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Abstract

This paper describes a multi-dimensional knowledge
discovery and data mining (KDD) methodology that aims
at discovering actionable knowledge related to Internet
threats, taking into account domain expert guidance and
the integration of domain-specific intelligence during the
data mining process. The objectives are twofold: i) to
develop global indicators for assessing the prevalence of
certain malicious activities on the Internet, and ii) to get
insights into the modus operandi of new emerging attack
phenomena, so as to improve our understanding of threats.
In this paper, we first present the generic aspects of a
domain-driven graph-based KDD methodology, which is
based on two main components: a clique-based clustering
technique and a concepts synthesis process using cliques’
intersections. Then, to evaluate the applicability of this
approach to our application domain, we use a large dataset
of real-world attack traces collected since 2003. Our
experimental results show that significant insights can be
obtained into the domain of threat intelligence by using this
multi-dimensional knowledge discovery method.

Keywords: Internet threat intelligence, domain-driven
data mining, knowledge discovery

1. Introduction

Recently, the security community has been facing what
appears to be highly organized and professional malicious
activities on the Internet. It has been reported that, moti-
vated by financial profit, today’s cybercriminals seem to be
building a new and growing underground economy by of-
fering commoditization of activities such as the sale of 0-
day exploits and new yet-undetected malware, the sale of
compromised hosts, spamming, phishing, etc [12]. For se-

curity researchers, this leads to the observation of increas-
ingly coordinated attack activities, which are often related
to botnets [37], stealthy multi-headed worms [29] or other
sophisticated emerging threats. Client’s applications, typ-
ically web-browsers and email applications, become also
a common infection vector for propagating new malwares
that in turn aim at scanning and recruiting more vulnerable
machines into zombie armies, which seem to be the pre-
ferred weapon of cybercriminals today.

There are several data collection initiatives that offer
plausible indicators supporting those claims. However,
these data sources are often built in an ad-hoc way to study
a specific problem. In fact, the security community seems
to lack two important things regarding threats evaluation: i)
unbiased, meaningful and publicly available data about In-
ternet threats, and ii) global threat analysis techniques that
can offer real scientific answers to open questions and spec-
ulations circulating in the community. Similarly to criminal
forensics, the security analyst needs to synthesize different
pieces of evidence in order to investigate the root causes of
attack phenomena. This is a tedious, lengthy and informal
process mostly relying on the analysts expertise. For those
reasons, we seek to develop a multi-dimensional knowledge
discovery and data mining (KDD) methodology that should
help us to improve, in a more systematic way, our under-
standings of new Internet threats. Our idea consists in i)
extracting relevant nuggets of knowledge by mining a com-
plex dataset according to different properties considered as
relevant by a domain expert; and in ii) synthesizing those
pieces of knowledge so as to create higher-level concepts
describing the underlying phenomena.

The remainder of this paper is organized as follows: in
Section 2, we report on related work. In Section 3, we
present the theoretical foundations of our method. Section 4
describes our experimental environment. Section 5 presents
the lessons learned when applying our technique to a large
dataset of real-world attack traces. Finally, we conclude in



Section 6.

2. Related Work

This work is at the crossroads of several domains of
expertise. Regarding Internet threats, there are, broadly
speaking, three main approaches to monitor, collect and
analyze network threats: i) low- or high-interaction hon-
eypots [35, 34, 36, 1, 42], which are vulnerable comput-
ers intentionally set up as traps to attract and observe at-
tackers on the Internet; ii) the so-called Internet telescopes,
or darknets [27, 39, 38, 33, 8], which are used in order to
monitor all unsolicited traffic directed to unused IP subnets;
and iii) projects of collecting and sharing firewall and IDS
logs gathered from a very large number of heterogeneous
sources [11]. This work builds upon a broad experience in
this specific security domain [25, 23, 29, 31, 30]. Then,
in [32], we investigated the usability of a clique-based tech-
nique to group together network traces that share some spe-
cific features, namely packet inter-arrival times (IAT’s), and
more recently in [41] we developed an efficient graph-based
clustering method to extract groups of correlated attack time
series from an extensive honeynet dataset. We acknowledge
the seminal work of Yegneswaran and colleagues on “Inter-
net situational awareness” [44], in which they explore ways
to integrate honeypot data into daily network security mon-
itoring, with the purpose of effectively classifying and sum-
marizing the data to provide ongoing situational awareness.
Their approach aims at providing tactical information, us-
able for the day to day operations whereas we are interested
in strategic information that reveal long term trends and the
modus operandi of the attackers. Another closely related
work is BotMiner [14], a general botnet detection frame-
work that is independent of botnet C&C protocol and struc-
ture, and requires no a priori knowledge of botnets. The
authors developed a prototype system that is based on: i) a
two-steps clustering (based on X-Means) of C&C commu-
nication and activity flows of bots, so as to detect similarity
patterns; and ii) the combination of both types of patterns by
means of cross-correlation. Our research is different as we
do not focus exclusively on the problem of detecting bot-
nets, but instead we aim at understanding the higher-level
modus operandi of global attack phenomena (e.g., which
“communities” of machines are possibly involved in what
type of activities, on which networks they are hosted, etc.).

In the past ten years, a growing number of research
projects have applied data mining to various problems in
the security field, but almost exclusively in intrusion detec-
tion rather than honeynets. Furthermore, most research has
focused on the construction and the improvement of oper-
ational IDSs via data mining techniques, rather than on the
discovery of new and fundamental insights into the nature of
attacks [3]. Only a few well-known data mining techniques

(e.g., association rules, frequent episode rules or clustering
algorithms) have been widely used in intrusion detection,
either on raw network data (such as ADAM [2], MADAM
ID [21], and [22]), or on intrusion alerts streams [18, 10].
Our work is very different, both in terms of techniques and
objectives. We seek to develop a domain-driven knowl-
edge discovery method that could help us to better un-
derstand and characterize the modus operandi of Internet
threats from a global perspective, rather than focusing on a
technique to improve the detection rate of an IDS on one
given network.

Finally, some facets of our work are related to some
other graph-theoretical data mining techniques, such as the
hypergraph model used for clustering of data in a high-
dimensional space [15], or the hyperclique pattern discov-
ery approach for mining association patterns [43, 16]. In
both cases, all data properties are used together in the
graph partitioning algorithm to create hypergraph struc-
tures, while in our case we adopt a bottom-up approach
by combining different sets of one-dimensional cliques ob-
tained for each property separately.

3. A Methodology for Multi-Dimensional
Knowledge Mining

3.1. Overview

This section presents our approach in general terms
which will be instantiated according to our concrete ap-
plication domain requirements in Section 5. The proposed
methodology consists of two steps:

1) An unsupervised clique-based clustering of data ob-
jects according to well-defined properties. This com-
ponent aims at finding all groups of highly similar pat-
terns within an object dataset with respect to a single
property each time. A domain expert is required to de-
fine the possible interesting properties of the dataset.
The clusters are formed via the extraction of maximal
cliques from a graph.

2) A concepts synthesis process using cliques’ intersec-
tions, which can be seen as a data fusion process by
which different combinations of dataset properties are
computed so as to create higher-level concepts.

The clustering in step 1 is not applied directly to the
raw datasets but to complex data patterns we derive from
it. By “complex pattern”, we mean an aggregated, higher-
level data structure that already represents a certain abstrac-
tion of the dataset. A complex pattern is supposed to carry
some semantic regarding the measured phenomena. Statis-
tical distributions, for example the geographical distribution



of a sampled population, or the aggregated time series of a
dynamic process, are some examples of complex patterns,
as opposed to simple numerical or categorical features such
as the weight, the color or a stock value.

Each such pattern is represented as a node in a graph
where every edge represents a similarity relationship be-
tween two nodes. A graph-based clustering is then per-
formed via the extraction of cliques, which are complete
subgraphs, for all properties identified as potentially rele-
vant by a domain expert. The idea is to create N sets of
cliques where the members of each clique share a highly
similar characteristic pattern created along one of the N de-
fined properties.

Following the clustering process, we synthesize the pat-
terns by combining different sets of cliques. This leads to
the creation of meta-groups, which are termed concepts, and
where group members have one or more similarity patterns
in common. The original cliques are considered as groups
of dimension 1. Meta-groups of dimension 2 (resp. 3,. . . ,
N ) are obtained by combining 2 (resp. 3,. . . , N ) properties.
A detailed description of each component of the methodol-
ogy is provided in the next paragraphs.

3.2. Clique-based Clustering

The first component of our knowledge mining method-
ology involves a graph-theoretic clustering. Typical cluster-
ing tasks involve the following steps [17]: i) feature selec-
tion and/or extraction, and pattern representation; ii) defini-
tion of a similarity measure between patterns; iii) grouping
similar patterns; iv) data abstraction (if needed), to provide
a compact representation of each cluster; v) the assessment
of the clusters quality and coherence (if needed).

In any clustering task, we must select certain features
characterizing relevant aspects of the dataset, i.e., salient
features that may provide meaningful patterns. Those
patterns are represented with feature vectors, which are
usually built with formatted data series, or simply arrays
of values. There are two key aspects in the clustering
process herein presented: i) even complex patterns, such
as statistical distributions, may be easily used in the
clustering algorithm, and ii) the types of features used
to create different patterns may (and even should) be
quite different, introducing thus a certain diversity in
the classification. Once the sets of patterns are created,
we need to measure the similarity between two patterns.
For that purpose, several types of similarity distances
are available (e.g., Mahalanobis, Minkowski, Pearson
or Spearman correlations, jackknife correlation, etc.).
Clearly, the choice of a similarity metric must be carefully
determined in consideration of the original data series
and the expected properties of the clusters, such as the
cluster size, quality, or consistency. In Section 5, we

present a few similarity measures we use in practice in our
domain-specific application. The following step consists
in grouping all patterns that look very similar. There
exists a plethora of clustering algorithms for doing this.
We use here an unsupervised graph-theoretic approach to
formulate the problem, and the clustering is then performed
by extracting maximal weighted cliques from a graph. To
the best of our knowledge, this type of clustering has not
been widely covered in previous KDD applications, yet it
is in our opinion a convenient and appropriate formulation
for solving domain-driven data mining problems, and it has
several advantages over other more classical approaches
such as K-Means or Bayesian classification, especially
when dealing with high-dimensional datasets [15].

A graph is a structure that comprises a set of vertices
(or nodes) connected by links called edges, which can be
directed or undirected. A clique is defined as an induced
sub-graph of a (un)directed graph in which the vertices are
fully connected. A clique is maximal if it is not contained
within any other clique.
Hence, finding the largest group of similar elements in
a data set can now be transformed into the problem of
searching for complete subgraphs where the vertices
represent the patterns, and the links express the similarity
relationships between those vertices. This is a classical
NP-complete problem studied in graph-theory, also known
as the maximal clique problem (MCP) [4]. Because of
its NP-hard complexity, many approximate algorithms for
solving the MCP have been developed, like local search
heuristics, Hopfield network, Ant Colony Optimization,
and the heuristic based genetic algorithm, among others.

In this clique-based clustering, we use the dominant sets
approach of Pavan et al. [28], which proved to be an ef-
fective method for finding maximal weighted cliques. This
means that the weight of every edge is also taken into con-
sideration by the algorithm, as it seeks to discover maxi-
mal cliques whose total weight is maximized. This gen-
eralization of the MCP is also known as the maximum
weight clique problem (MWCP). This approximate method
for solving the MWCP aims at finding iteratively domi-
nant sets of maximally similar nodes in the graph. We
can show that dominant sets are equivalent to maximum
weighted cliques, but finding those dominant sets is far eas-
ier to compute. Indeed, this can be done with a continuous
optimization technique, which applies replicator dynamics
(from evolutionary game theory). As a result, we can solve
the problem of extracting dominant sets by simply making a
particular temporal expression converge. Let for instance A
be a non-negative real-valued n × n matrix that represents
the adjacency matrix of the graph introduced here above,
and consider the following dynamical system represented



with its discrete time equation:

xi(t+ 1) = xi(t) ·
(Ax(t))i

x(t)TAx(t)
, i = 1, ..., n

Starting from an arbitrary initial state, this replicator dy-
namical system will eventually be attracted by the nearest
asymptotically stable point. As it has been proven in [28],
this corresponds to a dominant set, hence to a maximum
weight clique. In our global knowledge discovery process,
for the N identified properties, we apply this clique-based
clustering on each edge-weighted graph.

3.3. Concepts Synthesis via Cliques Inter-
sections

The second component of our methodology is similar to
a dynamic data fusion process. Starting from all sets of
cliques, the idea is to combine k sets out of the N dimen-
sions, with k = 2, ..., N , in order to discover actionable
knowledge about certain phenomena.

To introduce this concepts synthesis, let us consider
some notions used in Formal Concept Analysis (FCA).
There is a strong parallel between our KDD method and
FCA, since the cliques, and any combination thereof, can
be seen as the formal representation of concepts describ-
ing a certain phenomenon (or at least some aspect hereof).
In FCA [13], a concept is defined as the combination of
both an object cluster, which comprises all objects that
share a common subset of attributes, and a property clus-
ter, which is the set of all properties shared by all the ob-
ject clusters. Let us consider for example a set of ob-
jects O = {O1, . . . , On}, and a set of properties P =
{P1, P2, . . . , PN} with:

P1 = {p1,1, . . . , p1,k1}, P2 = {p2,1, . . . , p2,k2}, . . .

PN = {pN,1, . . . , pN,kn
}

The different subsets of patterns {pi,j} correspond to the
different feature vectors that are extracted for each property
Pi.
A basic example of dataset properties and their
associated patterns could be as follows: P =
{color, shape, nr edges}, and :

P1 = {blue, red, yellow}

P2 = {line, square, circle, ellipse}

P3 = {0, 1, 2, 3, 4, 5, others}

An example of a dimension 3-concept can be defined as the
set of all objects sharing the following (unordered) values
for the 3 properties: {red, square, 4}. With this example,
we emphasize also the fact that we do not consider the case

Figure 1. An example of concept lattice, represented with
a Hasse diagram. In total, 14 concepts have been con-
structed via the extraction of maximal cliques (in light grey)
from the initial dataset containing 10 objects. In each con-
cept, the first line of the label represents the members of the
concept (or the extent), and the second line is the pattern(s)
of the concept (or the intent).

of a boolean concept lattice, but we generalize rather to
the case of properties characterized by discrete sets of at-
tributes. It is worth noting that, in our domain application,
while relevant properties can be defined by a domain ex-
pert, the subsets of potential patterns related to those prop-
erties (i.e., the {pi,j}) are completely unknown prior the ex-
ecution of the clique-based clustering. So, the patterns are
discovered via the extraction of cliques along each dataset
property. The complete set of concepts is called the concept
lattice, and it can be represented with a Hasse diagram. This
is illustrated in Figure 1 for a simple case of 10 objects char-
acterized by three properties, each containing one or two
different patterns. The boxes filled in light grey can be seen
here as the initial cliques (i.e., the dimension-1 concepts),
which allowed to extract the a priori unknown patterns for
each dataset property.

Note that there exist many algorithms for generating con-
cept lattices [20], but to the best of our knowledge, our
method is the first one that relies on maximal cliques to
achieve this goal by discovering a priori unknown intents in
a dynamic fashion. Moreover, another advantage is its ex-
tensibility. That is, when a practitioner finds a new dataset
property to be of interest for the knowledge discovery pro-
cess, (s)he only needs to include a new set of cliques, inde-



pendently of the existence of previous concepts or cliques.
As a result, new combined viewpoints, and thus new formal
concepts, are immediately available for assisting the root
cause analysis of the phenomena.

4. Honeynet Environment

We describe here the specific dataset we used to vali-
date our multi-dimensional data mining methodology. This
unique dataset is made of network attack traces and has
been collected in the context of the Leurre.com Project [25,
35], a global distributed honeynet. A honeypot is a security
resource whose value lies in being probed, attacked, or com-
promised [40]. Honeypots should have no production value
and hence should not see any legitimate traffic or activity.
Whatever they capture can then be considered as malicious
or at least suspicious. By extension, a network of intercon-
nected honeypots has been termed “honeynet”.
Since 2003, a distributed set of identical honeypot plat-
forms, based on honeyd [36], has been deployed in many
different countries and on various academic and industrial
IP subnets. Recently, a second phase of the project was
started with the deployment of high-interaction honeypots
based on the ScriptGen [24, 23] technology, in order to en-
rich the network conversations with the attackers and to in-
tercept code injections, which may lead in some cases to the
retrieval of malicious binaries used by the attackers. The
Leurre.com dataset is publicly available for any researcher
under the condition of a Non-Disclosure Agreement that
aims at protecting the privacy of the partners involved in
the deployment of those honeypot platforms.
A platform runs three virtual honeypots, each one has its
own public IP address and they emulate different operat-
ing systems (two Windows and one Linux machine) with
various common services faking to be open. The collected
traffic, including the payloads of the packets, is automati-
cally stored into an Oracle database. The network traces are
also enriched with contextual information (geographical lo-
cation of the attackers, ISP’s, domain names, etc). All IP
sources are grouped into so-called attack clusters [31] built
according to the network traces they have left when talking
to the honeypot. Each such cluster is defined thanks to net-
work characteristics such as the number of virtual machines
targeted on a platform by a given IP, the number of pack-
ets and bytes sent to each honeypot, the attack duration, the
average inter-arrival time between packets, the associated
port sequence being probed by the attacker, and the packet
payload (when available).

Our work builds upon this notion of clusters, as defined
in [31], but in the rest of this document, to avoid any am-
biguity with our own clique-based clustering technique, we
use the expression attack profile or simply attack instead of
cluster. In other terms, an attack profile, or attack, consists

of a group of IP addresses that have targeted at least one of
the Leurre.com platforms and have left very similar network
traces when talking to that platform.

In [29], it has been shown that the IPs found in a given
attack profile could be linked to distinct attack phenom-
ena happening during successive, limited periods of time on
each sensor. In the rest of this paper, we use the terms attack
events to refer to the subset of IPs from a given attack pro-
file on a sensor, and observed within a specific time window
identified thanks to the method presented in [29]. Namely,
the experiments presented in this paper are based on 351 at-
tack events found in a timeframe spanning from September
2006, until June 2008. Those attack events have targeted
36 different sensors, which are located in 20 different coun-
tries and spread over 18 subnetworks on the Internet. In
this dataset we observed a total of 282,363 distinct sources,
distributed over 136 different types of attack profiles.

5. KDD Application for Threats Intelligence
Support

5.1. Clique-based Clustering

We first present the different properties that we have se-
lected to cluster the attack events together. We motivate this
choice based on domain experience in monitoring malicious
traffic. Then, for each dimension, we briefly describe how
we have applied the clique-based clustering, more specifi-
cally: i) which type of patterns (and representation hereof)
do we consider, ii) how can we measure the similarities be-
tween them, and iii) what are the results in terms of cliques
and what type of insights do they deliver. In the last sec-
tion, we take advantage of cliques’ intersections to synthe-
size higher-level concepts describing some attack phenom-
ena observed on our sensors.

5.1.1 Geolocalization of Attackers. The geographical
location of the attackers can be used to identify attack
activities having a specific pattern in terms of originating
countries. Such information can be important to identify,
for instance, botnets that are located in a limited number of
countries. It is also a way to confirm the existence, or not,
of so-called safe harbors for the hackers.

Patterns Selection. For every attack event, we generate
a feature vector that represents the attacking sources’ dis-
tribution of all IPs found in that attack event, grouped by
country of origin (in absolute values). Concretely, for each
attack event, we build an histogram whose elements are la-
beled with the ISO 3166-1 country codes and we identify
how many source IPs belong to each country (Figure 2-Left
illustrates such a geographical pattern).



Distance Metric for Frequency Data. To measure how
similar two attack events are, with respect to that specific
property, we need an appropriate distance metric. In this
case, we rely on non-parametric statistical tests to compare
those empirical distributions (i.e., the histograms). In our
application, for each pair of distributions, we use a com-
bination of three different statistical tests to obtain the dis-
tance: first, we compute the maximal p-value according to
the Pearson’s χ2 test and the Kolmogorov-Smirnov (KS)
test, and secondly we validate this result with the Kullback-
Leibler divergence.
χ2 and Kolmogorov-Smirnov are among the most com-

monly used non-parametric statistical methods for testing
the null hypothesis (H0) that the frequency distribution of
certain observations of a sample is consistent with a partic-
ular hypothesized distribution (also called a test of “good-
ness of fit”). In other words, those tests are used to deter-
mine whether two underlying one-dimensional probability
distributions differ in a significant way. The output of both
tests is a p-value, which is compared against a given sig-
nificance level to decide if the investigator can safely reject
the null hypothesis. Low probability values lead to the re-
jection of H0. Inversely, p-values that are largely above
the significance level can be interpreted as an indication of
a very strong relationship between the two samples, which
means that both samples are very likely coming from the
same population.

From our observations, the p-values given by both tests
(χ2 and Kolmogorov-Smirnov) are usually very close to
each other. Still, under certain circumstances, they can
also differ substantially. To solve this issue, we validate
the significance of the obtained p-values by computing the
Kullback-Leibler divergence (also known as the relative en-
tropy [19]) between both distributions. When this diver-
gence tends to be large, we set the similarity value to zero,
whatever the result of χ2 or KS might be; otherwise we
keep the maximal p-value as measurement as the similarity
degree between the two patterns. This technique appears to
be, at least for the datasets we deal with, a quite robust and
reliable metric for comparing categorical frequency data.

Geographical Cliques. Running the clique-based cluster-
ing on the initial dataset of 351 attack events delivers 45
cliques containing between 2 and 23 attack events. In to-
tal, 273 attack events (77%) have been classified into those
cliques, accounting for 66% of the total volume of sources.
The largest cliques contain about twenty different attack
events having exactly the same geographical distribution.
From those results, we observe that geographical cliques
provide good indications of the prevalence of certain coun-
tries to be involved in different specific activities (e.g., US,
China, Canada, Korea, Taiwan, Italy, France, Germany,
Great-Britain, Brasil, Japan and Russia). Moreover, geo-

graphical cliques can be useful to identify communities of
machines used to perform a given type of activity. Surpris-
ingly enough, we observe also groups of targeted attacks
coming from rather small or unexpected countries, such as
Poland, Hungary, Romania, Pakistan, Argentina or India1.

Figure 2. Left: the pattern of a geographical clique of
attack events. Right: the pattern of a subnets clique (the
labels are the anonymized /8 subnets). All attack events
belonging to a same clique have the very same pattern.

Figure 3. The pattern of a platforms clique of attack
events, in which all events have a distribution similar to this
one (regarding the targeted platforms in this case).

5.1.2 Netblocks of Origin. The source IP network block
is another property that nicely complements the geoloca-
tion as described before. Instead of giving insight on pos-
sible geostrategic decisions made by the hackers, they can
typically reveal some strategies in the propagation model of
the malwares. Indeed, attackers’ IP subnets can provide a
good indication of the spatial “uncleanliness” of certain net-
works, i.e., the tendency for compromised hosts to stay clus-
tered within unclean networks, especially for zombie ma-
chines belonging to botnets as demonstrated in [7]. Previ-
ous studies have also demonstrated that some worms show
a clear bias in their propagation scheme, such as a tendency

1More details about the cliques can be found in an ex-
tended technical report available from the Eurecom website
(http://www.eurecom.fr/people/dacier.en.htm).



for scanning machines of the same (or nearby) network so
as to optimize their propagation [6]. So, for each attack
event, we create a feature vector representing the distribu-
tion of IP addresses grouped by considering the /8 subnet
(which means the first 8-bytes prefix of each IP address).
An example of such vector, obtained for a given clique of
attack events, is given in Figure 2 (Right). Since we have
signed a non-disclosure agreement, we have changed the
subnet values while maintaining, as much as possible, the
relationships between the discovered netblocks (e.g., con-
secutive subnets values). As explained in the previous sec-
tion, we can use the same statistical distances to measure
the similarity degree between a pair of subnets histograms.

Subnets Cliques. From the output of the clique-based
clustering applied to the subnets dimension, we obtain
about 30 cliques; they contain in total 262 attack events
(75% of the dataset) accounting for 56% of the total vol-
ume of sources. A few cliques are fairly large: about fifty
attack events grouped in the same clique and having all the
very same subnet distribution. Here also, we observe again
many relevant relationships within the attack dataset regard-
ing this dimension. For example, the characteristics of some
of those cliques (e.g., the targeted port sequences, etc.), and
an additional in-depth analysis, have lead us to conclude
that the sources involved in those cliques were apparently
members of a larger botnet that has been active during an
extended period of time (about three months) in a given In-
ternet region. Those subnets cliques revealed also a sort of
dynamism in the affected IP regions (due to new bot infec-
tions and computers cleaning) during the lifetime of the bot-
net, with still some stable clustered IP zones of bot infected
machines (i.e., in “unclean networks”).

5.1.3 Attack Time Series. Time series analysis can also
provide useful information about the underlying attack phe-
nomena [41]. By “attack time series” we mean an aggre-
gated source count for an attack on a given sensor, in a
given timeframe. This dataset property can provide indica-
tions about synchronized activities targeting different sen-
sors. It can also reveal some typical pattern related to a bot-
net activity [9]. Finally, discovering synchronized probes on
completely different TCP ports (and thus, a priori unrelated
attacks) might help to identify multi-headed worms [29],
which combine different exploits in a single piece of soft-
ware.
To include this attack dimension, we have created, for each
attack event, a feature vector where each element repre-
sents the aggregated source count per day for that specific
attack on a given sensor. There are numerous appropriate
techniques to compute the similarity between time series,
such as singular value decomposition (SVD), piecewise ag-
gregate approximation (PAA), discrete Fourier transform,

wavelets, etc. The method we use in this application is an
adapted version of SAX (symbolic aggregate approxima-
tion) [26]. It falls in the category of PAA techniques which
tend to approximate time series by segmenting them into
time intervals of equal size and summarizing each of these
intervals by its mean value. Each time series (usually of
complex shape) is thus replaced by a quantized vector of
symbolic values whose shape is by far simpler to process
when measuring the similarities among time series. More-
over, SAX provides a lower-bounding distance measure that
is easy to interpret, and which can be used in the clustering
to decide if two time series are similar or not. More details
about the SAX technique can be found in [26], and we refer
the interested reader to [41] for a more detailed description
of our SAX adaptation.

Cliques of Time Series. The clique-based clustering ap-
plied to the 351 events delivered 82 cliques of time series
encompassing 92% of the attacking sources, which already
confirms the highly organized aspect of activities related to
Internet attacks. As noted in [41, 29], we observe only three
types of temporal pattern in the resulting cliques: (i) a few
“voluminous” cliques containing attacks with a continuous
activity pattern, primarily due to Messenger Spammers (on
UDP ports 1026-1028) and some classical network worms
(e.g., Allaple, Slammer, etc.); (ii) cliques involving attacks
in the form of sustained bursts, mainly due to large botnet
attack waves or multi-headed worms; and (iii) a very large
number of small cliques related to ephemeral attacks tar-
geting one or a few sensors on the same day, due either to
small botnet probes, targeted scan activities or misconfigu-
rations in some rare cases. Figure 4 illustrates the pattern
of a clique of the second type, where 21 attack events have
targeted 5 different sensors on well-known Windows ports
(445T and 139T) for a period of 20 days in December 2006.
Even though they target different IP subnets, all those attack
events exhibit a quite perfect synchronization. In the light of
our detailed analyses, this was attributed to an attack wave
of a botnet coming mainly from China, Canada and US.

5.1.4 Targeted Platforms. Apparently, some recent
crimeware toolkits are now able to deliver a specific type
of malware to different geographical regions [5]. By us-
ing this new feature, cybercriminals can thus set up well
targeted campaigns by delivering specialized crimeware in
specific geographical regions. Indeed, malware may benefit
from being adapted to, e.g., the local version of an operat-
ing system or application. Therefore, it seems important to
look at relationships that may exist between attack events
and the platforms they have been observed on.

Attack events are defined per platform. To calculate a
feature vector representing the distribution of platforms, we
decided to group all strongly correlated attack events within



Figure 4. The patterns of an extracted clique of attack
time series targeting Windows ports and ICMP (I, I-445T,
I-445T-139T). Note the almost perfect synchronization of
the attacks on 5 different sensors located in 4 different IP
subnets.

its time window of existence, and we then used this group
of attack events to create the feature vector representing the
proportion of platforms that have been targeted. Fig 3 illus-
trates the kind of pattern we are looking for in this dimen-
sion. Here again, we can use the statistical distance mea-
sures introduced previously (in Section 5.1.1) to compare
two frequency distributions.

Platforms Cliques. The experiments indicate that 284
events (encompassing 70% of the sources) could be clus-
tered into only 17 cliques for this dimension. According
to our in-depth analysis, those cliques helped to discover
some nice phenomena too. One such example is related to
a large series of ephemeral attack events on high (unusual)
TCP ports that were always launched against the very same
platform, and where each individual attack event had a quite
high intensity but a very short duration (one or two days).
A security analyst would most probably disregard such sus-
picious traffic since each traffic peak is targeting a quite un-
usual TCP port (on which there is no well-known applica-
tion running), and unlike worm propagation, those attack
events do not sustain an activity over a long period of time.
So, without this platform viewpoint, it would be actually
very hard to get a global overview of such long-term and
stealthy phenomenon. Another finding related to this view-
point is that several groups of platforms seem to be targeted
in a very similar way (thus, by coordinated sources), prob-
ably because of their IP proximity, and this hostile traffic
represents, in total, a significant volume (70%).

5.2. Concepts Synthesis

So far, we have created N sets of cliques, i.e., one set of
cliques for each relevant attack property. As suggested here
above, each clique pattern can hold a piece of actionable
knowledge about an attack phenomenon, but in some cases
the security analyst will have to synthesize different pieces
of evidence in order to perform a root causes analysis, and
to really understand what happened. Therefore, we can
take advantage of all one-dimensional cliques to construct
higher-level concepts by simply computing cliques’ inter-
sections. Based on the type of phenomenon under scrutiny,
the practitioner may include any number of properties in
order to create concepts containing more or less semantic
meaning. Moreover, those concepts have by construction
some relationships with other super- or sub-concepts (from
a lower/higher combination level), so a concept lattice can
be built dynamically to represent the connections between
those different concepts describing certain phenomena.

Based on the initial sets of cliques obtained via the
clique-based clustering, we have computed the total num-
ber of combinations that could, in theory, be derived from
those dimension-1 concepts. As this is essentially a com-
binatorial problem, the theoretical number of combinations
grows very quickly, even with as few as 4 dimensions. In-
deed, more than 2 millions combinations could exist in the-
ory, based on the number of cliques we have obtained. In
practice though, we observe that the number of concepts
synthesized at each level is not excessive, and in total we
obtain only 0.04% of the theoretical number of combina-
tions. This indicates also that the selected attack proper-
ties are not equally distributed and thus seem to carry some
meaningful semantics on the observed phenomena, since
many cliques’ combinations are empty. While the analysis
of raw network traces (composed of millions of packets) on
each sensor would definitively be impractical, now we ob-
serve that the analysis of those concepts can easily provide
a more global insight into the real-world phenomena that
have caused the attack traffic. To illustrate this, we provide
two such examples here under.

Attack concepts analysis - Two case-studies. Table 1
gives an overview of three interesting concepts. The first
two concepts belong to the dimension 4 whereas the last
one is of dimension 2.

Concepts 1 and 2 justify our initial design choice which
was to use attack events, as opposed to attack profiles, for
the atomic objects of our datasets. These two concepts are
made of nine attack events, each. These nine attack events
belong to the same type of attack profile observed over con-
secutive periods of time. In fact, it is as if we were observ-
ing two consecutive waves of the same attack against the
same set of targets. The first wave lasts for 30 days in Febru-



Id Dim.
Nr Events

Date
Patterns (intent)

Nr Sources Port Sequences
(Extent) (duration) Time Series Platforms distri. Geographical distri Subnets distri

1 4 9
2008-01-20

p.m.
32,21,27,61,59,

HU,PL,FR,BR 86,84,85,90,83,87,89,203 880 5900T (VNC)
(30 days) 49,48,80,63

2 4 9
2008-03-11

p.m.
32,21,27,61,59,

KR,US,CA,DE 123,89,87,61,90,91,213,222 3,456 5900T (VNC)
(7 days) 49,48,80,63

3 2 48 p.m. 50 - 12,305

9763T, 15264T, 29188T, 6134T, 6769T, 7690T
2006-09-21 87,82,83,84,151, 1755T, 50656T, 64264T, 32878T, 64783T,
(262 days) 80,81,85,213,others 18462T, 4152T, 25083T, 9661T, 25618T,

28238T, 38009T, 53842T, 64697T, 46030T

Table 1. Some examples of concepts obtained at different semantic levels (the real subnets of origin have been anonymized).

ary while the second starts in March and lasts for only seven
days. One could be tempted to consider these two waves as
part of a single phenomenon. If that was the case, relax-
ing the constraint on the time series analysis, i.e. inspecting
dimension-3 concepts, would result in having those various
attack events ending up in the same concept. This is not
what happens. Indeed, the geographical distribution and the
subnet distributions also differ between these two concepts.
In other terms, even if the modus operandi as well as the
targets appeared to be the same, the origins were clearly
different. Figuring out if this can be explained by two dif-
ferent botnets being controlled by the same entity or two
distinct entities using the same tool lies outside the scope of
this paper as it pertains to forensics activities. What mat-
ters here is that the approach revealed simply and clearly an
important element that can help in the understanding of the
observed phenomena.

The second case, illustrated with the concept 3 in Ta-
ble 1, justifies our motivation to look not only at all
dimension-1 and dimension-N concepts, but also to analyze
the concepts obtained in between, as there are also phenom-
ena that can emerge at those intermediary semantic levels.
There are 48 events involved in concept 3, and all of them
have targeted the very same sensor (located in China) at dif-
ferent dates, in the form of very ephemeral spikes of ac-
tivity, and now they all seem to originate from the same
IP netblocks. By raising the dimensional level, this phe-
nomenon would not appear as clearly since the events’ time
series are not correlated. The events involved in this con-
cept could at first sight appear as Internet noise; but now,
a new type of phenomenon clearly emerges. Since it has
lasted for at least 262 days, it is quite unlikely that it is
due to a pure random process or to background noise. At
this stage, there is no obvious reason that could further ex-
plain the intent of this fairly large community of machines
(12,305 sources), and more viewpoints are probably needed
to refine our concept-based root cause analysis. However,
those simple examples demonstrate that our technique can
effectively highlight stealthier phenomena that would oth-
erwise stay hidden in the Internet background noise.

6. Conclusions

The global analysis of Internet threats is clearly a com-
plex but critical problem, and thus appropriate analysis
methods are required in order to effectively get insights
into the modus operandi of new emerging attack phenom-
ena. In this work, we have presented a multi-dimensional
knowledge discovery and data mining method that can help
us to improve our understandings of new Internet threats.
Our method consists in (i) extracting meaningful nuggets of
knowledge by mining a complex dataset according to dif-
ferent properties considered as relevant; and in (ii) synthe-
sizing those pieces of knowledge at different dimensional
levels, so as to create a concept lattice that can best describe
real-world phenomena for a domain expert. An experimen-
tal validation on real-world attack traces has shown that sig-
nificant insights can be obtained into the threats intelligence
domain thanks to this approach.

The analysis of the concepts has revealed the importance
of finding the appropriate association of concepts to under-
stand the underlying phenomena. As future work, we seek
to develop algorithms and heuristics that can take advantage
of the concept lattice to highlight systematically all rele-
vant attack phenomena found at different dimensional lev-
els. The objective is to further improve the concept-based
root cause analysis, and, more importantly, to facilitate the
work of the security analyst.
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