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Abstract—Location estimation under Non-Line-of-Sight
(NLOS) propagation conditions has been recognized as a very
difficult task. In this contribution, a method that employs only
one Base Station (BS) is proposed for tackling this problem. Its
efficiency mainly stems from two factors. On one hand it exploits
the information available in signal components traveling through
different paths by considering proper channel modeling. On the
other hand it combines the aforementioned spatial information
with temporal information that is available in a dynamic channel.
The source of the latter form of information is the Doppler
shift. The performance of the method is further improved by
considering the direct position and speed estimation from the
received signal, rather than the common two-step approaches
that are based on estimating channel-dependent parameters
such as the Angle of Arrival (AOA) and/or the Time of Arrival
(TOA), prior to localizing1.

I. INTRODUCTION

Conventional geometrical techniques are based on the es-

timation, usually in more than one Base Stations (BSs), of

location-dependent parameters, such as the Angle of Arrival

(AOA), the Time of Arrival (TOA), the time difference of

Arrival (TDOA), a combination of two of the above [1], [2]

or the estimation of the Received Signal Strength (RSS) [3],

[4]. After a subset of these parameters has been estimated,

the location of the Mobile Terminal (MT) is determined by

finding the candidate position that best fits the data.

The performance of the aforementioned two-step approach,

has been proven to converge to the Cramer-Rao bound (CRB)

for high Signal-to-Noise-Ratio (SNR) and sufficient number

of data samples. However in wireless communications, high

SNR is not always guaranteed. Furthermore, if the channel

varies rapidly, the number of data samples that can be used in

the estimation process is very limited. To localize efficiently at

the low and moderate SNR regime or with short data records,

the authors in [5], [6] proposed direct position determination

(DPD). Direct position determination becomes feasible if a

unique invertible mapping exists between the parameters of

interest and the location-dependent parameters. Such a map-

ping is simple to derive when a Line-of-Sight (LOS) signal

1Eurecom’s research is partially supported by its industrial members: BMW
Group Research and Technology BMW Group Company, Bouygues Telecom,
Cisco Systems, France Telecom , Hitachi, SFR, Sharp, STMicroelectronics,
Swisscom, Thales. The work presented in this paper has also been partially
supported by the European FP7 projects Where and Newcom++ and by the
French ANR project Semafor.

component exists in the received signal, thus, this assumption

is always made in the existing literature.

In urban environments a LOS signal component rarely

exists. The signal usually propagates in a rich scattering

environment under strict NLOS conditions. The most common

approach for localizing under these conditions is to try to miti-

gate the NLOS error. Two similar approaches, which are based

on identifying the NLOS BSs, have been proposed for that

purpose: Rejecting completely the measurements from NLOS

BSs [7] or minimizing their effect by e.g. proper weighting [8].

Both of these approaches require the reception of the signal in

many BSs, some of which must necessarily be linked through

a LOS path with the MT. Therefore none of these is applicable

to strict NLOS conditions. There exists, however, another

total different approach to overcome the problem of NLOS

reception. It is based on introducing an appropriate NLOS

channel model [9], [10] and use its propagation characteristics

to derive new equations that must be satisfied by the MT

position’s coordinates.

The method proposed herein falls into this category. It

is based on the channel model employed in [10], which

enables us to express the coordinates of the MT as a function

of the location-dependent parameters, mentioned above. By

doing so, we create the mapping required to implement the

DPD. Our localization scheme does not require the reception

of the MT’s transmitted signal in more than one BS. It

does, however, require multiple antennas at both ends to

achieve high accuracy. To further improve the performance

of our method, while slightly increasing its complexity, we

propose to exploit the Doppler frequency shifts (due to the

MT movement) and jointly estimate the MT speed along

with its position. By considering an environment that changes

dynamically, rather than a static one, we introduce one more

dimension to the localization procedure, namely the (variation

in) time. Thus, although two more unknown parameters (the

speed components) need to be estimated, this new dimension

offers a lot of information about the MT’s position.

Notation: Throughout the paper, upper case and lower case

boldface symbols will represent matrices and column vectors

respectively. (·)t will denote the transpose, (·)∗ the conjugate

and (·)† the conjugate transpose of any vector or matrix. For

a M ×N matrix A = [a1, . . . ,aN ] , vec(A) = [at1, . . . ,a
t
N ]t

is a vector of length MN . For a square M ×M matrix A,



diag(A) is a M×1 vector composed from its diagonal entries

aii, 1 ≤ i ≤M , while for a M × 1 vector a = [a1, . . . , aM ]t,
diag(a) is an M ×M diagonal matrix with a’s entries along

it’s main diagonal. [A](k:l,m:n) is a submatrix A containing

the common elements of rows k, . . . , l and columns m, . . . , n.

The symbols ⊗ and � denote the Kronecker and Hadamard

product. Finally for any random variable (r.v.) or vector a, â

will denote its estimated value and ã = â − a the estimation

error.

II. CHANNEL MODEL

A. Geometrical Representation

The single bounce model (SBM) describes accurately NLOS

propagation environments, despite the fact that it is very

simple. Its wide applicability stems from the fact that in

a physical propagation environment, the more bounces, the

larger the attenuation will be, not only because the scatterer

absorbs some of the signal’s energy but also because more

bounces usually implies a longer path length. Thus if a limited

number of NLOS signal components with non-negligible en-

ergy arrive at the receiver, it is reasonable to assume that they

have bounced only once. The existing SBM-based localization

techniques consider a static propagation environment. We, on

the other hand, are particularly interested in environments that

change dynamically, due to the movement of the MT 2.

Let Φ, T and Fd denote the Ns ×Nt matrices containing

the AOA, the delays and the Doppler shifts respectively, and

let ψ denote the Ns × 1 vector containg the AOD. Ns is the

number of the signal components arriving at the receiver and

Nt is the number of the time instances (samples). Based on the

single bounce model we can express the entries of the above

matrices explicitly as a function of the MT coordinates, x0

and y0, its speed components (projection to the same axes),

υx and υy and the set of the coordinates of the scatterers

{xsi
, ysi

}. We can also express the entries of ψ as a function

of {xsi
, ysi

} and (xBS , yBS). With respect to figure 1 and

using subscript li for the parameters at time instant tl, 0 ≤ l <
Nt and corresponding to path (or scatterer) si, 1 ≤ i ≤ Ns,
the parameters of the SBM are given by:

φli =





tan−1 ysi
−(y0+υydtl0)

xsi
−(x0+υxdtl0)

,
ysi

−(y0+υydtl0)

xsi
−(x0+υxdtl0)

> 0

π + tan−1 ysi
−(y0+υydtl0)

xsi
−(x0+υxdtl0)

,
ysi

−(y0+υydtl0)

xsi
−(x0+υxdtl0)

< 0

(1)

ψli = ψi =

{
tan−1 ysi

−yBS

xsi
−xBS

,
ysi

−yBS

xsi
−xBS

> 0

π + tan−1 ysi
−yBS

xsi
−xBS

,
ysi

−yBS

xsi
−xBS

< 0
(2)

τli =
1

c

√
(ysi

− (y0 + υydtl0))2 + (xsi
− (x0 + υxdtl0))2

+
√

(ysi
− yBS)2 + (xsi

− xBS)2 (3)

fd,li =
fc
c

υx(xsi
− (x0 + υxdtl0)) + υy(ysi

− (y0 + υydtl0))√
(ysi

− (y0 + υydtl0))2 + (xsi
− (x0 + υxdtl0))2

(4)

2The extension to the more general case, where scatterers and/or the BS
move too, is beyond the scope of this paper.
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Fig. 1. Single Bounce model

where fc is the carrier frequency, c is the speed of light and

dtl0 = tl − t0 is the difference between two time instances.

The above expressions are based on the assumption of a linear

movement with constant speed, so that:

xl = x0 + υxdtl0 , yl = y0 + υydtl0 (5)

This assumption is valid if the total observation time ttot =
(Nt− 1)× dt is small (e.g. fraction of a second), where dt is

the average time between subsequent observations3.

B. Input-Output Relationship

The input-output relationship of a nr × nt MIMO-OFDM

system4 for a time-variant (due to the MT movement), fre-

quency selective channel is:

Y(fk, tl) = H(fk, tl)X(fk, tl) + N(fk, tl) (6)

where X(fk, tl) is the nt × N transmitted signal matrix,

Y(fk, tl) is the nr×N received signal matrix and N(fk, tl) is

the nr×N noise matrix, all at frequency fk, ∀1 ≤ k ≤ Nf and

time tl. Throughout the rest of the analysis, the dependency

on frequency and time will be denoted by the subscript kl for

the sake of simplicity. For a NLOS environment that can be

accurately described by the single bounce model, the channel

matrix Hkl is given by5:

Hkl =
1√
Ns

Ns∑

i=0

γie
j2πfd,litlaR(φli)a

t
T (ψi)HTR,ke

−j2πfkτli

= AR,l(Γ � Dkl)A
t
T,l (7)

3By considering the average, we overcome the restriction of uniformly
spaced measurement times.

4The choice of OFDM as transmission scheme stems from the fact that this
technique transforms a frequency-selective wide-band channel into a group of
frequency-flat parallel narrow-band channels.

5The proposed channel matrix representation is also valid for any NLOS
environment where each AOA is linked with one AOD but not necessarily
via a single scatterer.



where γi is the unknown complex amplitude of path i,
aR(φli) and aT (ψi) are the nr × 1 and nt × 1 array re-

sponses of the receiver and the transmitter respectively for

the signal component with AOA φli and AOD ψi and finally

HTR,ke
−j2πfkτli = FT{hTR(τ−τli)} is the transfer function

(Fourier Transform of the delayed impulse response) of the

cascade of the filters at the transmitter’s and receiver’s front

end. In the second equation we introduced the matrices:

AR,l , [aR(φl1), . . . ,aR(φlNs
)] (8)

AT,l , [aT (ψl1), . . . ,aT (ψlNs
)] (9)

Γ , diag(γ) , diag([γ1, . . . , γNs
]) (10)

Dkl , 1√
Ns
HTR,kdiag(dkl) (11)

where

dkl , diag([ej2π(fd,l1tl−fkτl1), . . . , ej2π(fd,lNs tl−fkτlNs )])
(12)

The model described above is a slightly modified -to make it

more appropriate for estimation applications- version of the

random matrix model introduced in [11]. It is a special case

of the general information-theoretic model derived in [12]

using the principle of Maximum Entropy. In that reference

the authors proved that the complex path amplitudes should

be i.i.d. Gaussian r.v. with 0 mean and variance 1 if a constant

power term is introduced on the right hand side (r.h.s) of (7).

Thus if the power term is integrated in the Gaussian r.v., their

variance becomes σ2
γ .

III. JOINT ESTIMATION OF SPEED AND INITIAL POSITION

We are interested in estimating jointly the MT’s coordinates

at time t0, x0 and y0 and its speed components υx and υy
directly from the received signal matrices Ykl. These two pairs

of parameters (parameters of interest) compose a vector which

we denote as pint = [x0, y0, υx, υy]
t. However since the AOA,

the AOD, the delays and the dopppler shifts depend also on

the position of the scatterers, so will Ykl. Thus we need to

estimate pint in the presence of nuisance parameters which

compose the vector pnuis = [xs1, ys1, . . . , xsNs
, ysNs

]t. This

can be performed in two ways: Either jointly estimate pint
and pnuis or derive the conditional p.d.f. of just pint by inte-

grating out pnuis. In this work we consider the first approach.

Therefore our goal becomes to estimate the (2Ns + 4) × 1
vector:

p = [ptint,p
t
nuis]

t (13)

Let φ = vec(Φ), τ = vec(T) and fd = vec(Fd). Define the

N = (3Nt+1)Ns vector containing all the channel-dependent

parameters as:

θ = [φt,ψt, τ t, f td]
t (14)

The entries of θ depend on the entries of p through eq. (1)-

(4). We can express the mapping of the vector p to the vector

θ, along with its unique inverse, in a more compact way:

θ = g(p) , p = g−1(θ) (15)

This mapping allows us to do a direct position and

speed estimation based on the received signal. Let SY =
{Y11 . . .YNf ,Nt

} and SH = {H11 . . .HNf ,Nt
} be the set

of all received signal matrices and the set of the correspond-

ing channel matrices respectively. Define the following log-

likelihood:

L , L(SY|p) = ln(f(SY|p)) (16)

Using (15), f(SY|p) can be derived as follows:

f(SY|p) ≡ f(SY|g(p)) = f(SY|θ)

=

∫

CNs

f(SY|θ,γ)f(γ)dγ

=

∫

CNs

f(SY|SH)f(γ)dγ

=

∫

CNs

Nf∏

k=1

Nt∏

l=1

(
1

(πσ2)nrnt
e−

1

σ2
|Ykl−HklXkl|2

)

1

(πσ2
γ)
Ns
e
− 1

σ2
γ

γ
†
γ

dγ (17)

The above integral was solved in [13] for σ2
γ = 1 and Xk,l =

Int
, ∀k, l. The extension to the more general case is trivial

and the result is given below:

f(SY|p) ∝ det((σ2
γVV† + σ2I)−1)e−y†(σ2

γVV†+σ2I)−1y

(18)

where we have ignored the constant term and have introduced

the NnrNfNt ×N2
s matrix V and the NnrNfNt × 1 vector

y:

V = [V†
11, . . . ,V

†
NfNt

]† (19)

y = [vec(Y11)
†, . . . , vec(YNfNt

)†]† (20)

and each Nnr ×N2
s submatrix Vkl is given by6:

Vkl = (Xt
kl ⊗ Inr

)(AT,l ⊗ AR,l)diag(vec(Dkl))

= (Xt
kl ⊗ Inr

)(AT,l ⊗ AR,l)DG,kl (21)

Define the conditional covariance matrix of the data vector y

as:

Cy|p , σ2
γVV† + σ2I (22)

Since AT,l,AR,l and DG,kl depend on p, so does V. There-

fore Cy|p also depends on the parameters we need to estimate,

although this dependency is not explicitly shown in (22).

Substituting (22) in (18) and the result in (16) we get:

L = − ln(det(Cy|p)) − y†C−1
y|py (23)

The Maximum Likelihood estimate of p, denoted as p̂, is

given by maximizing the above log-likelihood:

p̂ = argmax
p

{L} (24)

6Due to the fact that Dkl is diagonal, we can perform a dimension reduction
so that the size of Vkl becomes Nnr × Ns. However, the expression for
Vkl becomes more complicated, so we will retain the general one.



IV. CRAMER-RAO BOUND

According to the Cramer-Rao Bound (CRB) for an unbiased

estimator p̂ of p, the correlation matrix of the parameter

estimation errors p̃ is bounded below by the inverse of the

Fisher Information Matrix (FIM) J as shown below7:

Repep = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (25)

The i′, j′ entry of the FIM is given by [14, eq.(8.35)]:

Ji′j′ = −E
{ ∂2

L

∂pi′∂pj′

}

= tr
{
C−1

y|p
∂Cy|p
∂pi′

C−1
y|p

∂Cy|p
∂pj′

}
(26)

where

∂Cy|p
∂pi′

=
∂(σ2

γVV† + σ2I)

∂pi′

= σ2
γ(
∂V

∂pi′
V† +

∂V†

∂pi′
V)

= σ2
γ(V

′V† + VV′†) (27)

and we have introduced V′ = ∂V
∂pi′

. This is a block matrix

whose (k, l) submatrix V′
(kl) along with the partial derivatives

required to construct it, are given at the bottom of this page. In

those equations we have used the indicator function, defined

as:

1A(i′) ,

{
1, i′ ∈ A

0, i′ /∈ A
(32)

The partial derivatives of the entries of θ with respect to the

entries of p have been derived in our previous work and can be

found in the appendix of [15], while for computing
∂aT (ψi)
∂ψi

and
∂aR(φli)
∂φli

, knowledge of the array geometry is required.

Constructing V and V′ from their submatrices, substituting

their expression in (22) and (27) and then the result in (26) we

get an expression for the FIM which is valid for any geometry

of the arrays at the transmitter and the receiver.

V. NUMERICAL EXAMPLES

In this section we compute the best attainable performance

(i.e. the CRB) of the proposed scheme in a picocell, since

NLOS propagation most often occurs in such environments.

The coordinates of the BS, the MT and the scatterers con-

sidered, are given in table I. The magnitude of the speed

7For matrices A and B, A ≥ B means that A−B is non-negative definite.
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of the MT is |υ| = 1.5m/sec (average walking speed) and

we average the results derived for 20 different directions of

the speed, drawn indepedently from a uniform distribution

with support region [0, 2π]. The Nt = 40 time samples are

uniformly spaced and ttot is slightly under 100msec. The

transmitted signal is the (normalized-to-unit-energy) training

matrix Xkl = 1√
nt

Int
, ∀k, l. The results hold for any

transmitted signal that has been detected correctly before the

V′
(kl) = (Xt

kl ⊗ Inr
)
[
(
∂AT,l

∂pi′
⊗ AR,l + AT,l ⊗ ∂AR,l

∂pi′
)DG,kl + (AT,l ⊗ AR,l)

∂DG,kl

∂pi′

]
(28)

∂AT,l

∂pi′
= 1{2i+3,2i+4}(i

′)[0nt×(i−1),
∂aT (ψi)
∂ψi

,0nt×(Ns−i)]
∂ψi

∂pi′
(29)

∂AR,l

∂pi′
= 1{1,...,4,2i+3,2i+4}(i

′)[0nr×(i−1),
∂aR(φli)
∂φli

,0nr×(Ns−i)]
∂φli

∂pi′
(30)

∂DG,kl

∂pi′
= 1{1,...,4,2i+3,2i+4}(i

′) 1√
Ns
HTR,k

(
tl
∂fd,li

∂pi′
− fk

∂τli

∂pi′

)
diag([01×(i−1), j2πe

j2π(fd,litl−fkτli),01×(Ns−i)]) (31)



TABLE I
BS, MT AND SCATTERERS’ COORDINATES

(xBS , yBS) (x0, y0) (xs1, ys1) (xs2, ys2) (xs3, ys3)
(0, 0)m (30, 20)m (20, 30)m (5, 5)m (35, 15)m

estimation procedure8. We assume that both the transmitter and

the receiver are equipped with Uniform Linear Arrays (ULA).

The array response of the receiver’s ULA to signal component

i arriving at time l, is

aR(φli) = [1, ej2π
fc
c
d sin(φli), . . . , ej2π

fc
c
dr(nr−1) sin(φli)]t

(33)

and its partial derivative with respect to φli is

∂aR
∂φli

= j2π
fc
c
dr cos(φli)[0, 1, . . . , (nr − 1)]t � aR(φli)

(34)

where dr is the distance between two adjacent antenna ele-

ments. Replacing dr with dt, φ with ψ and nr with nt, we

get the array response (and the corresponding derivative) of

the transmitter.

In figures 2 and 3 we plot the position and speed root mean

square error (RMSE) respectively, versus the received SNR

for a 2 × 2 and a 2 × 4 MIMO system. The SNR is defined

as:

SNR = 10 log10

(
E{tr(HXX†H†)}
E{tr(NN†)}

)
= 10 log10

(
σ2
γ

σ2

)

(35)

where H = [H11, . . . ,HNfNt
], X = [Xt

11, . . . ,X
t
NfNt

]t and

N = [N11, . . . ,NNfNt
]. The position and speed RMSE are

defined as:

RMSEfx0, ey0 =
√
σ2fx0

+ σ2ey0 =
√
tr([J−1](1:2,1:2)) (36)

RMSEfυx,fυy
=
√
σ2fυx

+ σ2fυy
=
√
tr([J−1](3:4,3:4)) (37)

In the figures we can notice that for the 2 × 4 system,

RMSEfx0, ey0 is less than 1m and RMSEfυx,fυy
is less than

0.1m/sec for SNR ≥ 5.5dB. The great enhancement in

performance due to the increase in transmitting antennas

(while keeping the same transmitting power) is obvious.

Approximately the same enhancement can be alternatively

achieved by doubling the time samples Nt, instead of nt.

VI. CONCLUSIONS

We have proposed a localization scheme suitable for time-

varying channels and NLOS reception. It is based on a geomet-

rical representation and a corresponding statistical description

of the channel. Its efficiency mainly stems from the fact

that the variation in time due to the movement of the MT

is a new source of information that can be exploited and

integrated in classical geometrical localization techniques that

8Joint symbol detection and location estimation will be treated in future
work.

consider static channels. This comes at the cost of increased

computational complexity, since the speed components need

to be jointly estimated. Furthermore, due to the appropriate

modeling, the scheme is able to implement the DPD approach

and thus to ensure performance convergence to the CRB for

small data records and/or low SNR. Instead of requiring the

reception of the transmitted signal at multiple BS, the proposed

method employs multiple antennas at the receiver and the

transmitter to obtain more data and decrease the estimation

error. Simulations reveal that it can achieve high accuracy

under basic realistic assumptions.

REFERENCES

[1] F. Cesbron and R. Arnott, “Locating GSM Mobiles Using Antenna
Array,” Electronics Letters, vol. 34, no. 16, pp. 1539 – 1540, 1998.

[2] L. Cong and W. Zhuang, “Hybrid TDOA/AOA Mobile User Location for
Wideband CDMA Cellular Systems,” IEEE Trans. Wireless Commun.,
vol. 1, no. 3, pp. 439 – 447, 2002.

[3] T. S. Rappaport, J. H. Reed, and B. Woerner, “Position Location Using
Wireless Communications on Highways of the Future,” IEEE Commun.

Mag., vol. 34, no. 10, pp. 33 – 41, 1996.
[4] I. Jami, M. Ali, and R. Ormondroyd, “Comparison of Methods of

Locating and Tracking Cellular Mobiles,” in Proc. IEE Colloquium on

Novel Methods of Location and Tracking of Cellular Mobiles and Their

System Applications.
[5] A. Amar and A. J. Weiss, “Advances in Direct Position Determination,”

in Proc. Sensor Array and Multichannel Signal Processing Workshop,
July 2004.

[6] ——, “New Asymptotic Results on Two fundamental Approaches to
Mobile Terminal Location,” in Proc. 3rd International Symposium on

Communications, Control and Signal Processing, Mar. 2008.
[7] Y.-T. Chan, W.-Y. Tsui, H. So, and P.-C. Ching, “Time-of-Arrival Based

Localization Under NLOS Conditions,” IEEE Trans. Veh. Technol.,
vol. 55, no. 1, pp. 17 – 24, 2006.

[8] S. Venkatraman, J. J. Caffery, and H.-R. You, “A Novel ToA Location
Algorithm Using LoS Range Estimation for NLoS Environments,” IEEE

Trans. Veh. Technol., vol. 53, no. 5, pp. 1515 – 1524, 2004.
[9] S. Al-Jazzar and J. J. Caffery, “ML and Bayesian TOA Location

Estimators for NLOS Environments,” in Proc. 56th IEEE Vehicular

Technology Conference, vol. 2, Sept. 2002, pp. 1178– 1181.
[10] H. Miao, K. Yu, and M. J. Juntti, “Positioning for NLOS Propagation:

Algorithm Derivations and Cramer-Rao Bounds,” IEEE Trans. Veh.

Technol., vol. 56, no. 5, pp. 2568 – 2580, 2007.
[11] R. R. Muller, “A Random Matrix Model of Communication Via Antenna

Arrays,” IEEE Trans. Inform. Theory, vol. 48, no. 9, pp. 2495 – 2506,
2002.

[12] M. Debbah and R. R. Muller, “MIMO Channel Modeling and the
Principle of Maximum Entropy,” IEEE Trans. Inform. Theory, vol. 51,
no. 5, pp. 1667 – 1690, 2005.

[13] K. Papakonstantinou, M. Debbah, and D. Slock, “MIMO Mobile Ter-
minal Tracking Using Bayesian Probability Estimation,” in Proc. 42th

Annual Asilomar Conference on Signals, Systems and Computers, Nov.
2007.

[14] H. L. V. Trees, Optimum Array Processing. John Wiley and Sons,
2002.

[15] K. Papakonstantinou and D. Slock, “NLOS Mobile Terminal Position
and Speed Estimation,” in Proc. 3rd International Symposium on Com-

munications, Control and Signal Processing, Mar. 2008.


