
Capacity Estimation of ADSL links

Daniele Croce, Taoufik En-Najjary, Guillaume Urvoy-Keller and Ernst W. Biersack
EURECOM

Sophia Antipolis, France
Email: {croce,ennajjar,urvoy,erbi}@eurecom.fr

Most tools designed to estimate the capacity of an Inter-
net path require access on both end hosts of the path, which
makes them difficult to deploy and use. In this paper we
present a single-sided technique for measuring the capacity
without the active cooperation of the destination host, focus-
ing particularly on ADSL links. Compared to current meth-
ods used on broadband hosts, our approach generates two
orders of magnitude less traffic and is much less intrusive.
Our tool, DSLprobe, exploits the typical characteristics of
ADSL, namely its bandwidth asymmetry and the relatively
low absolute bandwidth, in order to measure both downlink
and uplink capacities and to mitigate the impact of cross-
traffic. To further improve the accuracy, we study different
ways to detect and filter cross-traffic packets and we show
how to recognize and overcome limited uplink capacities.
We validate our tool both on controlled hosts and on a wide
variety of Internet hosts. Finally, we present a case study of
two large ADSL providers.∗

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work Operations; C.2.5 [Computer-Communication
Networks]: Local and Wide-Area Networks;
C.4 [Computer-Communication Networks]: Per-
formance of Systems

General Terms
Measurement, Experimentation, Performance

Keywords
Capacity estimation, ADSL, measurement, asymmetry,
non-cooperative, DSLprobe
∗This work is supported in part by the NANODATA-
CENTERS program (FP7-ICT-223850) of the EU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

1. INTRODUCTION
Capacity is the most important and most advertised

characteristic of a network link. It is critical for achiev-
ing good end-to-end performance over the Internet. Many
techniques have been developed in order to estimate
the capacity of single links or the capacity of the bot-
tleneck link of a given path [5, 8, 9, 12–15, 20]. Most
of these techniques either rely on routers that reply to
ICMP packets or require access to both end hosts of
the path, significantly limiting and complicating their
usage. None of them has been designed to work specif-
ically in non-cooperative ADSL environments.

ADSL and broadband technology has become the stan-
dard access technology for over 200 million residential
users [18]. The number of broadband subscribers has
increased by 187% since Dec. 2004 and it is supposed
to double in the next four years [23]. In many countries,
more than half of all households are connected through
a broadband access link. These networks have marked
the success of the new era, allowing the widespread us-
age of bandwidth intensive applications such as video-
on-demand, online gaming, peer-to-peer video stream-
ing, distributed content delivery systems. The explo-
sion of media content has thus pushed up the demand
for higher capacities at the access links, which today
represent the bottleneck on Internet paths [6]. Over
62% of broadband links are based on DSL technology.

Despite the importance of these networks, little re-
search has been made on broadband links, mostly be-
cause of the lack of tools for analyzing them without the
explicit cooperation of the end hosts or the ISPs. To the
best of our knowledge, the only existing work presenting
a large-scale characterization of broadband networks is
the one presented in [6], where the capacity of the links
was measured using buffer saturation, a quite intrusive
technique. In this paper we present DSLprobe, a new
single-ended tool for the capacity estimation of ADSL
links, designed especially for non-cooperative environ-
ments1. DSLprobe sends two orders of magnitude less
traffic and is less intrusive compared to the technique
in [6]. In DSLprobe we exploit the fact that the capac-

1Similar to [4, 20], with “non-cooperative” we mean that
access on the measured end-hosts is not required.

ity of the ADSL links is low compared to the available
bandwidth of the backbone links. This allows to send
high-speed trains of packets, reducing the likelihood of
interference from cross-traffic, i.e. packets flowing with
our probes through the same link(s). The probes sent
are TCP ACKs, whose size can vary between 40 and
1500 Bytes. These ACKs are sent to the ADSL host
in order to solicit TCP RSTs back to the source. Us-
ing the RSTs flowing back it is possible to measure the
capacity of the ADSL link as well as to obtain some
information on interfering cross-traffic. In DSLprobe
we implement different techniques based on the analy-
sis of the IP-IDs and on the Inter-Arrival Time (IAT) of
the RSTs in order to detect and filter the cross-traffic
packets interfering with the probe trains. We also take
advantage of the capacity asymmetry of ADSL to mea-
sure both, the uplink and the downlink capacities. We
investigate how to correctly set the size of the probes
and pay attention to the overhead imposed by low layer
protocols and to the capacity limits of the uplinks. Fi-
nally, we validate DSLprobe both on controlled ADSL
hosts and on the Internet, and we provide a case study
of two large ADSL providers.

2. BACKGROUND AND RELATED WORK

2.1 Capacity estimation techniques
Most existing tools estimate the capacity by sending

a certain number of packets with particular size and
distribution, measuring how these packets arrive after
traversing the link. Generally, the packets traverse more
than one link, so the tools either estimate the capacity
of each link traversed, or the bottleneck capacity of the
path i.e. the link with lowest capacity.

2.1.1 Variable Packet Size
The Variable Packet Size (VPS) technique aims at

measuring the capacity of every link of the path. It was
first described by [2] and used in tools like pathchar [12],
clink [9] and pchar [15]. The basic idea in VPS is to
measure the delay variation when increasing the size
of the probes: for a generic link of capacity Ci, the
transmission delay increases linearly with the size of
the packet as 1/Ci. Just like the traceroute tool, in
VPS tools the TTL field is adjusted so to measure the
RTT up to a certain hop. Then the size of the probes
is modified and the RTT is measured again. If there is
no queuing due to cross-traffic, the difference in delay
is due solely to the difference in size and the capac-
ity of the link is obtained by recursively measuring all
previous links. VPS can thus suffer from error propa-
gation. Additionally, in order to obtain delay samples
unaffected by cross-traffic, several hundreds (or thou-
sands! [9]) probes must be sent and only the sample with
the minimum delay is considered. Finally, VPS suffers
from layer-2 store-and-forward devices, which are invis-
ible at layer-3 but add serialization delay [19].

2.1.2 Packet Pairs
The Packet Pair (PP) technique measures the bot-

tleneck capacity of a path. When two packets are sent
one after the other (“back-to-back”), they will be re-
ceived at the end of the path spaced in time and, if there
is no cross-traffic, the spacing (or dispersion) between
the packets is inversely proportional to the capacity of
the bottleneck link. The PP technique is implemented
for example in bprobe [5], Nettimer [14], SProbe [20],
pathrate [8] and CapProbe [13].

CapProbe, the most recent of these tools, sends a
number of pairs and computes the capacity from the
pair that has minimum delay sum: if d1i and d2i are
the delays experienced by the two packets of pair i,
CapProbe computes the capacity from the pair where
d1i + d2i is minimum. The assumption here is that if a
pair is affected by cross-traffic, then the delay of one of
the two packets will increase, otherwise it will remain at
a minimum value. As we will explain, it is this condition
that makes CapProbe (and PP techniques in general)
unsuitable for non-cooperative ADSL environments.

2.1.3 Packet trains: Average Dispersion Rate
An approach that is conceptually similar to PP is to

use Packet Trains. The idea is to send L back-to-back
packets of size S and to measure at the receiver the
Average Dispersion Rate (ADR) defined in [8] as R =
(L−1)S/∆, where the dispersion ∆ is the time between
the arrival of the first and the last packet of the train.
Again, if no cross-traffic is present, the dispersion of the
train will be due solely to the bottleneck link and the
ADR will be equal to the capacity. ADR estimations are
used in pathrate [8] and pathload [7]. Compared to PP,
the ADR is more robust to outliers and less sensitive
to errors and timestamp granularity (the dispersion is
measured over more packets) but the probability that
a cross-traffic packet interferes with the train of probe
packets is higher.

2.1.4 Buffer saturation
Another way to estimate the capacity is to saturate

the buffer with a stream of packets at high rate and to
measure the amount of traffic that traverses the link. If
the rate of the flow is very high, cross-traffic packets will
find no place in the buffer and will be dropped, leading
to good estimates. Indeed, the probability that a cross-
traffic packet traverses the link decreases when the rate
of the probes increases. Buffer saturation can thus be
very intrusive. If the cross traffic consists of TCP flows,
causing persistent loss to these flows can severely affect
their throughput or even kill the connection completely.

2.2 The MPI tool
In [6] Dischinger et al. from the Max Planck Institute

of Software Systems used a tool, which we refer to as
the MPI tool, to analyze different types of broadband
networks. The aim of the MPI tool is to characterize

the network access of non-cooperative ADSL and Cable
hosts with respect to various metrics including allocated
bandwidth, buffer size, round trip times, traffic shaping,
and queue management policy. In order to measure all
these characteristics and to account for the differences
between Cable and ADSL access, the MPI tool is very
general and includes various types of tests.

To estimate the bottleneck capacity, the MPI tool sat-
urates the buffer of the access link. All measurements
affected by cross-traffic are discarded. Using measure-
ments to many different end hosts, it is shown that for
broadband access networks the last hop is always the
bottleneck and that backbone links can support flows
of 10 Mbps without significant loss. To measure the
capacity of the broadband link a flow with rate of 10
Mbps is sent and the capacity is computed by counting
the amount of packets that traverse the path without
being dropped. Both the downlink and uplink measure-
ments lasted 10s which means that in total over 15,000
packets were sent towards the ADSL host. They did
not provide information on when the tool was failing.
The main thrust of that paper [6] was not to describe
in detail the techniques used to measure the various
metrics but to present the results of the empirical mea-
surements towards a large number of broadband hosts.
The authors of the MPI tool where kind enough to pro-
vide us the code of their tool, which allowed us to study
its operation and to compare the capacity estimates ob-
tained by the MPI tool with the ones of DSLprobe (see
Sec. 8).

As we will show, the advantage of DSLprobe is that,
focusing on the capacity estimation of ADSL links, al-
lows to obtain excellent results without the need of sat-
urating the access link buffer. DSLprobe generates two
orders of magnitude less packets and drastically reduces
the intrusiveness of the measurements. Moreover, in
DSLprobe we introduce sophisticated techniques to fil-
ter or mitigate the impact of cross-traffic whereas the
MPI tool only tries to detect cross-traffic. Finally, the
MPI tool fails when the link is too much asymmetric.

3. WHY ARE PACKET PAIRS INFEASIBLE?
In the PP technique, capacity is estimated directly

from the IAT of the two packets. It is thus extremely
important to discard all pairs compressed or expanded
by cross-traffic. The solution proposed in CapProbe [13]
is probably the most simple and effective since it assures
that the PP from which the capacity is computed is the
one that suffered lowest delay (and possibly no queu-
ing at all). In the ADSL environments, however, the
IAT of packet pairs is not always constant but can vary
with some granularity. This variability around specific
values has already been noticed in [3] and an example
is given in Fig. 1. The figure shows how the IAT of 40
Byte packets traversing the uplink of an ADSL link can
vary significantly around the average. For this experi-
ment, the packets were captured from a well-connected

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Time (s)

In
te

ra
rr

iv
al

 T
im

e
be

tw
ee

n
pa

ck
et

s
(u

s)

Figure 1: Inter-Arrival Time on an ADSL link.
UDP packets are sent through the uplink of the
ADSL and captured from a well-connected host.

host, there was no cross-traffic (both hosts were under
our control) and we used UDP packets. Both machines
where idle and the timestamp resolution was 1 us.

The immediate consequence of this observation is that,
even in absence of cross-traffic, the delay seen by a PP
varies significantly around its mean2. It thus becomes
very difficult to distinguish and filter out PPs distorted
by cross-traffic. The problem of finding the real (aver-
age) link capacity is mitigated when using packet trains:
using a larger number of packets, indeed, averages out
the IAT variations. Of course, the problem of cross-
traffic remains unchanged (actually it is even worsened
with long train durations). As we will show, however,
cross-traffic can be filtered out effectively in order to
obtain accurate measurements.

4. ACTIVE MEASUREMENTS IN
NON-COOPERATIVE ENVIRONMENTS

In a non-cooperative environment, it is not possible
to capture the probes arriving at the receiver. A so-
lution to this problem is to use probes that will be
“reflected” back to the sender when they arrive at the
receiver. This idea has already been adopted in lit-
erature [4, 6, 11, 20] in various forms and for different
purposes using ICMP, UDP or TCP packets. Of par-
ticular interest for us are TCP probes, which have the
peculiarity that the packets sent back to the sender are
40 Bytes long RSTs (or SYN/ACKs depending on the
probes used) independently of the size of the probes
sent to the receiver. As it will become clear soon, this

2To exploit the capacity of the local loop, ADSL providers
implement complex signal processing and error correction
algorithms and nowadays are providing together with Inter-
net connection additional services such as IPTV or VoATM.
This could lead to delay variations and to the granularity of
the IAT shown in the figure. The investigation of the exact
cause of these effects is beyond the scope of this paper.

possibility of sending large probing packets downstream
but getting back small packets is fundamental for mea-
suring, both, the uplink and downlink of the ADSL.

DSLprobe estimates the capacity by sending a train
of TCP ACKs to a non-cooperative host and evaluates
the dispersion of the train of the corresponding RSTs
sent back to the source. Ideally, if no other packets in-
terfere with the RSTs flowing back, the statistical prop-
erties of the ACK train will be preserved so that the
dispersion of the train of RSTs will perfectly reflect the
dispersion of the ACKs on the forward path. In re-
ality, however, the measurement will be influenced by
the characteristics of both, the forward and the reverse
path. For example, if the RSTs traverse a low capacity
uplink, the dispersion measured will be the one of the
reverse path and not of the forward path. Addition-
ally, cross-traffic can significantly compress or expand
the trains biasing the measurement. When measuring
ADSL hosts, in particular, the main challenges are:

• Unknown Layer 2 overhead. At Layer 2 (L2),
protocols such as ATM, PPPoE or PPPoA that
carry the higher layer packets can add significant
overhead, especially when packets are small. The
exact amount of overhead depends on the network
architecture of the ISP and is generally not known.

• High asymmetry. If the capacity of the uplink is
much lower than the downlink, the RSTs flowing
back can be constrained by the uplink. This can
bias the results when measuring the downlink.

• Cross-traffic on the downlink. Downlink cross-
traffic causes an underestimation when estimating
the downlink capacity. As we will show, downlink
cross-traffic does not affect uplink measurements.

• Cross-traffic on the uplink. Because of the
lower capacity of the uplink, large packets can
take several tens of milliseconds to be transmit-
ted. Thus, cross-traffic packets on the uplink can
significantly bias the measurements.

• Loss is likely to occur when a link is congested and
the buffer is nearly full. When loss is detected, we
use smaller trains to reduce both the impact on
the buffer and the probability of lost probes.

In the next section, we will discuss how to account
for L2 overhead and correctly measure the forward and
reverse paths even in high asymmetric conditions, while
in Sec. 6 we will explain how to deal with cross-traffic.

5. ASYMMETRY AND OVERHEAD ON ADSL
In this section, we study how to exploit the prop-

erties of the ADSL to correctly measure both uplink
and downlink capacities. Some of these concepts were
already used in ABwProbe [4], though to measure a dif-
ferent characteristic (the available bandwidth) and fac-

ing different problematics, or in the MPI tool. In DSL-
probe, we use these ideas in a different way, employing
completely new techniques and methods.

5.1 Measuring both uplink and downlink:
when asymmetry becomes an opportunity

Consider a generic path between two hosts, one be-
ing our measuring host, the other a non-cooperative
ADSL host. Figure 2 represents a typical scenario for
our measurements. Let now Cdown, Cup and sA/R be
respectively the downlink capacity, uplink capacity, and
the ratio between the ACK size SACK on the forward
path and the size SRST of the corresponding RSTs on
the reverse path (sA/R = SACK/SRST). Let MTU de-
note the size of the Maximum Transmission Unit, which
is typically close to 1500 Bytes. Since ACKs can have
any size, i.e. 40 ≤ SACK ≤ MTU, while SRST is al-
ways 40 Bytes, we get 1 ≤ sA/R ≤ MTU/40. At first,
lets suppose there is no cross-traffic and that the size
of the ACK probes is equal to the size of the RSTs
(SACK = SRST = 40, which then implies sA/R = 1).
Since every ACK will generate a RST flowing back, the
rate RACK of the ACKs on the forward path and the
rate RRST of the corresponding RSTs on the reverse
path will be equal. Thus, using sA/R = 1 the disper-
sion measured with our train will match the link that
has the lowest capacity, which is typically the ADSL
uplink. If, instead, we want to measure the downlink of
the ADSL host, we must increase the size of our ACK
probes so that the load generated by the ACKs exceeds
the downlink capacity before the corresponding RSTs
saturate the uplink.

Figure 2: Non-cooperative estimation: the mea-
suring host sends TCP probes with the ACK flag
on. The receiver will reply with TCP RSTs.

To correctly measure the downlink, we must have
RRST < Cup so that the RSTs are not constrained
by the uplink. If we increase the size of the ACK
probes traversing the forward path to, say SACK = 1500
Bytes, then on the uplink the rate of the RSTs will be
sA/R = 1500/40 = 37.5 times lower than the corre-
sponding load on the downlink due to the ACKs, be-
cause RRST = RACK/sA/R. Since for most ADSL links
the ratio cd/u = Cdown/Cup between downlink and up-
link capacity is generally lower than 15 (see [6]) the dis-
persion of the ACKs on the downlink will be sufficiently
high so that the RSTs do not saturate the uplink.

5.2 Accounting for Layer 2 overhead
A major problem in computing sA/R precisely comes

from L2 overheads. Most ADSL access platforms use
ATM (together with encapsulation protocols such as
PPPoA or PPPoE [22]): IP packets are segmented and
carried in 53 Byte (comprising header and payload)
ATM cells. This segmentation has great impact on the
overhead, especially in case of small IP packets. While
an MTU size IP packet is normally fragmented in 32
cells (1696 Bytes total, ∼ 13% overhead), a 40 byte
RST will be carried in one or even 2 ATM cells for a
total size of 106 Bytes. Indeed, in almost all ADSL ar-
chitectures a 40 Bytes IP packet will be fragmented in
2 ATM cells [22], thus the number of Bytes transmitted
at the physical layer will be 106/40 = 2.65 times higher
compared to the IP layer. This is important and must
be taken into account for both the uplink and down-
link measurements: for the uplink, because all results
obtained with sA/R = 1 (using 40 byte probes) must be
corrected to account for this overhead; for the downlink,
because at L2, the ratio between the size of an MTU
packet (32 cells) and the size of a RST (2 cells) will
reduce sIP

A/R = 37.5 down to sATM
A/R = 32/2 = 16. Since

usually the L2 infrastructure is not exactly known, it is
good practice when measuring the downlink to be con-
servative and allow extra margin when setting the ACK
size, i.e. to make ACKs as large as possible (MTU).

In some particular cases, however, increasing the ACK
size might not be enough to overcome too big an asym-
metry between downlink and uplink capacity. In this
case, we interleave ACKs with other probes (such as
TCP RSTs) that do not generate replies from the ADSL
host. This way, it is possible to increase the downlink
load further, reducing the amount of RSTs and there-
fore the load on the uplink: for example, if 30% of the
probes sent do not generate a reply, then RRST will be
reduced by 30%, just as if sA/R increased.

6. CAPACITY ESTIMATION IN PRESENCE
OF CROSS-TRAFFIC

6.1 Main ideas and approach
The great problem in correctly estimating the capac-

ity is to filter or reduce the interference between cross-
traffic and the probes. As we will explain in detail in
this section, we exploit the following features to obtain
accurate measurements:

• High-speed trains. We send our probes as fast
as possible (our measuring hosts are generally con-
nected with 100Mbps Ethernet links) in order to
minimize the impact of cross-traffic. Indeed, the
smaller the duration of a train, the lower the chance
of cross-traffic interference.

• The IP identifier (IPID) is one of the fields in
the IP header and is usually incremented for each

packet sent. We use IPIDs to detect cross-traffic
packets entering the train of RSTs on the reverse
path (sent by the receiver).

• Inter-Arrival Time (IAT) analysis is under-
taken to detect special cross-traffic interactions with
the probes or when IPIDs are not usable.

• Sequence numbers are used to match the probes
sent with the corresponding RSTs. Since TCP re-
quires a RST to have as sequence number the ac-
knowledgment number contained in the ACK that
has triggered it, in each probe we use different
acknowledgment number in order to relate ACKs
and RSTs and to detect loss.

As we will explain in detail, in DSLprobe

1. We send trains of 40 byte ACK packets to measure
the uplink capacity. Cross-traffic on the uplink is
filtered using IPIDs or – if IPIDs are not available
– analyzing the IATs.

2. We then send trains of MTU3 size ACKs to mea-
sure the downlink capacity. Downlink cross-traffic
is mitigated by using high rate trains. Uplink
cross-traffic can not be filtered but must be de-
tected in order to discard affected measurements.
We learn about uplink cross-traffic by analyzing
the IATs of the RST packets. By comparing the
values with the uplink capacity estimated previ-
ously, we discover trains that are affected by cross
traffic.

6.2 ADR as an approximation of the capacity
Dovrolis et al. [8] have demonstrated that, in the case

of one-hop persistent cross-traffic (the worst case), the
rate Ri of a train of packets traversing a link i with
capacity Ci, does not depend on the train length but
only on the utilization ui of link i and on the train rate
Ri−1 at which the train left the previous link i− 1. In
particular, assuming a fluid model of cross-traffic and
denoting with Ai = Ci(1− ui) the available bandwidth
(avail-bw) of link i, the train rate after passing through
link i will be

Ri =
{

Ci/(1 + uiCi/Ri−1) if Ri−1 ≥ Ai

Ri−1 otherwise (1)

Thus, if the link is not used (ui = 0) and the train rate
is sufficiently high (Ri−1 ≥ Ci), then Ri = Ci and the
train rate will represent the capacity of the link. If we
extend this to all the links of a path, a train of packets
sent back-to-back at the maximum speed possible will
be received at the destination at rate Ri = min{Ci},
3We use ACKs of 1488 Bytes because some ISPs set the
MTU size to less than 1500 Bytes to account for protocols
such as PPPoE or PPPoA. In DSLprobe the ACK size can
be changed at will.

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time (ms)

In
te

ra
rr

iv
al

 T
im

e
be

tw
ee

n
pa

ck
et

s
(m

s)

Cross−traffic packets

Back−to−back RSTs

Figure 3: Uplink estimation (ACKs are 40B).
IAT of the RSTs under uplink cross-traffic.

which represents the maximum rate achievable on the
link with lowest capacity. If the links are loaded, in-
stead, the packets are dispersed at each hop and the
train rate deviates from the capacity proportionally to
the quantity of cross-traffic and to the train rate at the
previous hop.

In order to obtain a good estimate of the bottle-
neck capacity, we thus need the cross-traffic error term
uiCi/Ri−1 to be as small as possible. Now, suppose
we send from a well connected host a train of packets
at rate R0 = 100 Mbps. Since ui is very small for all
backbone links [10], the dispersion will be very low and
the rate of the train arriving to the ADSL downlink
will be close to R0. Such high rate implies that packets
will arrive at the downlink ADSL buffer very close to
each other, limiting the possibility for other packets to
interfere with the train, which helps achieving a good
estimate. For example, if the ADSL link has 5 Mbps
downlink capacity, Eq. 1 guarantees that even in case
of full link utilization (u = 1) the error term will be at
most 5%. The idea is thus to use the average dispersion
rate ADR to estimate the downlink capacity.

If we finally drop the fluid cross-traffic assumption,
the effect of finite-sized cross-traffic packets is averaged
along the train and has no real impact on the measure-
ments, as the results will prove.

6.3 Effect of cross-traffic and train length
The design of DSLprobe is based on the observation

that the backbone links have much higher capacity (and
available bandwidth [10]) than the ADSL links. Thus, a
train of packets sent at high rate from the measurement
host will also arrive at high rate to the ADSL downlink
buffer, suffering very little cross-traffic. However, the
impact of cross-traffic on the ADSL uplink can be very
destructive because of the low uplink capacity. Figs. 3

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Time (ms)

In
te

ra
rr

iv
al

 T
im

e
be

tw
ee

n
pa

ck
et

s
(m

s)

Cross−traffic packet

Back−to−back RSTs (compressed)

RSTs reflecting MTU ACKs

Figure 4: Downlink estimation (MTU ACKs).
IAT of the RSTs under uplink cross-traffic.

and 4 give simple examples of the impact of large uplink
cross-traffic packets. These figures depict the IAT of the
RSTs flowing back when we measure the uplink (fig. 3)
or the downlink (fig. 4) and illustrate how the IATs are
perturbed by cross-traffic packets.

Regarding the length of the trains, there is an im-
portant trade off to be considered: on one hand, the
impact of a cross-traffic packet is less influent when
adopting longer packet trains; on the other hand, the
smaller the train, the lower the probability of having
packets interfering. Moreover, long trains suffer higher
chances of packet loss and are more intrusive. Similarly
to the ADR estimation implemented in Pathload [7],
in DSLprobe both uplink and downlink estimations are
initially done using 50 ACKs. In case of loss, the mea-
surement is discarded and the number of probes is re-
duced to 25, 10, and eventually 5 packets4. For a gen-
eral discussion on the length of packet trains we refer
the reader to the work in [8]. Finally, since the trains
are very small, the risk of overloading network devices
is negligible.

7. THE ALGORITHM

7.1 Estimating the uplink capacity
Since the capacity of the uplink is much lower than

the capacity of the downlink, using “symmetrical” probes
(sA/R = 1) the dispersion caused by the uplink will
be the highest even when the downlink is heavily con-

4As explained later, we might also shorten the train when
measuring the downlink capacity under uplink cross-traffic.
We prefer using shorter trains and repeating the measure-
ment rather than trying to select usable sub-parts of the
trains, which would complicate the analysis. Note that, in
the worst case, the total amount of traffic generated is 90
packets, which amounts to less than 140 KByte.

Figure 5: Impact of uplink cross-traffic on the
uplink measurement. Using the IPIDs or ana-
lyzing the IAT, it is possible to filter out these
packets and to correct the measurement.

gested5. It is thus possible to estimate the uplink ca-
pacity by sending ACK probes of 40 Bytes being careful
to then correct the results to account for L2 overheads,
as explained in Sec. 5.1.

Before arriving to the uplink, the probes traverse
the downlink and the train rate is significantly reduced
from R0 to approximately Cdown. The train duration
will thus be longer and the chances to have cross-traffic
packets interfering will be higher. For this reason, the
uplink measurement can suffer from cross-traffic more
than the downlink measurement. Large packets, in par-
ticular, can disperse the RST probes significantly caus-
ing an uplink capacity underestimation. Fig. 5 shows
the expansion caused by a large uplink cross-traffic packet
on the ADR measurement. Let ∆ be the total disper-
sion of the train, i.e. the time between the arrival of
first and the last RSTs, and ∆i the IAT between RST
packet i and RST packet i + 1. Since the arrival times
are known to us as we receive the RSTs, we can detect
which of the IATs have been inflated by cross-traffic
and the ADR can be easily corrected by subtracting ∆i

from ∆ and decreasing the train length by 1.
We detect cross-traffic packets on the uplink in two

ways: 1) by checking if the IPIDs of the RSTs are con-
secutive (see [1] for more details) and 2) verifying that
the IAT is not 2 times larger than the median IAT of
the train, i.e. ∆i ≤ 2∆med = 2 ×median{∆i}. This is
consistent with the fact that all packets interfering with
the RSTs will increase the IAT by at least a factor of
2 because cross-traffic packets should be fragmented in
at least 2 ATM cells, the same size as the RSTs. Note
that we take the median IAT and not the minimum be-
cause of the effects in Fig. 1. We use this second test in
case the IPIDs are not usable for cross-traffic detection
which is the case, for example, when the measured host
is running Linux. Algorithm 1 provides an overview of
the uplink measurement implemented in DSLprobe.

5This is because packets dispersed on the downlink are re-
buffered on the uplink or, more rigorously, because from
Eq. 1 to obtain Rdown < Aup (and thus Rdown < Cup) the
ADSL must be almost symmetric with cd/u ≈ 1.

Algorithm 1 Uplink estimation algorithm
SACK = 40; //we need sA/R = 1;
L = {50, 25, 10, 5}; //train lengths
for (j = 1; j ≤ 4; j = j + 1) do

Send L[j] ACKs @ 100Mbps; receive RSTs;
if (loss) then

continue; //use shorter train
else

break;
end if

end for
Measure dispersion ∆ and IATs {∆i};
/* Remove IATs affected by cross-traffic */
if (usable IPIDs) then

eliminate packets with non-consecutive IPID;
else

∆med = median{∆i}; // median IAT
eliminate packets with ∆i > 2∆med;

end if
update ∆ and L (without affected IATs);
R = (L− 1)SACK/∆; //compute ADR
Cup = 2.65×R; //adjust for L2 overheads

7.2 Estimating the downlink capacity
Measuring the downlink capacity is a difficult task for

two reasons: first of all, because we must verify that the
RSTs flowing back are not constrained by the uplink
(sA/R sufficiently high); secondly, because after being
dispersed on the downlink, packets must traverse the
uplink without cross-traffic interference.

7.2.1 Highly asymmetric links
The first essential condition so that the RSTs flowing

back are not altered by the uplink is that sA/R > cd/u.
This can be checked either by (i) varying sA/R and mea-
suring if the rate of the RSTs changes accordingly (the
rate will not change if sA/R is too small) or, (ii) in case
the uplink capacity is already measured, by verifying
that the rate at which the RSTs are received is lower
than the maximum uplink capacity. Since we do esti-
mate the uplink capacity, we prefer this second option
which is faster and does not require additional measure-
ments. Let Tmin = SRST /Cup be the minimum IAT
between RSTs allowed by the uplink. We suspect the
ADSL link to be too much asymmetric when the median
IAT of the RSTs flowing back is less than 1.3×Tmin. In
other words, if the RSTs flowing back start congesting
the uplink (only less than 30% of the uplink capacity
is left), we declare sA/R to be too small compared to
cd/u. A 30% margin should be enough to account for
the noise introduced by other links on the path. In case
this margin is not respected, we redo the measurement

alternating ACKs and UDP6 packets so that only half
of the probes generate a RST, thus doubling sA/R, or
even two UDP packets for every ACK (but generally
sA/R = 32 is sufficiently large for all ADSL links).

7.2.2 Uplink cross-traffic detection
The distortion caused by cross-traffic packets on the

uplink is the most important and difficult problem to
assess. The transmission of an MTU size packet on the
uplink can cause a significative expansion (or compres-
sion) of the RSTs flowing back, biasing the capacity
measurement. The interactions between RSTs and up-
link cross-traffic can be complex and some examples
are given in Fig. 6. The main results of these interac-
tions are train expansion and train compression. Ex-
pansion occurs whenever the last packet(s) of the train
are queued behind cross-traffic and the dispersion ∆ of
the train is inflated (case (b) in Fig. 6). Compression
occurs when the queue is not empty at the arrival of
the first RST packet so that the initial dispersion is
reduced (case (c) in Fig. 6). It can also happen that
the first and the last packets are unaffected even if the
RSTs in the middle suffer from cross-traffic (case (d)).
Let now N be the number of RSTs affected by a cross-
traffic packet. The value of N depends on sA/R, on the
ratio sX/R = SX/SRST between the size of the cross
packet SX and the RSTs size, and on the ratio between
the downlink and uplink capacity following the formula
N = sX/R × (Cdown/sA/R)/(Cup − Cdown/sA/R). For
example, if cd/u = 6 and both the cross-traffic packet
and the ACKs are MTU size (sA/R = sX/R = 16),
then about 10 out of the 50 packets of the train will
be affected. This implies that already very few cross-
traffic packets can completely disrupt the dispersion of
the train, altering the results.

To precisely filter out the effects of cross-traffic, we
must thus know both the place where the cross-traffic
packet is located with respect to the RSTs and also
the size of this packet. While detecting the presence of
cross-traffic packets can be done with techniques based
on IPIDs or IAT analysis (like the ones described for
the uplink measurement), estimating the exact size of a
cross-traffic packet becomes unfeasible. Note, however,
that the ADR measurement is certainly correct if all the
IATs of the packets are preserved (case (a) in Fig. 6),
but it is also correct if the total dispersion of the train,
between the first and the last packet, is not altered (see
case (d)). This is much less restrictive because it re-
quires only that the head and the tail of the train tra-
verse the uplink unaffected. Note that the IPIDs do
not allow to detect cross-traffic causing compression of
the head of the train (i.e. packets already in queue just
6Many hosts are nowadays located behind a NAT. Since in
our evaluation we target hosts running eMule, our ACKs
and UDP probes are sent towards the ports opened by this
application (we explain how in Sec. 8.2), significantly in-
creasing the probability of the host being reached (many
hosts use static port mapping).

Figure 6: Impact of uplink cross-traffic on the
downlink measurement. Cross-traffic packets
can compress or expand the train duration.

before the train arrives, see case (c)) so an analysis of
the IATs is necessary. Of great help in this case is the
knowledge of the uplink capacity: RSTs received at the
uplink capacity will be a clear sign of buffering (see the
example in Fig. 4) with IAT equal to SRST /Cup instead
of SACK/Cdown = sA/RSRST /Cdown, which is higher if
sA/R is correctly tuned. The same analysis can be done
on the tail packets to check if cross-traffic has altered
their spacing. So, if the IAT of the head or tail packets
is too close to SRST /Cup (compression) or if there is
an IAT which is too high (expansion) we discard the
measurement and we try again with a smaller train of
packets7.

We thus apply two test conditions on the 5 head and
5 tail packets of the train8 to detect measurements af-
fected by cross-traffic. We consider the ADR as valid
if the following conditions are true. The first applies to
both, the head and tail packets, the second condition
on the tail packets only: C1) the median IAT is at least
30% higher than the capacity of the uplink and C2) the
largest IAT is less than 3 times the median IAT. The
first condition is intended to detect compression of the
head or tail packets and states that packets must respect
what was already verified for the entire train: the IAT
between packets must be at least 30% higher than the
minimum IAT allowed by the uplink. C1 alone detects
most of the affected trains. C2 accounts for cross-traffic
packets altering the very last packets of the train and
thus impacting only few packets (the median IAT is
unaffected).

Consider for example a cross-traffic packet entering

7The probability of having compression on the head packets
depends on the arrival process (and not on the train length)
but smaller trains have higher chances to traverse the uplink
without interference from cross-traffic packets in the middle,
thus reducing the probability of expansion.
8Theoretically, two packets should be sufficient to detect
anomalies in the IAT but for sake of robustness we extend
the IAT analysis to the first and last 10% of a train.

Algorithm 2 Downlink estimation algorithm
SACK = MTU; //thus sA/R = 16;
L = {50, 25, 10, 5}; //train lengths
for (j = 1; j ≤ 4; j = j + 1) do

Send train of L[j] ACKs @ 100Mbps; receive RSTs;
if (loss) then

continue; //use shorter train
end if
Measure dispersion ∆ and IATs {∆i};
∆med = median{∆i, i=1, ..., L[j]}; //median IAT
∆H = median{∆i, i=1, ..., 5}; // median of head
∆T = median{∆i, i=L[j]–4, ..., L[j]}; //tail med.
∆maxT = max{∆i, i=L[j]–4, ..., L[j]}; //tail max
if (∆med < 1.3× Cup) then

/* not enough uplink capacity! */
sA/R = 32; //interleave ACKs and UDP probes
repeat measurement;

end if
if (∆H < 1.3Cup) or (∆T < 1.3Cup) or
(∆maxT > 3∆med) then

/* bad measurement! */
continue; // reduce train length

else
/* ∆ is unaffected */
R = (L[j]− 1)SACK/∆; // compute ADR

end if
end for
Cdown = median{R}; //return median of good ADRs

the train just in front of the last packet, which will cause
no compression on the RSTs, but delay the last RST.
This will inflate the train dispersion significantly while
only one IAT is changed (the median will probably not
change). C2 takes into account this expansion of the tail
packets while still allowing some variation on the IAT
(up to three times the median, cf. Fig. 1). Algorithm
2 provides an overview of the downlink measurement
implemented in DSLprobe.

The tests described above are designed to detect the
vast majority of cross-traffic, but interactions of smaller
magnitude might still be present in the measurements.
To be conservative and further improve accuracy, we
repeat the measurement 10 times waiting 500ms be-
tween each measurement9. We then take the median
estimated capacity – not the maximum because trains
might suffer compression. Considering that for typical
ADSL capacities a packet train takes about 100ms to
go through, and adding another 100ms RTT, the total
duration of these measurements is approximately 7 sec-
onds. However, as we will show in the evaluation, fairly
good results can be obtained also without repeating the
measurements, so depending on the precision and the
speed requirements of the user, one packet train can

9In case of loss, some on going connections might have lost
some packets too. When this happens, we pause for 3 addi-
tional seconds to let the connections recover.

be enough and the measurement time is reduced to few
hundred milliseconds (which is two orders of magnitude
less than the MPI tool).

Finally, we must point out that the downlink estima-
tion is not feasible if the uplink is severely congested:
in fact, under this circumstance, the RSTs will always
be buffered and the probability of having no queuing
for both, the head and the tail packets, tends to zero.
If RRST represents the load generated by the RSTs on
the uplink and Aup is its avail-bw, the downlink capac-
ity can only be measured if RRST < Aup . However, in
our large-scale experiments DSLprobe provided at least
one good measurement in over 75% of the cases. Note
that a way to drastically reduce the number of RSTs
on the uplink (thus reducing the probability of inter-
ference) would be to send ACKs only for the head and
the tail packet while using UDP probes for all the rest
of the train. Then, only two RSTs would be generated
and the train dispersion is given by the IAT between
the two RST packets. However, in this case we would
loose all information on the rest of the train and we
would not be able to detect compression or expansion
with the techniques described above.

8. EVALUATION
In this section we validate the accuracy of DSLprobe

both “in-lab” on some ADSL hosts under our control
and then towards 1244 hosts on the Internet. We also
compare our tool against the MPI tool and provide a
case study of two large ISPs providing ADSL services.

8.1 Validation on controlled hosts
We tested DSLprobe from a well-connected host to-

wards ADSL hosts under our control. Tab. 1 shows the
results obtained measuring one of these links. The ca-
pacity of the downlink is 4.14 Mbps while the capacity
of the uplink was 0.62 Mbps. We tested DSLprobe with

X-traffic Downlink Uplink

Downlink Cdown success CoV Cup success CoV
none 4.14 10/10 0.6% 0.62 10/10 1.8%

1 Mbps 4.10 10/10 0.9% 0.62 10/10 2.2%
2 Mbps 4.07 10/10 1.3% 0.62 10/10 2.6%
3 Mbps 4.06 10/10 1.4% 0.62 10/10 2.9%

4.1 Mbps 4.05 10/10 2.7% 0.62 10/10 3.0%
Uplink Cdown success CoV Cup success CoV
none 4.14 10/10 0.6% 0.62 10/10 1.8%

100 Kbps 4.14 10/10 3.2% 0.61 10/10 2.8%
150 Kbps 4.12 7/10 4.3% 0.62 10/10 3.4%
200 Kbps 4.09 6/10 5.7% 0.61 10/10 3.8%
300 Kbps - 0/10 - 0.61 10/10 5.2%
400 Kbps - 0/10 - 0.62 10/10 4.3%
610 Kbps - 0/10 - 0.63 10/10 2.7%

Table 1: Cross-traffic impact. Median estimated
downlink and uplink capacity (in Mbps), num-
ber of successful measurements and Coefficient
of Variation (CoV) of the measurements.

different levels of downlink and uplink cross-traffic. We
used sA/R = 16 for the downlink measurements, thus
almost 50% of the uplink capacity was consumed by
the RSTs (SACK =MTU and RRST = 259 kbps). The
cross-traffic was UDP and the measuring host had a 100
Mbps Ethernet link connection with at least 90 Mbps
avail-bw.

The top part of the Table shows the effect of downlink
cross-traffic. We inject MTU size cross-traffic packets
(the most harmful because they cause the highest delay)
from a third well-connected host directed to the ADSL
host. We then run ten independent uplink and downlink
measurements and take the median value as the capac-
ity estimate. In Tab. 1 we also include the number of
successful measurements and the Coefficient of Varia-
tion (CoV) of the different measurements expressed in
percentage as CoV = 100 × std deviation/mean. As
expected, the asymmetric properties of the ADSL al-
low the uplink to be measured correctly without suffer-
ing from downlink cross-traffic. For the downlink esti-
mation, even with high congestion the underestimation
caused by cross-traffic is minimal, less than 3%, con-
firming the theoretic results discussed in Sec. 6.2.

The lower half of Tab. 1 shows the impact of uplink
cross-traffic on the measurements. Even when the up-
link is completely saturated all the uplink estimations
were successful and of excellent precision, proving the
effectiveness of the cross-traffic filtering. The downlink
estimation also gives very good results, provided there
is enough avail-bw: as the cross-traffic rate on the up-
link increases and approaches the limit condition where
Aup = RRST = 260 kbps, the probability of having
the head and the tail of the RSTs free of interference
decreases up to the point where all measurements suf-
fer some compression or expansion (in our case from
300 kbps above). In this case, DSLprobe successfully
detects compression and expansion of the RST and dis-
cards the measurements affected by cross-traffic.

Overall, with both downlink and uplink cross-traffic,
the CoV between the ten different measurements is al-
ways very low, meaning that each single packet train
provides fairly good estimates. Since the total duration
for the uplink and downlink measurements is approxi-
mately 14s, one might prefer using only one measure-
ment, with reduced precision, but obtaining a good es-
timate in few hundreds milliseconds (one RTT plus the
transmission time of the train). Just to give an ex-
ample, in the experiments above the maximum error
for the downlink measurements in the worst conditions
(with 200 kbps uplink cross-traffic) was less than 150
kbps or 3.6% of the downlink capacity.

8.2 Validation on Internet hosts
We have then tested DSLprobe towards 1244 ADSL

hosts connected through various ISPs in the US and
Europe. We used the MPI tool to establish a “ground
truth”, comparing the results obtained with the ones

0 1 2 3 4 5 6 7 8 9 10
0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

Successful measurements per host

F
ra

ct
io

n
of

 m
ea

su
re

d
ho

st
s

Figure 7: Number of successful downlink mea-
surements (out of 10).

of packets unsucc. 5 10 25 50

Downlink 29.1% 17.8% 8.5% 9.8% 34.8%
Uplink 0.1% 1.1% 2.5% 7.5% 88.8%

Table 2: Train length of the measurements.
Fraction over all measurements (10×# of hosts).

of DSLprobe. We used the KAD crawler of [21] to ob-
tain IP addresses of hosts participating to the Kademlia
DHT [17] and then used the Maxmind database [16] to
discover the ISP associated to the IP addresses.

We selected 9 different ISPs providing ADSL services
in Europe and US and measured both downlink and
uplink ten times. Out of 1244 probed hosts, 822 were
answering to our probes (66.1%). For the downlink ca-
pacity, on 499 hosts we obtained at least 6 out of 10
estimates free from cross-traffic. Fig. 7 shows the his-
togram of the number of trains not affected by uplink
cross-traffic, while Tab. 2 summarizes the distribution
of the train lengths. From the table, we see that for the
uplink estimation about 90% of the measurements suc-
ceeded with trains of 50 packets. Since for the uplink
we shorten the length of the train only in case of loss,
this means that the vast majority of the trains suffer no
loss at all. On the downlink, our measurements are suc-
cessful in over 70% of the cases and we can also derive
that: 1) almost 35% of the trains were not affected by
cross-traffic or loss (50 packets); 2) in 10% of the cases
there was little loss or light cross-traffic (25 packets); 3)
using small trains (5 or 10 packets), another 25% of the
measurements were successful; 4) 30% failed because of
congested uplinks. The interesting thing, also combin-
ing these results with the histogram in Fig. 7, is that
the downlink measurements are often always successful
or not successful at all indicating that on the uplink the
ADSL is either unused or completely congested.

0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio between ADR and Capacity

C
D

F

Downlink (> 5/10)
Downlink (any/10)
Uplink

Figure 8: Accuracy of DSLprobe : comparison
with the MPI tool. Results for the downlink
improve about 10% by filtering out those hosts
with less than 6 good measurements out of 10.
Uplink measurements were always successful.

In order to verify the accuracy of DSLprobe, we mea-
sured the same hosts with the MPI tool just after DSL-
probe. The MPI tool was successful against 504 of these
same hosts and the number of hosts on which both tools
produced results (the intersection) was 372.

Fig. 8 shows the ratio between the capacity obtained
by DSLprobe and the estimate provided by the MPI
tool. For both, uplink and downlink, 85% of the results
deviate less than 20% from the capacity estimate ob-
tained with the MPI tool. For the downlink, consider-
ing only those hosts with at least 6 out of 10 successful
measurements, almost 90% of the downlink estimates
fall within 5% of the capacity obtained with the MPI
tool. The uplink estimation looks less accurate but in
absolute terms the errors are quite small: with the pre-
cision showed in Fig. 8 the estimate of an uplink of 250
kbps will have with high probability an error of less
than 40 kbps.

8.3 Discussion
While DSLprobe has been designed specifically to

measure the capacity of ADSL links, the MPI tool is
generic for ADSL and Cable networks and is intended
to estimate various other link characteristics in addition
to capacity. Designing fine-tuned tools for a specific en-
vironment rather than generic tools having broader ap-
plicability is a choice that has often to be taken. In the
case of the MPI tool, the price to pay for this higher
versatility is a higher impact on the broadband links,
with persistent buffer saturation. Over 54,000 packets
and about 30 MBytes of traffic are generated in only one
minute, whereas DSLprobe estimates the capacity send-
ing two orders of magnitude fewer packets even when

being conservative and repeating the measurement 10
times.

As it has been shown in the evaluation, for almost
60% of the hosts probed, the MPI tool was not able to
estimate the capacity (compared to 33% of DSLprobe).
This was either because the ADSL was too asymmetric
(the MPI tool can not measure links with cd/u > 16) or
because the host did not reply or stopped responding to
the probes. Additionally some ISPs (France Telecom for
example) have protections on the downlink buffer and
start dropping the packets when there is a long term
saturation, which causes the MPI tool to fail. With
DSLprobe we aim to obtain precise capacity measure-
ments without saturating the buffers. Cross-traffic can
disturb or prevent us from measuring the capacity, but
in the end DSLprobe obtains at least one good mea-
surement in two thirds of the hosts tested and at least
6 good measurements in 40% of the cases, the same
success rate as the MPI tool. Sending even more trains
will obviously increase the chances of success. Con-
gested links might still be difficult to measure but we
prefer renouncing to measure these hosts rather than
becoming intrusive.

8.4 Case study of two ISPs
We also compared the policies of two large European

ISPs, namely Free (France) and Telefonica (Spain). The
results are based on 352 different hosts, measured with
our tool. Fig. 9 shows the downlink capacity estimated
by DSLprobe. The two ISPs have different policies:
like most other ISPs, Telefonica allocates fixed down-
link rates matching the advertised offers, while Free al-
locates no fixed bandwidth (as much bandwidth as the
local loop allows). This is quite different from the re-
sults given in [6] where most ISPs adopt the same policy
as Telefonica. In Fig. 10, the results are similar for the
uplink except that over 30% of the hosts belonging to
Free have uplink capacity limited to 1 Mbps.

9. CONCLUSIONS
In this paper, we presented DSLprobe, a new single-

ended tool for measuring the capacity of ADSL links
without the active cooperation of the remote host. The
probes are composed of TCP ACKs sent without an
established connection in order to solicit TCP RSTs
from the receiving host back to the source. In order
to measure both, downlink and uplink capacities of the
ADSL, DSLprobe takes advantage of the relatively low
absolute bandwidth and the bandwidth asymmetry typ-
ical of ADSL. We study how to adjust the probes size,
carefully taking into account the amount of overhead
imposed by the L2 protocols.

To obtain precise measurements, DSLprobe exploits
the much higher capacity of the backbone links to sig-
nificantly reduce the probability of having interfering
cross-traffic packets. To detect or filter the cross-traffic
packets still interfering with the probes, we implement

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Downlink Capacity (Mbps)

C
D

F

Telefonica.es
Free.fr

Figure 9: Comparison between the downlink ca-
pacity allocated by two ISPs.

several strategies based on IPIDs and the analysis of the
IAT of the RSTs. Compared to current tools such as
the MPI tool, DSLprobe sends two order of magnitude
fewer packets, which significantly reduces the intrusive-
ness of the measurements. Finally, we demonstrated
the accuracy of DSLprobe both on controlled hosts and
on the Internet and provided a case study of two large
ADSL providers.

Acknowledgments
We are very thankful to Marcel Dischinger for provid-
ing us the source code of the MPI tool, which greatly
simplified the evaluation of DSLprobe. We also thank
Moritz Steiner for providing the IP addresses of ADSL
hosts.

10. REFERENCES
[1] J. Bellardo and S. Savage. Measuring packet reordering. In

IMW ’02: 2nd ACM SIGCOMM Workshop on Internet
measurment, pages 97–105, New York, USA, 2002.

[2] S. Bellovin. A best-case network performance model, 1992.
[3] A. Broido, R. King, E. Nemeth, and K. Claffy. Radon

spectroscopy of inter-packet delay. IEEE High-Speed
Networking Workshop, 2003.

[4] D. Croce, T. En-Najjary, G. Urvoy-Keller, and
E. Biersack. Non-cooperative Available Bandwidth
Estimation towards ADSL links. In Proc. Global Internet
Symposium 2008, Apr. 2008.

[5] M. Crovella and R. Carter. Dynamic server selection using
bandwidth probing in wide-area networks. In Proc. of
IEEE INFOCOM, 1997.

[6] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing residential broadband networks.
In Proc. Internet Measurement Conference (IMC’07), Oct.
2007.

[7] C. Dovrolis and M. Jain. End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with
TCP throughput. In ACM SIGCOMM, Pittsburgh, USA,
Aug. 2002.

[8] C. Dovrolis, P. Ramanathan, and D. Moore.
Packet-dispersion techniques and a capacity-estimation

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uplink Capacity (Mbps)

C
D

F

Telefonica.es
Free.fr

Figure 10: Comparison between the uplink ca-
pacity allocated by two ISPs.

methodology. IEEE/ACM Trans. Netw., 12(6):963–977,
2004.

[9] A. Downey. Using pathchar to estimate link
characteristics. In Proc. of SIGCOMM’99, 1999.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and C. Diot. Packet-level
traffic measurement from the Sprint IP backbone. IEEE
Network Magazine, Nov. 2003.

[11] A. Haeberlen, M. Dischinger, K. P. Gummadi, and
S. Saroiu. Monarch: A tool to emulate transport protocol
flows over the internet at large. In Proc. Internet
Measurement Conference (IMC’06), Oct 2006.

[12] V. Jacobson. Pathchar: A tool to infer charcteristics of
internet paths. ftp://ftp.ee.lbl.gov/pathchar/, 1997.

[13] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi.
CapProbe: A simple and accurate capacity estimation
technique. In Proceedings ACM SIGCOMM, 2004.

[14] K. Lai and M. Baker. Nettimer: A tool for measuring
bottleneck link bandwidth. In Proc. of USENIX, 1999.

[15] B. A. Mah. pchar: A tool for measuring internet paths
characteristics. 2000.
http://www.employees.org/bmah/Software/pchar/

[16] Maxmind. http://www.maxmind.com/
[17] P. Maymounkov and D. Mazieres. Kademlia: A

Peer-to-peer informatiion system based on the XOR
metric. In Proc. of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), pages 53–65, Mar. 2002.

[18] OECD. Oecd broadband statistics, June 2007.
http://www.oecd.org/sti/ict/broadband

[19] R. Prasad, C. Dovrolis, and B. Mah. The effect of layer-2
store-and-forward devices on per-hop capacity estimation.
INFOCOM 2003.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Sprobe: A
fast technique for measuring bottleneck bandwidth in
uncooperative environments.
http://sprobe.cs.washinton.edu, 2002.

[21] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global
View of KAD. In Proc. of the Internet Measurement
Conference (IMC), 2007.

[22] D. Van Aken. Encapsulation overhead(s) in ADSL access
networks, Dec. 2000.
www.thomsontelecompartner.com/getfile.php?id=525

[23] L. Windsor Oaks Group. Annual market outlook report,
March 2006.
www.broadbandtrends.com/Report%20Summary/2006/
BBT%20GlobalBBOutlook2006%20061110%20TOC.pdf

