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Abstract— In this paper, we consider stationary time- and
frequency-selective channels. No channel knowledge neither at
the transmitter nor at the receiver is assumed to be available.
We investigate the capacity behavior of these doubly selective
channels as a function of the channel parameters delay spread,
Doppler bandwidth and channel spread factor (the product of
the delay spread and the Doppler bandwidth). We shed light
on different capacity regimes at high values of signal to noise
ratio (SNR) in which the dominant capacity term is either
of order log(SNR) or log(log(SNR)), depending on the channel
conditions (delay spread, Doppler Bandwidth and channel spread
factor). For critically spread channels (channel spread factor of
1), it is widely believed that the dominant term of the high-
SNR expansion of the capacity is of order log(log(SNR)) or in
other words, that the pre-log (the coefficient of log(SNR)) is
zero. We provide a very simple scheme that shows that even for
critically spread channels a non-zero pre-log might exist under
certain conditions. We also specify these conditions in terms of
Doppler bandwidth and delay spread. We also show that a non-
zero pre-log might exist even for over-spread channels (channel
spread factor greater than 1). We specify the channel conditions
which govern the range of existence of the log(SNR) regime. At
higher channel spread factor, the log(SNR) term vanishes and
a log(log(SNR)) term becomes the dominant capacity term. We
specify the range of this log(log(SNR)) regime and also provide
bounds for the coefficient of this log(log(SNR)) term (the pre-
loglog).

I. INTRODUCTION

Information theoretic capacity analysis for different types of

channel models started with the somewhat unusual assumption

that the channel is perfectly known at the receiver (channel

state information at the receiver (CSIR)) or sometimes even

assuming that the channel is known at the transmitter (channel

state information at the transmitter (CSIT)). But inherently all

channels are non-coherent in nature and they need some kind

of estimation to get CSIR and then some kind of feedback

and/or estimation to have CSIT. The area of capacity analysis

for non-coherent (no CSIR nor CSIT) fading channels has

received considerable attention in recent years.

Usually block fading models are assumed for obtaining

capacity bounds in the no CSIR case. In the standard version

of this model [1], the fading remains constant over blocks

consisting of T symbol periods, and changes independently

from block to block. Capacity bounds are obtained by in-

troducing training segments in an ad hoc fashion. For the

standard block fading model, the capacity is shown [1], [2] to

grow logarithmically with SNR at high values of SNR, thus

log(SNR) was shown to be the dominant term of capacity.

Later Liang and Veeravalli [3] allowed the fading to vary inside

the block with a certain correlation matrix characterized by its

rank Q and showed for SISO channels that the capacity pre-log

is (1−Q/T ). For block constant frequency selective channels

with L taps, the pre-log was shown to be (1 − L/T ) in [4].

Non-coherent capacity has also been analyzed with the

channel fading process taken to be (symbol-by-symbol) sta-

tionary. In this model, fading is not independent but time

selective without any block structure. Surprisingly, this model

leads to very different capacity results: contrary to log(SNR)

capacity growth in block fading channels, here the capacity

grows only double logarithmically with SNR at high values of

SNR [5], [6], [7] when the fading process is non-bandlimited

(the Doppler spectrum spans the full transmission bandwidth;

in this case the channel prediction error is non-zero even if

the infinite channel past is known.

For symbol-by-symbol stationary Gaussian fading channels,

if the Doppler spectrum is bandlimited (of limited support),

then the fading process is called non-regular and the prediction

error given the infinite past goes to zero. Lapidoth [8] studied

the SISO case for this kind of fading processes showing that

the capacity grows logarithmically with SNR and the capacity

pre-log is the Lebesgue measure of the frequencies where the

spectral density of the fading process (Doppler spectrum) has

nulls.

Etkin and Tse [9] study the same channel model of ban-

dlimited fading for MIMO systems; they show that the pre-log

exists even for MIMO systems with no CSIR but they only

give a lower bound of the capacity pre-log.

All of the above mentioned studies except [4] deal with flat

fading, so the (symbol rate) discrete-time channel response

filter has a single non-zero tap, varying at each time instant

with the Doppler spread of the channel. We are interested

in studying non-coherent doubly selective channels where

the channel has multiple taps varying in time as stationary

Authorized licensed use limited to: Eurecom. Downloaded on October 16, 2008 at 02:15 from IEEE Xplore.  Restrictions apply.



processes characterized by a (Doppler) spectrum. Their co-

herent counterparts have a pre-log of one. For such non-

coherent channels under the strictly underspread assumption,

we show that the loss in pre-log is equal to the spread

factor of the channel (the product of the delay spread and

the Doppler bandwidth). This result is not counter-intuitive as

channel spread in time or frequency introduces more channel

parameters that need to be estimated for (coherent) detection

of the data. This result shows that the pre-log should be zero

when channel spread factor becomes 1 but we present a simple

scheme which shows the existence of log(SNR) for overspread

channels.

We should emphasize that the fading processes considered

in this paper are stationary and doubly selective. The rest

of the paper is organized as follows. In sections II and III,

we provide the system model and its representation using a

basis expansion model (BEM) for the channel. Section IV

presents the capacity analysis for underspread channels. In

section V, a simple transmission scheme is introduced showing

the existence of the pre-log for overspread channels, with

the associated conditions for the existence of this pre-log.

In section VI, we discuss the optimality of our transmission

scheme. Then in section VII, we specify the boundaries of the

high SNR capacity regimes of log(SNR) and log(log(SNR))

and give simple bounds for the pre-loglog factor. The section

VIII provides an analogy between transmission for frequency-

selective SISO and for frequency-flat MIMO chanels. The

paper ends with some concluding remarks in section IX.

Notation: E denotes statistical expectation. Lowercase letters

represent scalars, boldface lowercase letters represent vectors,

and boldface uppercase letters denote matrices. A† (AT) de-

notes the Hermitian (transpose) of matrix A. The determinant

of A is denoted as |A|.

II. SYSTEM MODEL

We consider a discrete-time single input single output

(SISO) fading channel at symbol rate, having L taps whose

time-k output y[k] ∈ C is given by

y[k] =
√

SNR

L−1
∑

l=0

h[k, l]x[k − l] + z[k] (1)

where x[k] ∈ C denotes the time-k channel input, the complex

scalar h[k, l] ∈ C represents the l-th coefficient of the FIR

(finite impulse response) channel filter at time k consisting of

circularly symmetric complex Gaussian components of zero

mean and unit variance, and z[k] ∈ C denotes the additive

white Gaussian noise. Here C denotes the complex field.

The channel fading process {h[k, l]} for each tap l is

assumed to be stationary, ergodic and bandlimited. They are

independent and identically distributed (i.i.d.) across different

taps l. The hypthesis of the bandlimitedness of the fading

process is motivated by the physical limitations on the mobile

speed. For a mobile speed v, the maximum Doppler frequency

magnitude fmax for each path is fmax = v/λc where λc is

the carrier wavelength. The bandwidth of each fading process

will be upper bounded by the two-sided Doppler bandwidth

2fmax. We define the normalized Doppler bandwidth as Bd =
2fmaxTs where Ts represents the symbol period, assuming

the Doppler spectrum has support between the two extreme

Doppler shifts. In general, Bd will denote the support of

the Doppler spectrum. The hypothesis of bandlimited Doppler

spectrum is an approximation because the Doppler shifts do

not remain constant. Similarly, the hypothesis of limited delay

spread is an approximation. Limited values for Doppler and

delay spreads can be justified at a given working SNR.

The system is normalized so that the channel input has an

average power constraint of E[|x[k]|2] ≤ 1.

The capacity pre-log is normally defined as

PreLog = lim
SNR→∞

C(SNR)

log(SNR)
(2)

whevever C(SNR) is of order log(SNR), and the capacity

pre-loglog is given by

PreLogLog = lim
SNR→∞

C(SNR)

log(log(SNR))
(3)

whevever C(SNR) is of order log(log(SNR)).

III. REPRESENTATION USING BASIS EXPANSION MODEL

We shall assume here w.l.o.g. that the Doppler spectrum is

contiguous and that the demodulation is synchronized to the

lower edge of the Doppler Spectrum. To get a proper model

for the doubly selective channel, we start by considering block

transmission with block length N . Continuous transmission

results will then be obtained by letting the block size N
grow to infinity. Observing a signal over a block can always

be thought of as if the block considered is one period of

a periodic process, in which case the signal has a Fourier

series expansion. This leads to a Basis Expansion Model

(BEM) for the time-varying channel coefficients in which

the basis functions are complex exponentials with frequencies

at the multiples of 1/N [10]. As the Doppler spectrum is

bandlimited, we shall take the BEM to be correspondingly

bandlimited. We should note here that we do not necessarily

demand of the BEM to provide an exact description of the

channel statistics over the block of length N , as long as the

description becomes exact as the block length tends to infinity.

The BEM leads to the following representation for the channel

coefficients over a block that start at time zero w.l.o.g.,

h[k, l] =

Nd−1
∑

n=0

g[n, l]ej2πkn/N , k = 0, 1, · · · , N − 1 (4)

where Nd = ⌈N Bd⌉. In the above equation, g[n, l] are

independent, uncorrelated, zero mean proper complex Gaus-

sian random variables whose variances are the values of the

spectrum of the corresponding fading process at the respective

frequencies n/N . If the block transmission is alternatively

thought of as an isolated block (instead of a period of a

periodic process), then the windowing in time domain with

a rectangular block of size N leads to an interpolation in

frequency domain between the frequencies n/N with sin πNf
N sin πf
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.
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.
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... h[L−2, L−1]

h[L−1, L−1]
...

h[L, L−1]
. . .

. . .

h[N−1, 0]

377777777777777775
which leads to something non-bandlimited, as indeed a signal

cannot be both time- and bandlimited. However, the process

becomes bandlimited as the block size N tends to infinity (see

also [3]). To avoid inter-block interference and facilitate the

description in the frequency-domain, we add a cyclic prefix

of length L − 1 making the total block length N + L− 1. At

the receiver the first L − 1 received samples corresponding

to the prefix get neglected and the remaining N outputs,

the inputs and the noise get collected in vector form as

y = [y[0] y[1] · · · y[N − 1]]T , x = [x[0] x[1] · · · x[N − 1]]T ,

z = [z[0] z[1] · · · z[N − 1]]T , leading to the system equation

y =
√

SNRHx + z (5)

where H ∈ CN×(N+L−1) is the channel matrix for this

block and has the circulant structure shown at the top of the

page, resulting from the equality [x[−(L−1)] · · · x[−1]] =
[x[N−(L−1)] · · · x[N−1]].

We also need a system representation in which the roles

of channel and input are reversed. For this, we define a

diagonal matrix Xi = diag(x[i], x[i + 1], · · · , x[i + N − 1])
and X = [X0 X−1 · · · X−(L−1)]. Hence X ∈ C

N×(NL)

is the system input for one block of length N . If hl =
[h[0, l]h[1, l] · · · h[N−1, l]]T and h = [h0

T h1
T · · · hL−1

T ]T

then (5) can be written as

y =
√

SNRXh + z (6)

Similarly by putting uncorrelated coefficients of BEM in

vectors gl = [g[0, l] · · · g[Nd, l]]
T , (4) takes the form of

hl = Fgl where F ∈ CN×Nd is the (partial) IDFT matrix. By

regrouping BEM coefficients of all channel taps in a vector

g = [gT
0 gT

1 · · · gT
L−1]T , we can write

h = Fcg (7)

where Fc = IL ⊗ F and ⊗ represents the Kronecker product.

With this (6) can be written as

y =
√

SNRXFcg + z (8)

IV. UNDERSPREAD CHANNELS

Typically wireless channels are underspread in nature [11],

so first of all we study the capacity pre-log for doubly selective

channels when they are underspread (the product of the delay

spread and the normalized Doppler bandwidth is strictly less

than one). We derive lower and upper bounds for the mutual

information of non-coherent doubly selective channels and

specify the corresponding pre-log.

A. Lower Bound of Mutual Information

Using the BEM developed in section III, we give a lower

bound for the mutual information in Appendix A. System

input is selected as Gaussian i.i.d. satisfying the average power

constraint imposed and the result is

lim
SNR→∞

1

N
I(x;y) ≥

(

1 − LNd

N

)

log(SNR) + O(1) (9)

where O(1) represents a term which does not grow with SNR.

B. Upper Bound of Mutual Information

The upper bound of the mutual information for our time-

and frequency selective channel model is given in Appendix

B. The main point in the derivation is the intelligent splitting

of the mutual information in two parts, where one term gives

the growth with log(SNR) as given by a coherent channel and

the other term is shown to have no growth with log(SNR).

lim
SNR→∞

1

N
I(x;y) ≤

(

1 − LNd

N

)

log(SNR) + O(1) (10)

where O(1) indicates that there might be lower order terms

which depend upon SNR but they are negligible as compared

to log(SNR) at very high values of SNR.

C. Pre-Log and its Large Block Length Asymptotic

Based upon the above two bounds on the mutual information

of strictly underspread channels, one can conclude that the pre-

log is given by

PreLog =

(

1 − LNd

N

)

(11)

Now we can also let the block length N go to infinity. The

factor Nd which is the total number of Fourier coefficients

required to describe a single channel tap over block length N
has its dependence upon N and the limiting value of Nd/N
with large block length turns out to be 2fmaxTs, a quantity

we described as the normalized Doppler bandwidth in section

II. So the capacity pre-log for underspread channels becomes

PreLog = 1 − LBd (12)

It shows that the loss in pre-log for a non-coherent SISO

channel is equal to the channel spread factor which is the

Authorized licensed use limited to: Eurecom. Downloaded on October 16, 2008 at 02:15 from IEEE Xplore.  Restrictions apply.



average number of channel parameters per symbol time that

can parameterize the channel.

V. OVERSPREAD CHANNELS

In this section we treat the case of a channel which is

overspread. Hence the channel spread factor (the product of

the delay spread of the channel and the normalized Doppler

bandwidth) is greater than one which would imply that the pre-

log obtained in the previous section for such doubly selective

channels (1−LBd) becomes zero. In fact according to the pre-

log expression of (1−LBd), the pre-log will become zero as

soon as the channel is critically spread (LBd = 1). Below we

give a very simple scheme which shows that the log(SNR)

term exists for overspread channels under certain conditions.

A. Transmission Scheme

Our transmission scheme to realize log(SNR) growth for

overspread channels is based upon zero padding. The zero

padding is done in such a manner that at the receiver side, each

transmitted symbol appears without inter-symbol interference

(ISI) for at least one symbol time. So to achieve this one

output sample free of ISI, we transmit an input symbol and

then do zero padding of ⌊L/2⌋ symbols. That means each

information symbol is followed by ⌊L/2⌋ deterministic zeros.

If we analyze carefully, after transmission of one particular

symbol at the transmitter it appears with no ISI at (⌊L/2⌋+1)-

th symbol instant. Now one may focus attention on the input

information symbols transmitted at the transmitter and the ISI

free received symbols at the receiver delayed by (⌊L/2⌋+ 1)

symbol intervals. For this scheme ⌊L/2⌋ input symbols are

wasted (zero-padded) corresponding to each single information

symbol transmitted but the good thing is that the effective

channel is frequency flat and each ISI free symbol at the

receiver comes multiplied with the same channel tap, the

(⌊L/2⌋+ 1)-th tap. This scheme is explained in Figure 1.

Fig. 1. Transmission Scheme Example for Overspread Channels

From figure, it is clear that each time at the selected output

sample this is the same channel tap which appears multiplied

with the input symbol. Hence effectively we are using a

frequency flat channel with no ISI but increased Doppler

bandwidth due to zero padding of symbols at the transmitter

side. Now we need to see what fraction of symbols we are able

to transmit in this zero-padded scheme where ⌊L/2⌋ symbols

get wasted for each single information symbol. So the fraction

of the information symbols is

ntx =
1

⌊L/2⌋+ 1
(13)

Now keeping in mind that here we are interested in only a

single channel tap (which appears with ISI free output symbol)

requiring Nd = 2M+1 BEM coefficients to be estimated to be

fully known over a block length N as we argued in section III.

And to estimate a single channel tap, per symbol coefficients

required Nd/N was shown to be equal to the normalized

Doppler bandwidth Bd in section IV-C. We denote this fraction

by nnyq, the minimum number of samples required to estimate

the channel

nnyq = lim
N→∞

Nd

N
= Bd (14)

If we want to estimate the channel by sending pilot symbols,

we need to transmit Bd fraction of pilots among the non-

zero transmit symbols and then this particular channel tap can

be estimated by estimating its BEM coefficients. But in this

scheme, the total number of information symbols transmitted

is the fraction 1/(⌊L/2⌋ + 1) per unit length. Now there is

the possibility that some degrees of freedom (DOF) are left

even after estimating this particular channel tap but it will be

depending upon the relative values of the channel delay spread

L and the normalized Doppler bandwidth Bd.

nDOF = ntx − nnyq =
1

⌊L
2 ⌋ + 1

− Bd (15)

So we can have coherent transmission albeit with imperfect

channel estimate over this fraction nDOF (if this number

is non-zero, of course) and so it corresponds to a coherent

channel where pre-log exists. Hence pre-log per symbol time

is given by

PreLog = nDOF =
1

⌊L
2 ⌋ + 1

(

1 − Bd(⌊
L

2
⌋ + 1)

)

(16)

Formal information theoretic proof for the achievability

of the above pre-log for overspread channels has been given

in Appendix C.

B. Conditions for the Existence of the PreLog

First of all, the Doppler spectrum should not be of full

support i.e. the normalized Doppler bandwidth should not be

1. So the condition is to have Bd ≤ 1. If normalized Doppler

bandwidth is one, even for frequency flat channels, channel

estimation becomes impossible hence coherent regime can

never come into play and the log(SNR) term does not exist

[8].

But our scheme gives more strict restriction on the nor-

malized Doppler bandwidth. In our zero-padded transmission

scheme, we transmit a fraction 1/(⌊L/2⌋+1) number of sym-

bols and the fractional number of Nyquist samples required for

minimal channel representation is Bd. Hence the number of

transmitted symbols over any block length should be greater

than Nyquist symbols required to have some positive DOF
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where coherent operation can be carried out to obtain capacity

growth with log(SNR). So this gives us the condition

Bd ≤ 1

⌊L
2 ⌋ + 1

(17)

We can also find out the channel parameter values where

the pre-log given by the zero-padded transmission scheme

surpasses the pre-log (1−LBd) derived in section IV-C. This

gives us a lower bound on the normalized Doppler bandwidth.

Combining this lower bound with the upper bound given

above, we get

⌊L
2 ⌋

(⌊L
2 ⌋ + 1)(L − 1)

≤ Bd ≤ 1

⌊L
2 ⌋ + 1

(18)

The left inequality shows the condition for an underspread

channel where the pre-log of this zero-padding scheme takes

over the classical pre-log of (1−LBd) and the right inequality

shows the condition under which an overspread channel shows

positive pre-log with this scheme. The multiplication of the

above inequality with L gives us the corresponding bounds

on the channel spread factor.

VI. OPTIMALITY OF ZERO PADDED TRANSMISSION

SCHEME

In our transmission scheme with zero padding, we transmit

one information symbol in each block of (⌊L/2⌋+1) symbols.

One can argue if more than 1 symbol is transmitted and zero

padding of the same size is done, there might be the possibility

of having more DOF and resultantly a higher pre-log factor. In

Figure 2, we explain this modified transmission scheme and

develop generalized pre-log expressions when more symbols

are transmitted and from this analysis we show the optimality

of the scheme proposed in V-A.

Fig. 2. Channel Matrix with Modified Transmission Scheme

As we transmit p symbols and do zero padding of ⌊L/2⌋
symbols so the fraction of the symbols transmitted is

ntx =
p

⌊L/2⌋+ p
(19)

From the figure, we see that if p symbols are transmitted, to

detect these p symbols at the receiver involves the estimation

of at least 2p− 1 channel taps. For one channel tap, the BEM

coefficients required per symbol interval is Bd. Hence for our

case where we have 2p−1 channel taps involved, the number

of observations required is

nnyq = (2p − 1)Bd (20)

So DOF or the pre-log (the number of symbols available

for coherent detection after estimating the minimum required

Nyquist samples) is given by

PreLog = ntx − nnyq =
p

⌊L/2⌋+ p
− (2p − 1)Bd (21)

A. Optimality for Critically Spread Channels

The above expression of pre-log can be specialized to

critically spread channels (the spread factor of 1) which gives

Bd = 1/L. Hence in that case, the pre-log is given by

PreLog =

{

L−(2p−1)2

2L(⌊L/2⌋+p) for L odd integer
L−2p(2p−1)
2L(⌊L/2⌋+p) for L even integer

This expression of pre-log gets maximized for p = 1 which

gives the transmission scheme given in section V-A hence

proving the optimality of our scheme at spread factor of 1.

B. General Condition

If the scheme with p (p ≥ 2) streams is better than zero-

padding scheme described in the previous section, then its

pre-log should be higher than the pre-log of that scheme (16)

which gives us the following condition after some manipula-

tions

Bd ≤ 1

2(⌊L
2 ⌋ + 1)

⌊L
2 ⌋

⌊L
2 ⌋ + p

(22)

On the other hand, the pre-log of the scheme with p streams

should also be higher than the conventional pre-log of 1−LBd

which gives another condition on Bd

Bd ≥ 1

L + 1 − 2p

⌊L
2 ⌋

⌊L
2 ⌋ + p

(23)

Combining the above two inequalities with some algebra, we

get the following condition

1

L + 1 − 2p
≤ Bd

(

⌊L
2 ⌋ + p

⌊L
2 ⌋

)

≤ 1

2(⌊L
2 ⌋ + 1)

(24)

If we pick the terms on the extreme left and the extreme right

of the above inequalities, after some manipulation we get

p ≤ L

2
− ⌊L

2
⌋ − 1 (25)

which is always false for any positive value of p. So we

prove that the pre-log for any scheme with p information

symbols and zero padding of ⌊L/2⌋ symbols never beats the

conventional pre-log of 1 − LBd and the pre-log of zero-

padding scheme given in (16) at the same time.

Thus among all such schemes which may employ zero

padding at higher spread factors to reduce the number of active

channel taps, the scheme described in V-A is the optimal one.
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C. The PreLog for The Transient Regime

For the channels with very high spread factors (nearly

critically spread channels to overspread channels where range

was specified in section V-B), the achievability of the pre-log

was proved in Appendix C. We also showed some optimality

conditions of this zero padding scheme in previous subsec-

tions. Although we don’t have a proof for the upper bound of

the pre-log for this transient regime but we conjecture that the

pre-log given by this zero-padding scheme is also the upper

bound of the pre-log in this regime. Hence for this transient

regime, the actual pre-log is

PreLog =
1

⌊L
2 ⌋ + 1

(

1 − Bd(⌊
L

2
⌋ + 1)

)

(26)

VII. DIFFERENT REGIMES OF CAPACITY WITH SNR

In this section we characterize the boundaries of different

regimes like log(SNR) and log(log(SNR)). We showed the

optimality of our zero padding transmission scheme among

other schemes which may employ zero padding in the previous

section. This scheme is an extreme case of zero padding and

corresponds to the worst case scenario with higher spread

factors so the boundaries of different capacity regimes like

log(SNR) and log(log(SNR)) will be the same as given by

this scheme.

A. Boundaries of log(SNR)

For underspread channels, the dominant term of capacity

is log(SNR). From our scheme which we explained in the

previous sections, we conclude that the log(SNR) regime will

be there as long as the following condition is satisfied.

Bd ≤ 1

⌊L
2 ⌋ + 1

(27)

It is important to mention that even overspread channels might

satisfy this condition and in that case show capacity growth

with log(SNR).

B. Boundaries of log(log(SNR))

The regime where the dominant term of the capacity is

log(log(SNR)) starts when the logarithmic regime log(SNR)

ends. Now we want to know when this double logarithmic

regime also ceases to exist. According to our transmission

scheme, no matter how large is the delay spread, we just do

zero padding in a manner such that at the receiver side, we

get at least one ISI free sample and the information symbols

can be thought of passing through a frequency flat channel.

Now as in zero padding, there are unused symbols so channel

estimation might become impossible due to the increased

Doppler spread. But even non-coherent detection can give us

log(log(SNR)) growth of capacity. So according to our scheme,

this log(log(SNR)) regime will only stop when channel faces

an infinitely long delay spread. And when this is the case,

high SNR capacity will be bounded giving no increase with

increasing SNR.

C. Bounds for pre-loglog

For overspread channels in the regime where log(log(SNR))

becomes the dominant term, a trivial upper bound of the pre-

loglog is 1 which is the pre-loglog factor of the critically

spread non-coherent channels with Bd = 1 and L = 1.

A very trivial lower bound can be given by the scheme

where only one symbol is transmitted in each block length of

L, completely removing the ISI. In this scheme, each input

symbol will appear at the output with no ISI and multiplied

with one channel tap. Although for the pre-loglog point of

view, it is sufficient to focus on a single tap. Due to zero

padding with L − 1 zeros, the pre-loglog will be 1/L.

A less trivial lower bound on the pre-loglog is given by our

zero padding transmission scheme explained in section V-A

where one symbol is transmitted in each block of (⌊L/2⌋+1)

symbols, hence giving

PreLogLog =
1

⌊L/2⌋+ 1
(28)

VIII. ANALOGY WITH MIMO SYSTEMS

Suppose we are working with a MIMO system having nt

transmit and nr receive antennas. And each channel coefficient

of nr ×nt MIMO matrix is frequency flat and has normalized

Doppler bandwidth of Bd.

When the channel is largely underspread (Bd < 1), from

[12] the pre-log of this MIMO system can be represented as

PreLog = n′
t(1 − n′

tBd) (29)

where n′
t is given by the following expression

n′
t = min

(

nt, nr,
1

2Bd

)

(30)

n′
t is in fact the optimal number of transmit antennas which

need to be activated to get this pre-log corresponding to the

capacity of this channel. Now this expression for n′
t shows

that the active number of transmit antennas depends upon

the channel spread factor (which is equal to the normalized

Doppler bandwidth for frequency flat channels) in a fashion

that as channel spread factor increases, one needs to activate

lesser and lesser number of transmit antennas.

The intuitive reasoning for this is that the existence of the

log(SNR) dominant regime requires coherent detection of the

data, hence one needs to minimize the number of channel

coefficients to be estimated to get into this regime. So practi-

cally the active number of transmit antennas should be reduced

with the increase in Doppler bandwidth. Although it reduces

the spatial signal dimensions but also the average number of

channel parameters which need to be estimated. The same

reasoning makes our scheme work where we compromise over

temporal signal dimensions to reduce the number of active

channel parameters, getting the benefit of coherent detection

and resultantly achieve pre-log.
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IX. CONCLUDING REMARKS

In this contribution we derived the pre-log expression

for underspread time- and frequency selective channels. We

proved the existence of log(SNR) regime of capacity growth

for overspread channels under certain conditions of the delay

spread and the Doppler bandwidth of the channel with the

help of a very simple transmission scheme utilizing zero

padding. The optimality of the scheme was shown over other

schemes employing zero padding for highly spread channels.

We also gave the boundary where log(SNR) regime converts

to log(log(SNR)) regime and further when there is no growth

of capacity with SNR.

APPENDIX A

ACHIEVABILITY FOR UNDERSPREAD CHANNELS

To show achievability, we select Gaussian i.i.d. inputs,

denoted as xG. The mutual information between the input

and the output of the doubly selective channel (5) over the

block length N is given by

I(xG;y) = I(xG,H;y) − I(H;y|xG)

= I(xG;y|H) + I(H;y) − I(H;y|xG)

≥ I(xG;y|H) − I(H;y|xG) (31)

Equalities here follow from the introduction of the channel

matrix H and using the chain rule of mutual information

multiple times and the inequality follows from the positivity

of the mutual information.

First term in the above inequality is the mutual information

when the channel is known and can be evaluated readily

I(xG;y|H) = h(y|H) − h(y|H,xG) = h(y|H) − h(z)

As the input xG has been selected as i.i.d. Gaussian so (y|H)

is also Gaussian distributed with zero mean and its covariance

is E[yy†|H] = SNRHH† + IN, so

I(xG;y|H) = E log |SNRHH† + IN| (32)

HH† will be a full rank matrix due to its block diagonal

structure and Gaussian entries hence at high SNR, the above

mutual information can be approximated as

lim
SNR→∞

I(xG;y|H) = N log(SNR) + O(1) (33)

Now we bound the second mutual information term in (31)

using the model in (6).

I(H;y|xG) = I(h;y|XG) = h(y|XG) − h(y|h,XG)

where the entropy of (y|h,XG) is equal to the entropy of the

i.i.d. Gaussian noise vector z because of the invariability of the

entropy due to deterministic translations [13] and (y|XG) is

zero mean Gaussian distributed with covariance E[yy†|XG] =
SNRXKhX

† + IN where Kh denotes the covariance matrix

of the NL length channel vector h.

I(H;y|xG)
a
= E log |SNRXKhX

† + IN|
b
= E log |SNRKhX

†X + INL|
c
≤ log |SNRKhE(X†X) + INL|
d
= log |SNRKh + INL| (34)

Equality (b) follows from the determinant identity

|I + AB| = |I + BA|, in (c) we use the Jensen’s inequality

and (d) follows as E(X†X) = INL. As h = Fcg so

Kh = FcKgF
†
c where Kg is the diagonal covariance

matrix of LNd length BEM coefficient vector g due to its

uncorrelated entries and the above equation becomes

I(H;y|xG)
a
≤ log |SNRFcKgF

†
c + INL|

b
= log |SNRKgF

†
cFc + ILNd

|
c
= log |SNRKg + ILNd

|
d
=

LNd
∑

i=1

log[SNRE(gig
†
i ) + 1] (35)

In (b), we again use the determinant identity

|I + AB| = |I + BA| and (c) follows as F†
cFc = ILNd

. At

high SNR, this term can be approximated as

lim
SNR→∞

I(H;y|xG) ≤ LNd log(SNR) + O(1) (36)

Combining equations (31),(33) and (36), we get the following

lower bound of the mutual information

lim
SNR→∞

I(xG;y) ≥ (N − LNd) log(SNR) + O(1) (37)

APPENDIX B

UPPER BOUND OF MI FOR UNDERSPREAD CHANNELS

To derive the upper bound on the mutual information

between the input and the output of the channel (5) over

the block length N , we split the output vector y ∈ CN in

two vectors, one consisting of first LNd entries and the other

having the rest of N − LNd entries, respectively denoted as

y1 and y2. The noise vector z ∈ CN is divided in z1 and

z2 in the same manner. The input vector x ∈ C
N+L−1 is

split in two vectors, x1 = [x[−(L− 1)] · · · x[LNd − 1]]T and

x2 = [x[LNd] · · · x[N − 1]]T .

I(x;y) = I(x;y1,y2)

= I(x;y1) + I(x;y2|y1) (38)

Now we try to upper bound both of the terms in the above

equation separately. We treat the second term as

I(x;y2|y1)
a
= h(y2|y1) − h(y2|y1,x)
b
≤ h(y2) − h(y2|y1,x,H)
c
≤ (N − LNd)h(y[n]) − h(z2) (39)

(a) is the definition of MI in terms of differential entropy,

(b) follows because conditioning reduces the entropy and (c)

uses the independence bound [13] and because with x and H
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known, the randomness in y is only due to the noise. y[n] is

zero mean and its variance is E[y[n]y[n]†] = SNRL+1 using

the independence of different channel taps and that they are

zero mean Gaussian distributed with unit variance. Hence

I(x;y2|y1) ≤ (N − LNd){log[πe(SNRL + 1)] − log(πe)}

At high SNR, this gives

lim
SNR→∞

I(x;y2|y1) ≤ (N − LNd) log(SNR) + O(1) (40)

For the first term in (38), we decompose it again using the

chain rule of MI

I(x;y1)
a
= I(x1;y1) + I(x2;y1|x1)
b
= I(x1;y1) (41)

(a) follows from the chain rule and (b) follows because given

x1, the only randomness in y1 is due to the corresponding

channel coefficients and noise both of which are independent

of x2 and hence I(x2;y1|x1) = 0. The mutual information

term I(x1;y1) represents an overspread channel as number

of observations available are LNd and same is the number

of minimal independent BEM coefficients which need to be

estimated. So this term gives no growth with log(SNR) and

hence at high SNR, the upper bound can be approximated as

lim
SNR→∞

I(x;y) ≤ (N − LNd) log(SNR) + O(1) (42)

APPENDIX C

ACHIEVABILITY FOR OVERSPREAD CHANNELS

Here we derive a lower bound on the achievable data

rate of overspread channels when we use the zero-padded

transmission scheme described in section V-A. In our scheme,

we transmit one symbol and do zero padding of ⌊L/2⌋
symbols and so on. Thus the input vector x can be split

in two vectors, one vector xa containing all the non-zero

input samples and the other xb containing all the zero-

padded input samples. So xa has samples of x from indices

{i(⌊L/2⌋+1), i = 0, 1, · · ·N/(⌊L/2⌋+1)}. Similarly we split

the output samples in two vectors, ones which appear with

no ISI and the other samples where we get multiple channel

coefficients with inputs. We denote ya as the vector of output

samples which appear without ISI and hence they contain

sample values of y from indices {j(⌊L/2⌋+ 1) + ⌊L/2⌋, j =
0, 1, · · ·N/(⌊L/2⌋ + 1)}. yb is the vector of output samples

which appear with ISI and which we neglect. So the achievable

data rate is

RN
a
= I(x;y) = I(xb;y) + I(xa;y|xb)
b
= I(xa;y|xb)
c
= I(xa;ya|xb) + I(xa;yb|xb,ya)
d
≥ I(xa;ya|xb) (43)

(b) follows as xb is deterministically zero, giving I(xb;y) =
0 and (d) follows from the non-negativity of the mutual

information.

All the elements in xa and ya have a one-to-one relationship

of the form

ya[j] =
√

SNRxa[i]h[j, ⌊L/2⌋] + z[j] (44)

where j = i + ⌊L/2⌋. This equation represents the input-

output relationship for a frequency flat time varying channel

for which high SNR capacity results are already known in

the non-coherent case [3]. In the mutual information term

I(xa;ya|xb), both the input and the output have length

N/(⌊L/2⌋+1) which plays the role of the block length in this

case. Now there is only a single channel tap which needs to be

estimated for the coherent detection of the data and requires

the estimation of Nd = 2M + 1 BEM coefficients for this

block and is the rank of the channel covariance matrix for this

particular tap. Hence in a straightforward manner, using the

result from [3], we can write

lim
SNR→∞

RN ≥
(

N

⌊L
2 ⌋ + 1

− Nd

)

log(SNR) + O(1) (45)

This is the rate over the block length of N symbol intervals,

so the pre-log per symbol time is

PreLog ≥ 1

⌊L
2 ⌋ + 1

(

1 − (⌊L

2
⌋ + 1)

Nd

N

)

(46)

While deriving large block length asymptotics for underspread

channels, we showed that for very large values of N , the factor

Nd/N is equal to Bd, the normalized Doppler bandwidth.

Hence the pre-log for our zero-padded transmission scheme

becomes

PreLog ≥ 1

⌊L
2 ⌋ + 1

(

1 − (⌊L

2
⌋ + 1)Bd

)

(47)
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