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Abstract

In order to assure accuracy and realism of resilience as-
sessment methods and tools, it is essential to have access
to field data that are unbiased and representative. Sev-
eral initiatives are taking place that offer access to mal-
ware samples for research purposes. Papers are published
where techniques have been assessed thanks to these sam-
ples. Definition of benchmarking datasets is the next step
ahead. In this paper, we report on the lessons learned while
collecting and analysing malware samples in a large scale
collaborative effort. Three different environments are de-
scribed and their integration used to highlight the open is-
sues that remain with such data collection. Three main
lessons are offered to the reader. First, creation of represen-
tative malware samples datasets is probably an impossible
task. Second, false negative alerts are not what we think
they are. Third, false positive alerts exist where we were
not used to see them. These three lessons have to be taken
into account by those who want to assess the resilience of
techniques with respect to malicious faults.

1 Introduction

This work reports on lessons learned with the largest
freely available malware collection initiative, namely Virus-
Total [2], as well as with two other threats related collection
engines: SGNET [7] and ANUBIS [1]. VirusTotal is an on-
line service where users can freely upload a file and check,
thanks to a large number of anti virus scanners, if that file
contains some sort of malware or not. SGNET is a dis-
tributed system of honeypots relying on the Scriptgen tech-
nology [6] that aims at capturing malware observed in the
wild. ANUBIS is a sandbox that is available as an online
service where users can freely submit malware to see what
behaviors they exhibit when executed and monitored during
a limited amount of time.

These three systems are in use and have collected a sig-
nificant amount of malware samples. They offer us three

different viewpoints when looking at these samples. Some
ongoing work is taking place in the context of the European
funded WOMBAT project [3] to use these tools for threats
intelligence discovery. More information about these activ-
ities can be found on the WOMBAT project web site [3]. In
the following pages, we aim at sharing with a larger com-
munity the lessons we have learned. Namely, we want to
make the following points clear to all those who are trying
to assess the resilience of systems with respect to malicious
faults:

Lesson 1 The amount of active malware is extremely im-
portant and new ones are created on a daily basis at a
very high pace. Therefore, every attempt to build a fix,
static, representative set of malware samples for evalu-
ation purposes is deemed to generate artificial results.

Lesson 2 It is an error to consider that a given antivirus
fails when it does not generate an alert for a malware
recognised as such by others. The reasons therefore
are described in this paper and they highlight the dif-
ficulties linked to the assessment of antivirus tools, or
other similar intrusion detection engines. More pre-
cisely, they force us to revisit the underlying concept
of false negative alerts.

Lesson 3 It is an error to consider that a given antivirus
does not fail when it does generate an alert for a mal-
ware recognised as such by others. Hereto, details are
given in the paper and they lead to the same conclu-
sions regarding the assessments of AV tools by forcing
us to revisit the underlying concept of false positive
alerts.

The rest of the document is structured as follows. Sec-
tion 2 describes the VirusTotal setup and how the results
obtained in using it led to the first lesson learned. Section
3 introduces the SGNET and ANUBIS environments that
are used to provide a refined analysis of the results obtained
from VirusTotal for some malware samples. Section 4 dis-
cusses the second and third lesson mentioned here above.
Section 5 concludes the paper.



2 VirusTotal

2.1 Description of the data collection and
redistribution mechanisms

VirusTotal is a free online service that enables Internet
users to scan dubious files thanks to 36 different antivirus
tools. Initially, this service had been designed as an internal
tool to be used within Hispasec Sistemas, the company that
created it and still manages it. The goal was to have a flex-
ible framework to check the behavior of antivirus products
confronted with malware threats happening at that time. In
June 2004, the company decided to make it a public, free,
online service for the benefit of the whole Internet commu-
nity.

The main functionality provided is very simple: the user
sends a file to the system, thanks to the email or the web
interface. He will get a report back when all AV tools will
have finished examining the submitted file. That report in-
cludes the output of each engine, URLs with extra informa-
tion about the potential threat (if any), file metadata size,
various hashes of the file, etc. It can also contain, when ap-
propriate, packer identification or the Portable Executable
(PE) structure information of the malware.

VirusTotal, with its 36 AV engines, offers a valuable ser-
vice not only to the end users but also to the community of
the AV vendors. Indeed, VirusTotal can provide them with
samples of malware that match certain criteria of interest to
them.

In the general case, VirusTotal sends a malware sample
to AV vendor X if

• at least one other AV engine has detected the sample as
being malicious whereas the AV engine of X has not.

• or if the AV engine from X has detected that sample as
being malicious thanks to a generic pattern or a heuris-
tic.

Most AV vendors do follow these two rules but some
of them impose other criteria. For instance, some have de-
cided to get samples that are detected by, at least, N out
of K AV engines and that their own has missed. Others
do restrict even further the conditions by imposing that all
engines from a well defined subset of engines must have
detected the sample and that their own has missed it.

Clearly, the amount of samples to be sent to the AV ven-
dors is a function of the filtering rules they have chosen. It is
worth noting though that, in the general case, some vendors
do get as many as 10000 samples per day!

2.2 Lesson 1: Evolution of the threats

Thanks to its popularity, VirusTotal does get a very large
amount of files and is, therefore, in a privileged situation to
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Figure 1. Amount of samples received every
month

observe the evolution of the threats over time. During the
first month of public exposure the site received 8.400 files,
in September 2006 more than 120.000 files, today VirusTo-
tal scans almost 1 million files per month! Around 70% of
these files are detected as being malicious by at least one
antivirus engine. For the sake of conciseness, we will refer
to these samples as the malicious samples in the following.
It is worth noting that most of these samples are actually
unique instances of malware. Indeed, in a given month,
around 70% of the malicious samples do have a unique
MD5 hash value!. For example, in June 2008, 681.561 were
detected as malicious and 493.776 of them had a unique
MD5 has value. This comes down to a new sample every
six seconds!

This could be a concrete manifestation of a phenomenon
that is believed to have started around 3 years ago when the
motivation of malware writers switched from ego boosting
to financial earning. It has been reported that they adopted
a strategy of mass creation of modified versions of different
families by means of semi automated repacking techniques
and other different obfuscations methods, hoping that such
long tail distribution of appearances would improve their
infection rate as well as their survivability in the infected
systems. Years ago, most of the impact due to malware in-
fections was due to a limited number of families of malware
whereas today the ratio of infection per family seems to be
more evenly distributed over a large number of families. [9]
provides other evidences of this massive increase of mal-
ware samples during the last 12 months. It is part of the
WOMBAT objectives to validate, or not, such conjectures
by means of rigorous analysis.

This observation leads to the conclusion that, assuming
one could build a representative dataset of malware sam-



ples observed at time T, one cannot ensure that the same
dataset will still be representative of the threats observed at
time T’. As a consequence, extreme caution must be taken
when trying to build datasets for the sake of testing the ef-
ficiency of AV or intrusion detection mechanisms. This is
all the more true when it comes to try to define datasets for
benchmarking purposes. Some convincing arguments must
be produced in order to validate their representativeness un-
der the light of the previous observation.

2.3 False Positive and False Negatives

Before discussing the issues surrounding the notions of
false positives and false negatives, there are a couple of im-
portant remarks to be made in order to understand the speci-
ficities of the VirusTotal setup.

First of all, most AV engines do offer a layered approach
against malware. The AV engine used to scan a binary
file against a set of signatures does not necessarily repre-
sent the complete detection capability of the corresponding
product. This is true, for instance, for behavioral signa-
tures that can detect abnormal actions while the program
is running. These features are not used within the Virus-
Total framework. VirusTotal, by design, uses the command
line interfaces provided by the vendors to invoke their AV
engine. As said, in many cases, such invocation can bypass
other detection capabilities that are present in the desktop
counterpart of that product. This can lead to an apparent
degradation of the performance of a given product. This is
especially true for samples that are packed or compressed
in some way. If the unpacking procedure is implemented
outside the AV engine invoked, it will not take place in the
VirusTotal environment and no signature will be found.

On the other hand, some scanners do rely on heuris-
tics that can be tuned thanks to some parameters. Expe-
rience shows that the parameters used by some vendors in
the VirusTotal environment are set to different values than
the ones in place in the desktop version of their products.
As a result, this improves their detection capability but, at
the same time, greatly increases their false positive rate as
well.

These two important information have to be kept in mind
when looking at statistics coming from VirusTotal reporting
the false positive or negative rates of AV engines. How-
ever, there are other, more subtle reasons, that undermine
the mere notions of false positive and false negatives. They
are described in the coming Sections but, before that, we
present two other threat related data collection environ-
ments we use to derive them.

3 SGNET and ANUBIS

3.1 SGNET

SGNET [5] is a distributed honeypot deployment aiming
at collecting information on the Internet malicious activity.
SGNET is the most recent evolution of the research work
performed within the Leurré.com project [7]. SGNET hon-
eypots are deployed on low-end hosts provided by volun-
teering partners interested in exploiting the data collected
by the project.

SGNET integrates different tools, namely ScriptGen [6],
Argos [8] and Nepenthes [4] and exploits their characteris-
tics to emulate code injection attacks and collect malware.
SGNET benefits from a set of properties that enable it to
gather a very peculiar view on Internet attacks and malware.

Firstly, SGNET is protocol agnostic. Following the idea
initially proposed in ScriptGen, no assumption is made on
the structure of network protocols and on their interaction.
Through the usage of bioinformatics techniques, SGNET
is able to learn the behavior of network protocols and thus
handle exploits without an a-priori assumption on their be-
havior. This potentially allows SGNET to handle new or
rare exploits that may not be supported by other malware
collection solutions such as Nepenthes.

Secondly, SGNET retrieves in depth information on the
structure of the observed attacks. This information is col-
lected in a central database and presented at different ag-
gregation levels. Such information is then enriched through
a number of analysis tools organized in an easily extensible
framework.

The information enrichment properties of SGNET allow
to correlate the observations with a large variety of tools that
are automatically run on the collected data: geolocation in-
formation on the origin of the attackers, DNS information,
and much more. In this context, the ability of SGNET to
emulate code injection attacks up to the point of the down-
load of malware samples is extremely valuable. Every mal-
ware sample collected by the SGNET framework is auto-
matically submitted to VirusTotal and Anubis, and the cor-
responding information provided by these services is stored
in the SGNET database as an enrichment of the honeypot
observations.

While in the Anubis case each collected sample is sub-
mitted for analysis a single time, a single sample is submit-
ted multiple times to VirusTotal on a daily basis in order to
gather statistics on the evolution of the ability of different
AV vendors to recognize it. Each collected malware is thus
re-submitted to VirusTotal at least 30 times, and the result
of each submission is stored in the SGNET database. After
this period, if no evident changes have happened in the out-
put of the AV products in the last 7 days, the submission for
the sample is stopped.



3.2 ANUBIS

Anubis is a tool that automates the process of analyzing
malware to allow a human analyst to quickly get a basic un-
derstanding of the actions of an unknown executable. Run-
ning a binary under Anubis results in the generation of a
report that contains information to give the human analyst
a very good impression about the purpose and the function-
ality of the analyzed sample. This report includes detailed
data about modifications made to the Windows registry and
to the file system, information about interactions with the
Windows Service Manager and other processes, as well as
a complete log of all generated network traffic.

Anubis uses emulation to run the unknown binary to-
gether with a complete operating system in software. Thus,
the malware is never executed directly on the processor. The
analysis is comprehensive because Anubis monitors calls
to native kernel functions as well as calls to Windows API
functions. It also provides support for the analysis of com-
plex function call arguments that contain pointers to other
objects. The complete control offered by an emulator po-
tentially allows the analysis that is performed to be even
more fine-grain. Similar to the functionality typically pro-
vided by a debugger, the code under analysis can be stopped
at any point during its execution and the process state (i.e.,
registers and virtual address space) can be examined. Un-
like a debugger, however, Anubis does not have to resort
to breakpoints, which are known to cause problems when
used for malicious code analysis. The reason is that soft-
ware breakpoints directly modify the executable and thus,
can be detected by code integrity checks.

4 Lessons learned

4.1 Lesson 2: To be or not to be a false
negative

The SGNET database comprises at the 1st of August
2008 a total of 4119 different malware samples, where each
sample is identified through its MD5 hash.

The integration of the behavioral information generated
by Anubis in the SGNET database highlighted an extremely
interesting phenomenon: a good portion of the samples
downloaded by SGNET cannot be executed on a Windows
host! This is mainly due to problems in the download of the
samples, such as premature drop of the TCP connection in
case of TCP protocols. Out of 4119 malware samples cur-
rently in the SGNET database, we have identified 1045 cor-
rupted malware samples. The technology used by SGNET
to download malware is derived from Nepenthes, an open-
source honeypot to collect malware samples used by several
malware collection projects as their main source of samples.
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Figure 2. Impact of corrupted samples on AV
performance

The problem that we are underlining here is thus a generic
problem likely to be shared by other malware repositories.

In order to evaluate the impact of corrupted malware
samples when evaluating the performance of the different
vendors, we compared the performance of all the AV ven-
dors in handling regular and corrupted samples. As a mea-
sure of performance, we took into consideration the recog-
nition rate, that is the ratio between the amount of AV ven-
dors that correctly recognized a sample and the total amount
of AV vendors provided by VirusTotal. Among all the re-
ports generated by the resubmission policy for each mal-
ware sample, we selected the most recent one, that corre-
sponds to the best recognition rate. Figure 2 shows the CDF
for the recognition rates achieved by the AV vendors for the
two classes. While 80% of the vendors always recognize the
regular malware samples, the CDF for the corrupted ones is
much less steep and underlines a significant difference in
performance of the various AV solutions.

The output of the AV engine when analyzing such cor-
rupted samples is not easy to define. On the one hand, the
specific implementation of an engine or of the correspond-
ing signature may or may not be affected by missing parts
of the original binary. On the other hand, different vendors
may have different policies with respect to these corrupted
files. Figure 3 validates this intuition. Each bar on the
X axis corresponds to one of the 36 vendors supported by
VirusTotal, and represents the percentage of corrupted sam-
ples recognized by that vendor. A minority of the vendors
raises almost no alerts for the corrupted files, considering
them harmless. But the majority of AV products ignores
the inconsistent structure of the executable file (easily de-
tectable looking at its headers) and considers the sample as
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Figure 3. Performance of different vendors
when analyzing corrupted samples

malicious.
It is difficult to argue that the AV engines that have rec-

ognized precise elements of a malware have, in fact, pro-
duced a false positive alert simply because the malware was
harmless. Even if corrupted, the “raison d’être” of this file
is to be a malware. But if these engines have not produced
a false positive, can we mechanically derive that those who
have not generated an alert are responsible of a false nega-
tive? Should they have warned the user of the presence of
a threat? Some would say yes because, for instance in the
case of a Trojan horse, this would prevent the user from try-
ing to download the file a second time and get compromised
this time. Some may say no since there is no threat present
and it is useless to cry for wolves.

Clearly, the response lies in a very precise definition of
the terms false positive, negative, threats, alerts, etc. Such a
discussion lies outside the scope of this paper but we hope
that, under the light of these observations, researchers pre-
senting, e.g., ROC curves highlighting the performance of
a given tool will first take the time to very precisely define
what a false positive and a false negative is in their own
experimental environment.

4.2 Lesson 3: To be or not to be a false
positive

The ambiguity in the performance of different engines
when facing corrupted files is not the sole problem. Look-
ing at the reports generated for non-corrupted samples, we
found a considerable number of inconsistencies in the labels
assigned by vendors to the different samples. Two different

Vendor1 Vendor2

Allaple.gen6
3 Net-Worm.Win32.Allaple.e

106 Net-Worm.Win32.Allaple.b

W32/Virut.P

1 Net-Worm.Win32.Allaple.d
16 Virus.Win32.Virut.q
1 Backdoor.Win32.Rbot.bni
7 Net-Worm.Win32.Allaple.e
1 Net-Worm.Win32.Allaple.b

W32/Virut.BF
2 Backdoor.Win32.VanBot.ps

159 Virus.Win32.Virut.n

Allaple.gen10
10 Net-Worm.Win32.Allaple.e
1 Backdoor.Win32.Rbot.bni

Allaple.gen1
37 Net-Worm.Win32.Allaple.d
85 Net-Worm.Win32.Allaple.e
17 Net-Worm.Win32.Allaple.b

W32/Virut.T
2 Net-Worm.Win32.Allaple.b
2 Virus.Win32.Virut.q
1 Backdoor.Win32.Rbot.bni

Table 1. Labelling inconsistencies among
vendors

types of inconsistencies have been identified.
Looking at successive reports for the same sample, one

would expect the label given by a vendor to remain con-
stant. We detected instead a considerable amount of varia-
tions in the label assigned by a vendor to the same malware
sample. In total, we have been able to observe 10314 mod-
ifications to the name given to a sample by a given vendor.
We identified 1081 different modifications often applied to
groups of samples. Many of these modifications consist in
a better specification of the name. For instance, 625 MD5s
initially classified by a vendor as “Suspicious file” have
been later classified as “Win32.Allaple.b”. Other modifi-
cations instead involve names associated to completely dif-
ferent behavior, and thus underline a labelling error made
by the vendor when generating the signature. For instance,
25 MD5s have been classified by the same vendor as “sus-
picious”, as “Allaple.gen3”, as “Virus.Win32.Virut.n” and
as “W32/Virut.BF” in different days. An exhaustive anal-
ysis of all these cases is left for future work, but this brief
overview clearly shows the labelling problems inherent in
AV signatures.

Labels are assigned by each vendor in a independent way
and thus it is not easy to compare labels assigned by differ-
ent vendors. But even if the label string differs, one would
expect the grouping of samples performed by two vendors
to be consistent. Grouping the samples in sets according
to their label, we have compared the groups generated by
two different vendors on a set of 848 samples analyzed on
the same day by VirusTotal. We have detected six inconsis-



tencies in the resulting grouping as represented in Table 1.
The table shows how the different elements of a set defined
by the first vendor are mapped on the sets defined by the
second one.

For instance, we found 16 malwares all labeled by the
first vendor as “W32/Virut.P” but called with five distinct
names by the second vendor. One sample was named
“Net-Worm.Win32.Allaple.d”, sixteen other were called
“Virus.Win32.Virut.q”, another one was labeled “Back-
door.Win32.Rbot.bni”, seven other samples were identified
as “Net-Worm.Win32.Allaple.e” and the last sample was re-
ferred to as “Net-Worm.Win32.Allaple.b”.

It must be stressed that we show these six inconsisten-
cies for illustration purposes but that we could have shown
many other ones involving other pairs of AV vendors. The
point here is not all to fingerpoint at any vendor in particu-
lar but, instead, to highlight a problem which, to our knowl-
edge, has not been debated in the literature, namely: ”If a
detector raises an alert with an erroneous labeling, does that
constitute a false positive?”

It is clear from the previous examples that the label-
ing problem needs to be taken into consideration when
benchmarking AV solutions. A successful detection often
gives erroneous information to the user on the nature of the
threat that he is dealing with. We are able to identify in
our datasets samples that are named in completely differ-
ent ways by different releases of the signatures for a given
AV engine. Also, different engines classify the samples in
different and often inconsistent ways that suggest the label
information to be extremely unreliable.

Here to, we hope that these observations, motivated by
a large scale collection and analysis of malware samples,
will motivate some further research not only into the precise
definition of notions such as false positive alerts but, more
importantly, into concrete solutions to help deciding when
an alert is, or not, a false positive in a more precise way.

5 Conclusions

Thanks to the collection and analysis of a large number
of malware samples in a collaborative effort between the
VirusTotal, SGNET and ANUBIS environments, we have
presented in this document three lessons learned from our
journey through this large amount of data. First of all,
the amount and the dynamics of today’s malware make the
building of a representative dataset of malware samples an
almost impossible task to achieve. Second, we found cases
where two detectors could take opposite decisions with re-
spect to a given malware without any of them being faulty.
That observation forces to, at least, redefine in much more
precise terms that is usually done, what a false negative
alert means. Conversely, we found cases where detectors
were generating erroneous alerts that could not be, per se,

be qualified as false positive.
Our hope is that these observations will be of use to those

who are involved in the assessment of resilience techniques
and tools in the presence of malicious faults. We do firmly
believe that the lack of precise, formal, definitions of the
elements we are trying to measure as well as the lack of
representative datasets to carry out testing campaigns are
research issues that should be tackled in the near future.
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