels when guard bands are in-
serted in the transmit signal. For these transmission schemes we
derive an upper bound for the orthogonal deficiency [1] of the
effective channel matrix at the receiver to prove that LE can
exploit full diversity present in the channel. We also analyze the
performance of LE with linear precoded transmission in doubly
selective channels and extend this proof to show that LE can
also achieve maximal joint multipath-Doppler diversity offered
by doubly selective channels.

I. I NTRODUCTION

Fading channels pose a major challenge to reliable com-
munications particularly over wireless channels. Equalization
at receiver that optimally exploits the inherent diversityin
fading channels is a convenient counter-measure against fad-
ing channels. Frequency selective fading provides multipath
diversity due to the presence of multiple independently fading
components. In block transmission systems, when the channel
coherence time is shorter than the transmit block length,
temporal variations of the channel give rise to time-selectivity.
However, this same time-selectivity of the channel also pro-
vides Doppler diversity [2] which can be exploited by the
receiver. Linear Equalization (LE) is a low-complexity albeit
sub-optimal alternative to optimal ML equalization. Recent
research has concentrated on quantifying the performance of
diversity order of LE in fading channels. While the diversity
order of LE for transmission over frequency selective channels
has been studied in [3] [4], diversity order of LE in time-
selective and doubly selective channels is less understood.
In [5], the authors used Complex-Exponential Basis Expansion
Model (CE-BEM) [6] with Q + 1 bases to model the doubly
selective channel of memoryL, the authors showed that by
employing linear precoded block transmission, the maximum
diversity in the channel is upper bounded by(Q + 1)(L + 1)
and can be achieved when maximum-likelihood decoding is
used at the receiver. However, ML incurs a huge computational
complexity therefore it is of interest to investigate diversity
order achieved by linear equalization for block transmission
over doubly selective channels. In this paper, we study the
performance of MMSE-ZF linear equalizers for block trans-

mission over fading channels. For time-selective channels,
we show that LE can achieve full Doppler diversity when
appropriate guard-bands are inserted into the transmit symbol
in much the same way as zero-symbols are padded in ZP-
only transmission to enable LE to achieve full multipath
diversity. We then study the performance of LE for precoded
transmission in doubly selective channel and show that LE
also achieve maximal diversity offered by doubly selective
channels with the same precoder that enables MLE to achieve
multiplicative multipath-Doppler diversity.

II. SIGNAL MODEL

In Fig. 1 we show the block diagram of the transmission
model for block transmission over fading channels.

s[i] ŝ[i]
Parser Θ

s[k] x[k] y[k]
hi,l Equalizer

Fig. 1. Block diagram of transmission model.

At the transmitter, complex data symbolss[i] are first parsed
into N -length blocks.Then-th symbol in thek-th block is
given by [s[k]]n = s[kN + n] with n ∈ [0, 1, ..., N − 1].
Each blocks[k] is precoded by aM × N matrix Θ where
M ≥ N and the resultant blockx[k] is transmitted over
the block fading channel. In the signal model, we consider
the general case of doubly-selective channels of orderL.
Frequency-selective-only and time-selective-only channels can
be represented as 1-D cases of doubly selective channels.
It is well known that the temporal variation of the channel
taps in doubly selective channels with a finite Doppler spread
can be captured by finite Fourier bases. We therefore use
CE-BEM [6] with Q + 1 basis functions to model the time
variation of each tap in a block duration. The basis coefficients
remain constant for the block duration but are allowed to vary
with every block. The time-varying channel for each block
transmission is thus completely described by theQ+1 Fourier
bases and(Q+1)(L+1) coefficients. In generalQ is chosen
such thatQ ≥ 2⌈fmaxMTs⌉ where 1/Ts is the sampling
frequency andfmax is the Doppler spread of the channel.
The coefficients themselves are assumed to be zero-mean
complex i.i.d Gaussian random variables. This is a reasonable



assumption for a rich scattering environment with non-line-of-
sight reception. Usingi as the discrete time (sample) index,
we can represent thel-th tap of the channel in thek-th block

hi,l =

Q∑

q=0

hq(k, l)ej2πfqi, (1)

l ∈ [0, L], fq = (q−Q/2)/M . The corresponding receive sig-
nal is formed by collectingM samples at the receiver to form
y[k] = [y(kM +0), y(kM +1), . . . , y(kM +M −1)]T . When
M ≥ L, this block transmission system can be represented in
matrix-vector notation as [5]

y[k] = H[k; 0]Θs[k] + H[k; 1]Θs[k − 1] + v[k], (2)

where v[k] is a AWGN vector whose entries have zero-
mean and varianceσ2

v and is defined in the same way
as y[k]. H[k; 0] and H[k; 1] are M × M matrices whose
entries are given by[H[k; t]]r,s = h(kM+r,tM+r−s) with
t ∈ [0, 1], r, s ∈ [0, ..., M − 1]. Defining D[fq] as
a diagonal matrix whose diagonal entries are given by
[D[fq]]m,m = ej2πfqm, m ∈ [0, 1, ..., M − 1], and further
defining[Hq[k; t]]r,s = hq(k, tM +r−s) as Toeplitz matrices
formed of BEM coefficients, it is straightforward to represent
Eq. (2) as

y[k] =

1∑

t=0

Q∑

q=0

D[fq]Hq[k; t]Θs[k − t] + v[k], (3)

III. D IVERSITY ORDER OF LINEAR EQUALIZERS

A. Frequency selective channel

Consider the case of zero-padded block transmission of
time-domain symbol vectors[k] in a frequency selective
channel of orderL. Such a scheme involves paddings[k] with
M − N ≥ L zero symbols before transmission over the fre-
quency selective channel. In other words, the precoding matrix
Θ = [IN 0N×(M−N)]

T . The frequency selective channel can
be represented as a special case of doubly selective channel
when Q = 0. In order to simplify notation, we therefore
drop the superscriptq in the received signal representation
and rewrite Eq (3) as

y[k] = H[k; 0]Θs[k] + H[k; 1]Θs[k − 1] + v[k], (4)

Due to the delay spread of the channel, the received block
experiences inter-block-interference. This is represented by
the second term on the RHS of Eq (4). Note thatH[k; 1] is
a strictly upper-triangular matrix with non-zero elementsin
only the lastM −L columns of the matrix. Zero-padding has
the effect of setting inter-block-interference to zero andthe
received signal can be expressed as

y[k] = H̃[k; 0]s[k] + v[k], (5)

where H̃[k; 0] is a M × N Toeplitz matrix with
[h0(k, 0), h0(k, 1), ..., h0(k, L),01×M−L−1]

T as its first col-
umn. When the received block is represented by an input-
output relationship as in Eq (5), it was shown in [4] that
MMSE-ZF receiver achieves has diversity orderL + 1. The

linear estimate for the symbols of thek-th received block is
then given by the MMSE-ZF equalizer

MMSE-ZF = (HH [k]H[k])−1
H

H [k], (6)

whereH[k] = H̃[k; 0] is the effective channel matrix seen at
the receiver due to zero-padding (in general, precoding) atthe
transmitter.

1) Diversity order of LE: In [1] the authors introduce a
metric namely the orthogonality deficiency of the equivalent
channel matrixod(H[k]) at the receiver and prove that LE
can achieve the same diversity as ML equalization (MLE)
when od(H[k]) < 1. For the case of ZP transmission in
frequency selective channelsH[k] = H̃[k; 0] is a M × N
Toeplitz channel matrix. In this section we provide an upper
bound tood(H[k]) in terms of the infinite order prediction
error variance of the spectrum|h(f)|2 whereh(f) = h(ej2πf )
and h = [h0(k, 0), h0(k, 1), ..., h0(k, L)]T and prove that
od(H) is bounded strictly below 1. We start by noting that
(det(HH [k]H[k]))1/N is a decreasing function ofN and

lim
N→∞

(det(HH [k]H[k]))1/N = σ2
∞, (7)

where σ2
∞ is the infinite order prediction error variance of

|h(f)|2. Due to the fact that the minimum phase filter coeffi-
cients are bounded, it was shown in [7] that

σ2
∞ ≥

1

cL
‖h‖2

2, cL =

L∑

l=0

(
l

L

)2

, (8)

Since diag(HH [k]H[k]) = ‖h‖2
2 IN we have

od(H[k]) = 1−
det(HH [k]H[k])

det(diag(HH [k]H[k]))
< 1−

(
1

cL

)N

, (9)

which concludes our proof.

B. Time selective channel

We now consider the case of block transmission in time-
selective-only channels. The symbol vectors[k] is now de-
fined in the frequency domain. The time-selective channel is
modeled using BEM by settingL = 0. The time-variation
of the single channel-tap is then captured byQ + 1 BEM
coefficientshq(k, 0). Since there is only a single channel tap
in time-domain, in the following, we drop the tap-index in
order to simplify the notation. Furthermore, the channel has
no delay-spread and therefore does not produce inter-block
interference. Consequently, we represent the received block as

y[k] =

Q∑

q=0

hq(k)D[fq]Θs[k] + v[k], (10)

In a dual fashion to the case of frequency selective channel
we propose to insertM − N ≥ Q guard-symbols in the
frequency-domain symbol vector This is accomplished by
setting [Θ]m,n = ej2πmn/M with m ∈ [0, 1..., M − 1] and
n ∈ [0, 1, ..., N − 1]. By subjectingy[k] to a M -point DFT at



the receiver, the corresponding frequency-domain channelcan
be represented as

ỹ[k] = Hf [k]s[k] + Fv[k], (11)

Where F represents the standard DFT matrix andHf [k] is
the equivalent frequency domain channel which is aM × N
Toeplitz matrix with [h0(k), h1(k), ..., hQ(k),01×M−Q−1]

T

as its first column. Note that similar to the case of ZP transmis-
sion in frequency selective channel where the effective channel
matrix is a Toeplitz matrix formed by the time-domain channel
coefficients, in this case, the frequency domain channel matrix
is a Toeplitz matrix formed by the frequency domain channel
coefficients that contribute to the time-variation of the channel
tap. Thus, this scheme can be viewed as a dual of ZP-
only transmission for time-selective channels. The MMSE-ZF
equalizer is given by Eq (6) where

H[k] = Hf [k], (12)

Eq (11) has a similar input-output relationship as in Eq (5)
and it is easily shown that

od(H[k]) < 1 −

(
1

cQ

)N

, cQ =

Q∑

q=0

(
q

Q

)2

, (13)

C. Doubly selective channels

We now look at the case of block transmission in doubly
selective channels. The channel is assumed to be of orderL
and the time-variation of each channel tap within a block is
captured byQ + 1 complex-exponential basis functions. The
k-th receive block is then represented as in Eq (3) which we
reproduce here for clarity.

y[k] =

1∑

t=0

Q∑

q=0

D[fq]Hq[k; t]Θs[k − t] + v[k],

The precoding matrixΘ that we consider here is given by

Θ = FH
P+QT1 ⊗ T2, (14)

where FP+Q is a (P + Q)-point DFT matrix, T1 =
[IP 0P×Q]T , T2 = [IK 0K×L]T . P and K are chosen such
thatM = (P +Q)(K +L) andN = PK. This precoder was
proposed in [5] and was shown to enable diversity order of
(Q+1)(L+1) for ML receivers in doubly selective channels.
The operation ofΘ on s[k] is explained as follows. First,
the N -length block is parsed intoP blocks of K symbols.
Next, L zero-pads are appended to each of theseP blocks
in an intermediate step to formP blocks ofK + L symbols.
Next a set ofQ zero-blocks of lengthK + L are appended
to this intermediate block vector to formP -length vector̃x[k]
consisting ofP + Q blocks of lengthK + L. A block IFFT
operation is now performed oñx[k] to form the precoded
transmit symbol vectorx[k] which is transmitted over the
doubly selective channel. The above series of operations are
compactly represented in the following equations

x̃[k] = (T1 ⊗ T2)s[k], (15)

x[k] = (FH
P+Q ⊗ IK+L)x̃[k] = Θs[k], (16)

Fig. 2 provides a more insight into subtleties of the precoding
operation. ThePK-length symbol vector is defined in the
frequency domain. These symbols are first re-ordered, and
then Q guard symbols are inserted in each block. The IFFT
operation transforms these zero-padded blocks into the time-
domain where a furtherL zero-pads are inserted to the symbol
vector in the transformed (time) domain.
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Fig. 2. Precoding operation.

Due to the presence of the zero-padding matrixT2, it can
be easily shown that the inter-block-interference component in
the received signal is zero, i.e.,Hq[k; 1]Θs[k − 1] = 0. As a
result, the received block can now be represented as

y[k] =

Q∑

q=0

D[fq]Hq[k; 0]Θs[k] + v[k], (17)

Using standard Kronecker product identities, one can show
that

Hq[k; 0]Θ = FH
P+QT1 ⊗ H̃q[k; 0]T2, (18)

whereH̃q[k; 0] is a K + L × K + L Toeplitz matrix formed
by the firstK + L rows and columns ofHq[k; 0]. Eq.(17) can
then be re-written as

y[k] =

Q∑

q=0

D[fq]
(

FH
P+QT1 ⊗ H̃q[k; 0]T2

)
s[k] + v[k], (19)

Further insight into the effect of the precoder on the channel
is possible by observing that

D[fq] = DP+Q[fq(K + L)] ⊗ DK+L[fq], (20)

Eq (20) representsD[fq] as Kronecker product of time-
variation over two scales.DP+Q[fq(K + L)] is a diagonal
matrix of sizeP +Q that represents time-variation at a coarse
scale (complex-exponentials sampled at sub-sampling interval
of (K + L)Ts and DK+L[fq] is a diagonal matrix of size
K + L that represents the time-variation over a finer grid
corresponding to the sampling periodTs. Using Eq (20) and
standard matrix identities, we can decompose the received



y[k] =

Q∑

q=0

(
(DP+Q[fq(K + L)]FH

P+QT1) ⊗ (DK+L[fq]H̃q[k; 0]T2)
)

s[k] + v[k], (21)

y[k] = (FH
P+Q ⊗ IK+L)

Q∑

q=0

(
(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2)

)
s[k] + v[k], (22)

signal as in Eq (21) whereJ[q] = J (q−Q/2) andJ is a circulant
matrix with [0, 1, 01×P+Q−2]

T as the first column. Since the
matrix (FH

P+Q ⊗ IK+L) has no effect on the diversity of the
doubly selective channel, for the analysis of the diversityorder
of MMSE-ZF receiver, the effective channel matrix can be
represented as

Hds[k] =

Q∑

q=0

(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2), (23)

The channel matrix for this case is therefore given byH[k] =
Hds[k] and is a highly structured matrix. Fig. 3 illustrates the
structure of the equivalent channel matrix due to precoding.
Here H̄q represents the product matrixDK+L[fq]H̃q[k; 0] for
ease of illustration. In particular, it is a block-Toeplitzmatrix
with constituent blocks which are in turn formed by the
product of a diagonal matrixDK+L[fq] and a Toeplitz matrix
formed by the corresponding BEM coefficients of theq-th
basis function.

Hds[k] =

H̄0 = DK+L[f0]eH0[k; 0]

0

H̄2

H̄1

H̄0

H̄0

H̄1

H̄2

H̄0

H̄1

H̄2

0

0 0

0

0

Fig. 3. Equivalent channel matrix for doubly selective channel.

1) Diversity order of LE in doubly selective channels: For
the case of doubly selective channel the equivalent channel
matrix H[k] = Hds[k] is a block Toeplitz matrix. The blocks
themselves (cf.̄Hq in Fig. 3) are Toeplitz to within a multi-
plication of the diagonal matrixDK+L[fq]. As bothP → ∞
and K → ∞, det(HH [k]H[k]) becomes insensitive to this
diagonal multiplication factor. The 2-dimensional (correspond-
ing to theQ(time) andL(delay) dimensions) prediction error
variance is the 2-dimensional geometric spectrum average

σ2
∞ = e

R

−1/2

−1/2

R

−1/2

−1/2
ln |H(f1,f2)|2df1df2 , (24)

which can be lower bounded by 2-D Matched Filter Bound as

σ2
∞ ≥

1

cLcQ

∫ −1/2

−1/2

∫ −1/2

−1/2

|H(f1, f2)|
2df1 df2, (25)

which leads to

od(H[k]) = 1−
det(HH [k]H[k])

det(diag(HH [k]H[k]))
< 1−

(
1

cLcQ

)PK

,

(26)
Thus, with linear precoding of the form Eq (14), diversity
order of LE is(Q + 1)(L + 1).

IV. N UMERICAL RESULTS

In this section we provide simulation results to corroborate
our analysis. The diversity order of MMSE-ZF receiver for
block transmission is estimated based on the slope of the out-
age probability curve. Monte-Carlo simulations were carried
out for a fixed transmission rate for different SNR points. The
decision-point SINR for a fixed arbitrary symbol indexn in
the k-th symbol blocks[k] was computed as

SINRn =
ρ

[H[k]HH[k]]−1
n,n

, (27)

where H[k] represents the equivalent frequency-selective,
time-selective or doubly selective channel andρ is the SNR.
When the decision point SINR was below the SNR required to
support the fixed transmission rate, the channel was declared
to be in outage. The slope of the outage probability curve can
then be used as an estimate of the diversity order. In addition to
this, we compare the slope of the MMSE-ZF receiver to that of
the matched filter bound (MFB) which is known to collect all
the available diversity in the channel. Fig. 4 shows the diversity
order of LE in frequency selective channel whenL = 2. As
expected, ZP enables LE to achieve full multipath diversityof
frequency selective channel. Fig. 5 shows the diversity order
of LE in time selective channel for the case ofQ = 2.
Observe that, whenQ guard frequencies are introduced in
the transmit symbol block, LE achieves full Doppler diversity
afforded by the time selective channel. This can be seen as
a dual of ZP transmission in time selective channels. This is
further evidenced by comparison of the slope of the outage
probability with that of MFB. Fig. 6 shows the duality of LE
in frequency and time selective channel. Note that the slopeof
the outage probability for LE in frequency selective channel
whenQ = 0, L = 2 is the same as that of LE in time selective
channel for the case ofQ = 2, L = 0. Furthermore both
have the same slope as that of MFB in high-SNR regime. In
Fig. 7 we plot the performance of in LE for linearly precoded
transmission in doubly selective channel withQ = 2, L = 1.
The outage probability curve exhibits a slope of(Q+1)(L+1)
which leads us to conclude that LE achieves full diversity
in doubly selective channel when an appropriate diversity
enabling precoder is used at the transmitter.
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Fig. 4. Diversity order of LE in frequency selective channel.
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Fig. 5. Diversity order of LE in time selective channel.
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Fig. 6. Duality of LE in time and frequency selective channels.
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Fig. 7. Diversity order of LE in doubly selective channel.

V. CONCLUSIONS

In this contribution we analyzed the diversity order of
MMSE-ZF receivers in fading channels. In time-selective
channels, we showed that by inserting guard symbols in the
transmit block LE can achieve full Doppler diversity of time
selective channels. Such a scheme can be viewed as a dual
of ZP-only block transmission that enables LE to exploit full
multipath diversity of frequency selective channel. For ZP
transmission in frequency selective channel we proved that
the orthogonal deficiency of the effective channel matrix is
bounded strictly below 1 thus allowing LE to achieve full
diversity offered by the channel. Further, we analyzed the
performance of LE in precoded block transmission in doubly
selective channels and showed that it is possible to achieve
maximal diversity offered by doubly selective channels by
using LE at the receiver.
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