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ABSTRACT

In this work we present a measurement study of user mobil-
ity in Second Life. We first discuss different techniques to
collect user traces and then focus on results obtained using a
crawler that we built. Tempted by the question whether our
methodology could provide similar results to those obtained
in real-world experiments, we study the statistical distribu-
tion of user contacts and show that user mobility in Second
Life presents similar traits to those of real humans. We fur-
ther push our analysis to radio networks that emerge from
user interaction and show that they are highly clustered.
Lastly, we focus on the spatial properties of user movements
and observe that users in Second Life revolve around several
points of interest traveling in general short distances.

Using maximum likelihood estimation, we show that our
empirical data best fit to power-law with cutoff distributions,
indicating that contact time distributions in a virtual envi-
ronment has very similar characteristics to those observed
in real-world experiments.

Categories and Subject Descriptors

C2.1 [Computer-communication Networks]: Network
Architecture and Design; J.4 [Computer Applications]:
Social and Behavioral Science
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1. INTRODUCTION
Characterizing the mobility of users has been the sub-

ject of several studies in a variety of domains, especially in
that of wireless, mobile ad hoc networks (MANET) [5]. For
example, the literature on MANET routing is rich in mobil-
ity models that have been designed, analyzed and used for
simulation-based performance evaluation of ad hoc routing
schemes [4, 10, 13]. Some of these models have also been
heavily criticized in the literature [17]. The tremendous rise
in popularity of vehicular networks has also fostered a new
wave of research in new mobility models adapted to the con-
straints imposed by the particular application [9].

In recent years, a new class of problems rised by the delay
tolerant networking (DTN) paradigm has encouraged the
study of human mobility. For example, [6, 7, 11] conducted
several experiments mainly in confined areas and studied an-
alytical models of human mobility with the goal of assessing
the performance of message forwarding in DTNs. Experi-
mental approaches such as the ones discussed above, rely on
users volunteering to take part in such experiments. Users
are equipped with a wireless device (for example a sensor
device, a mobile phone, ...) running a custom software that
records temporal information about their contacts. Indi-
vidual measurements are collected, combined and parsed to
obtain the temporal distribution of contact times. Real-life
experiments are hindered by several factors, including logis-
tics, software/hardware failures, scalability and are bound
to specific events (e.g. conferences, public events).

In this paper we present a novel methodology to capture
spatio-temporal dynamics of user mobility that overcomes
most of the limitations of previous attempts: it is cheap, it
requires no logistic organization, it is not bound to a specific
wireless technology and can potentially scale up to a very
large number of participants. Our measurement approach
exploits the tremendous raise in popularity of Networked
Virtual Environments (NVEs), wherein thousands of users
connect daily to interact, play, do business and follow uni-
versity courses just to name a few potential applications.
Here we focus on the SecondLife (SL) “metaverse” [3] which
has recently gained momentum in the on-line community.

Our primary goal is to perform a temporal, spatial and
topological analysis of user interaction in SL. Prior works
that attempted the difficult task of measuring and collecting
traces of human mobility and contact opportunities are re-
stricted by logistic constraints (number of participants to the
experiments, duration of the experiments, failures of hard-
ware devices, wireless technology used). In general, position
information of mobile users is not available, thus a spatial



analysis is difficult to achieve [7]. Some experiments with
GPS-enabled devices have been done in the past [12, 14],
but these experiments are limited to outdoor environments.

In this paper we discuss two monitoring architectures that
we tested and focus on the most robust technique, which is
based on a custom software module (termed a crawler). Our
crawler connects to SL and extracts position information of
all users concurrently connected to a sub-space of the meta-
verse: all results presented in this paper have been obtained
with this architecture.

One striking evidence of our results is that they approx-
imately fit real life data, raising the legitimate question
whether measurements taken in a virtual environment present
similar traits to those taken in a real setting. Our method-
ology allows performing large experiments at a very low cost
and generate data that can be used in a variety of applica-
tions. Although our plan is to use them to perform trace-
driven simulations of communication schemes in delay toler-
ant networks and their performance evaluation, our dataset
can be used for social science and epidemiology studies not
to mention their value for the design and evaluation of vir-
tual world architectures.

This paper is organized as follows: in Section 2 we present
the monitoring architectures that we tested and focus in
particular on the one we used to obtain our results. Section 3
illustrates the methodology we used for our experiments and
Section 4 presents our results. We conclude in Section 5.

2. MONITORING ARCHITECTURES
Mining data in a NVE can be approached from different

angles. The first architecture we discuss exploits SL and its
features to create objects capable of sensing user activities
in the metaverse. However, there are several limitations in-
trinsic to this approach that hinder our ultimate goal, which
is to collect a large data set of user mobility patterns. These
limitations mostly come from inner design choices made by
the developers of SL to protect from external attackers aim-
ing at disrupting the system operation. An example of such
attacks consists in indefinitely cloning of a simple object
(such as a sphere). Due to the centralized nature of the
SL architecture, which allocates a single physical machine
to handle a land, its objects and its users, the simple pro-
cedure outlined above constitutes a very effective denial of
service attack. In the following, we describe (when relevant)
the countermeasures adopted by SL and their implications
on our monitoring architectures. Most of the limitations we
discuss in the following can be circumvented by building a
crawler that connects to SL as a normal user.

The task of monitoring user activity in the whole SL
metaverse is very complex: in this work we focus on mea-
surements made on a selected subspace of SL, that we called
a land (or island). In the following we use the terminology
target land to indicate the land we wish to monitor. Lands
in SL can be private, public or conceived as sandboxes and
different restrictions apply: for example private lands forbid
the creation and the deployment of objects without prior
authorization.

We now detail the monitoring architectures we investi-
gated in our work.

A sensor network architecture1: Our first approach has
been inspired by current research in the area of wireless sen-

1This approach has been used also in [15].

sor networks: it resembles what one would do in the real
world to measure physical data (temperature, movements,
etc.) by deploying sensor devices in the area to be moni-
tored. We built virtual sensors using the standard object
creation tool accessible from a SL client software. Our sen-
sors collect data and communicate with an external web
server that stores the location information of users connected
to the target land. The functionality of a sensor is defined
using a proprietary scripting language [2].

A key limitation imposed by the infrastructure of SL is
that sensors cannot be arbitrarily deployed on any land.
While it is impossible to deploy objects on private lands
without authorization, objects on public lands expire after
a predicted lifetime, which is land dependent. To deal with
the restricted object lifetime, our system replicates all sen-
sors in the same position at regular time intervals.

When a sensor is deployed on the target land, it detects
users (a maximum of 16 users can be detected at the same
time) that are within the sensing range (96 meters) with a
tunable periodicity and stores this information in its local
cache (16KB is the maximum storage space). Due to its lim-
ited memory, a sensor initiates a connection with our web
server and flushes its memory using the HTTP protocol as
soon as the maximal capacity has been reached. The techni-
cal specification of a sensor imposes several challenges that
hinder the task of covering an entire land. Moreover, the
number of HTTP messages that can be exchanged between
sensors and the web server is restricted by the SL infrastruc-
ture: this limits the quantity of data that can be retrieved
from our sensors, hence a tradeoff exists between the gran-
ularity of the sensed data and the duration of a monitoring
experiment.

Monitoring using an external crawler: An alternative
approach is to build a custom SL client software (termed
a crawler) using libsecondlife [1]. The crawler is able
to monitor the position of every user using a specific fea-
ture of libsecondlife that enables the creation of simple
maps of the target land. Measurement data is stored in a
database that can be queried through an interactive web ap-
plication2. The crawler connects to the SL metaverse as a
normal user, thus it is not confined by limitations imposed
by private lands: any accessible land can be monitored in its
totality; the maximum number of users that can be tracked
is bounded only by the SL architecture (as of today, roughly
concurrent 100 users per land); communication between the
crawler and the database is not limited by SL.

During our experiments, we noted that introducing mea-
surement probes in a NVE can cause unexpected effects that
perturb the normal behavior of users and hence the mea-
sured user mobility patterns. Since our crawler is nothing
but a stripped-down version of the legacy SL client and re-
quires a valid login/password to connect to the metaverse, it
is perceived in the SL space as an avatar, and as such may at-
tract the attention of other users that try to interact with it:
our initial experiments showed a steady convergence of user
movements towards our crawler. To mitigate this perturb-
ing effect we designed a crawler that mimics the behavior of
a normal user: our crawler randomly moves over the target
land and broadcasts chat messages chosen from a small set
of pre-defined phrases.

2Access to the application can be requested via mail to the
authors.



3. MEASUREMENT METHODOLOGY
Using the physical coordinates of users connected to a tar-

get land, we create snapshots of radio networks: given an
arbitrary communication range r, a communication link ex-
ists two users vi, vj if their distance is less than r. In the
following we use a temporal sequence of networks extracted
from the traces we collected using our crawler and analyze
contact opportunities between users, their spatial distribu-
tion and graph-theoretic properties of their communication
network.

A precondition for being able to gather useful data is to
select an appropriate target land and measurement param-
eters. Choosing an appropriate target land in the SL meta-
verse is not an easy task because a large number of lands host
very few users and lands with a large population are usually
built to distribute virtual money: all a user has to do is to sit
and wait for a long enough time to earn money (for free). In
this work, we manually selected and analyzed the following
lands: Apfel Land, a german-speaking arena for newbies;
Dance Island, a virtual discotheque; Isle of View, a land
in which an event (St. Valentines) was organized. These
lands have been chosen as they are representative of out-door
(Apfel Land) and in-door (Dance Island) environments; the
third land represents an example of SL events which sup-
posedly attract many users. In this paper we present results
for 24 hours traces: while the analysis of longer traces yields
analogous results to those presented here, long experiments
are sometimes affected by instabilities of libsecondlife un-
der a Linux environment and we decided to focus on a set of
shorter but stable measurements. A summary of the traces
we analyzed can be defined based on the total number of
unique users and the average number of concurrently logged
in users: Isle of View had 2656 unique visitors with an av-
erage of 65 concurrent users, Dance Island had 3347 unique
users and 34 concurrent users in average and Apfel Land
had 1568 users and 13 concurrent users in average.

We launched the crawler on the selected target lands and
set the time granularity (intervals at which we take a snap-
shot of the users’ positions) to τ = 10 sec. We selected a
communication range r to simulate users equipped with a
bluetooth and a WiFi (802.11a at 54 Mbps) device, respec-
tively rb = 10 meters and rw = 80 meters. In this work we
assume an ideal wireless channel : radio networks extracted
from our traces neglect the presence of obstacles such as
buildings and trees.

User location in SL is expressed by coordinates {x, y, z}
which are relative to the target land whose size is by default
256 × 256 meters. However there is one exception: when
a user sits on an object (e.g. a bench) her coordinates are
{x = 0, y = 0, z = 0}. In the target lands we selected users
who did not sit.

3.1 Temporal analysis
The metrics we use to analyze mobility patterns are in-

spired by the work of Chaintreau et. al. [6] and allow the
analysis of the statistical distribution of contact opportuni-
ties between users:

• Contact time (CT ): is defined as the time interval in
which two users (vi, vj) are in direct communication
range, given r;

• Inter-contact time (ICT ): is defined as the time in-
terval which elapses between two contact periods of a

pair of users. Let

[t1(vi,vj)s, t
1
(vi,vj)e], [t

2
(vi,vjj)s, t

2
(vi,vj)e], ...[t

n
(vi ,vj)s, t

n
(vi,vj )e]

be the successive time intervals at which a contact be-
tween user vi and vj occurs; then, the inter-contact
time between the k − th and the (k + 1) − th contact
intervals is:

ICT
k
(vi,vj) = t

k+1
(vi,vj)s − t

k
(vi,vj)e

• First contact time (FT ): is defined as the waiting
time for a user vi to contact her first neighbor (ever).

3.2 Spatial analysis
We present here the metrics we used to perform the spatial

analysis of our traces:

• Node degree: is defined as the number of neighbors of
a user when the communication range is fixed to r;

• Network diameter: is computed as the longest short-
est path of the largest connected component of the
communication network formed by the users. We used
the largest component since, for a given r, the network
was sometimes disconnected;

• Clustering coefficient: is defined as in [16]: we com-
pute it for every user and take the mean value to be
representative of the whole communication network;

• Travel length: for every user vi we compute the dis-
tance covered from its login to its logout coordinates
in SL;

• Effective Travel time: for every user vi we compute
the total time spent while moving; hence, this metric
does not include pause times;

• Travel time: for every user vi we compute the total
connection time to the SL land we monitor with the
crawler;

• Zone occupation: we divided lands in several square
sub-cells of size L × L and computed the number of
users in every sub-cell, with L = 20 meters.

4. RESULTS
We now discuss the results of our measurements for the

three selected target lands and study the influence of the
communication range (rb or rw).

Temporal Analysis: Fig. 1 illustrates the distribution of
the temporal metrics we used in this work for rb = 10 meters
and rw = 80 meters.

A glance at the complementary CDF (CCDF) of the con-
tact time CT , showed in Fig. 1a-1d, indicates that the me-
dian contact time is roughly 30, 60 and 100 seconds respec-
tively for Apfel Land, Isle of View and Dance Island when
r = rb, and about 70, 200 and 300 seconds for the same set
of islands when r = rw. Fig. 1a-1d also indicate that trans-
fer opportunities are proportional to r: larger transmission
ranges imply larger transfer opportunities.

The CCDF of the inter contact time ICT is shown in
Fig. 1b-1e: the median ICT is around 400 seconds for the
two open-space lands and between 700 and 800 seconds for
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Figure 1: Temporal Analysis: Complementary CDF of contact opportunity metrics for three target lands.

the Dance Island. Analyzing the same trace of user move-
ment yields surprisingly similar results with different com-
munication ranges. We believe this result is due to the fact
that users are concentrated around points of interest (as dis-
cussed below), but it would be interesting to compare such
findings with real-world experiments.

Although the distribution of contact opportunities ap-
pears to be similar for the two open-space lands, the CCDF
of the first contact time FT , depicted in Fig. 1c-1f, illus-
trates some differences between these lands: in Apfel Land
users have to wait for a long time before meeting their first
neighbor. The median FT is around 300 seconds for Apfel
Land, while it is less than 20 seconds for the other two lands
when r = rb. The FT improves a lot when increasing r: the
median is around 30 seconds for Apfel Land and less than 5
seconds for the other lands.

In this work, we used Maximum likelihood estimation
(MLE) [8] for fitting our traces to some well-known math-
ematical models of contact-time distributions. The three
baseline models we used are summarized in Table 1.

Table 1: Definition of the power-law distribution

and other reference statistical distributions we used

for the MLE. For each distribution we give the basic

functional form f(x) and the appropriate normaliza-

tion constant C.

name f(x) C

power-law x−α (α − 1)xα−1
min

power-law with cutoff x−αe−λx λα−1

Γ(1−α,λxmin)

exponential e−λx λeλxmin

We applied MLE to analyze the distribution of contact
times. The CCDF of the contact time CT depicted in Fig. 1a-

d can be best fit to an exponential distribution: when r = rb

we have that λ = {0.010, 0.003, 0.008} and when r = rw we
have that λ = {0.007, 0.002, 0.004} respectively for Apfel-
Land, Dance Island and Isle Of View.

MLE applied to our empirical data on inter contact times
indicates that the best fit is the the power-law with cutoff
distribution. We observe in Fig. 1b-e that the CCDF of the
inter contact time ICT has two phases: a first power-law
phase and an exponential cut-off phase. The values of the
coefficients of these distributions are: α = {0.34, 0.47, 0.42}
and λ = {0.00049, 0.00041, 0.00046} respectively for Apfel-
Land, Dance Island and Isle Of View, when r = rb and
α = {0.46, 0.44, 0.59}, λ = {0.00045, 0.00037, 0.00041} when
r = rw. Note that in order to improve the clarity of the Fig-
ures, in Fig. 1a-b-d-e we do not show the slope correspond-
ing to fitting distributions with the coefficients we computed
using MLE.

These results are quite surprising: we obtained a statisti-
cal distribution of contact opportunities that mimics what
has been obtained for experiments in the real world [7,12,14].
It should be noted, however, that human activity roughly
spans the 12 hours interval, while even the most assiduous
user which we were able to track in our traces spent less
than 4 consecutive hours on SL.

Radio networks: We now delve into a detailed analysis
of the communication networks that emerge from user inter-
action when we assume them to be equipped with a wireless
communication device covering a range r ∈ {rb, rw}. Fig. 2
illustrates the aggregated (over the whole measurement pe-
riod) CCDF of the node degree, the aggregated CDF of the
network diameter and clustering coefficient.

The node degree CCDF illustrates a diverse user behavior
in each target land: for Apfel Land we observe that 60%
of users have no neighbors, for the Dance Island only 10%
of users have no neighbors while in the Isle of View, all
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Figure 2: Radio networks: graph theoretic properties for three selected target lands.
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Figure 3: Spatial distribution of users.

users have at least one neighbor when r = rb. When the
communication range is set to r = rw all users have at least
one neighbor in all lands. The maximum degree and the
whole distribution varies a lot between target lands: the
main reason lies in the physical distribution of users on a
land. In Apfel Land users are relatively sparse while in the
Dance Island, for example, most of the users spend most
of the time in a tiny portion of the land: this observation
is corroborated3 by our study on the spatial distribution
of users as shown in Fig. 3. Although the general trend
for all target lands we inspected is that a large fraction of
the land has no users, some lands (e.g. Dance Island) are
characterized by hot-spots with several tens of users.

The CDF of the network diameter illustrates the impact
of different transmission ranges: it is clear that the diam-
eter shrinks for r = rw. We note, however, that for Apfel
Land there is an apparent contradiction: for r = rb the
maximum diameter is smaller than for r = rw. This phe-
nomenon is due to the fact we compute the diameter of the
largest connected component of the temporal graph formed

3There is an intuitive reason for this phenomenon: in a dis-
cotheque users spend most of their time on the dance floor
or by the bar, while in an open space users are generally
located more sparsely.

by users: when the radio range is small (and users are scat-
tered through the target land) we observe the emergence of
relatively small connected components, whereas for larger
ranges the connected component is large (eventually it in-
cludes all users), hence a larger diameter.

In Fig. 2 we also plot the CDF of the clustering coefficient
for the whole measurement period. Our results clearly point
to high median values of the clustering coefficient which in-
dicate that the networks we observe are not Erdos-Renyi
random graphs4: these networks are highly clustered but,
due to the small number of concurrent users that can log
in to a land and the results on the network diameter, we
cannot claim at this time that the graphs that emerge from
user interaction have small world characteristics.

Trip analysis: using physical coordinates, we were able
to study the statistical distribution of the distance travelled
by users on the three target lands we analyze in this paper.
Fig. 4 illustrates the aggregate CCDF of the travel length,
the travel time and the login time for all users. Fig. 4-c
shows the CCDF of the login time: in our measurement we
observed that the longest log-in time for a user was around 4
hours while 90% of users are logged in for less than 1 hour.
Applying the MLE method to the distribution in Fig. 4-c
indicates what is the best fit for our empirical data: users
have a permanence time on the selected lands we monitored
that is exponentially distributed.

Fig. 4-a provides further hints towards a better under-
standing of user mobility in the selected target lands. For
a confined area such as Dance Island, the vast majority of
users travel less than 200 meters (90th percentile). This
observation however applies also for open spaces: for Apfel
Land, the 90th percentile is around 400 meters while it grows
up to 500 meters for Isle of View. There is a small frac-
tion of users who travel a very long distance: for the Isle
of View, around 2% of users travel more than 2000 meters.
Fig. 4-b is useful to infer the distribution of the times a
user takes to travel from her initial point (the first time our

4Which are usually characterized by a very small clustering
coefficient [16].
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Figure 4: Trip analysis for three selected target lands

crawler tracked the user) to her final point (the last time
the user has been seen on the target land). We applied the
MLE method to these metrics and found that for the Travel
Length CCDF, showed in Fig. 4-a, the best fit is again the
power-low with cutoff distribution (see Table 1); instead,
when analyzing the Login Time CCDF, the best matching
reference distribution is exponential.

5. CONCLUSION AND FUTUREWORK
In this paper we discussed a novel methodology to perform

user profiling that exploits the raising popularity of on-line
communities emerging from user interaction in Networked
Virtual Environments. We studied the mobility patterns
of users connected to Second Life using a crawler that ex-
tracts at regular time intervals user positions on a target
land. Tempted by the question whether any similarity can
be found between our results and measurements performed
in the real world, we first characterized the statistical dis-
tribution of contact opportunities among users. We further
pushed our analysis to characterize the spatial distribution
of users and their mobility behavior: users are generally
concentrated around points of interest and travel small dis-
tances in the vast majority of cases. Finally we characterized
the graph theoretic properties of radio networks emerging
from user interaction and found results indicating they are
highly clustered. Is mobility of users in SL representative of
real human mobility? In this paper we have constructed a
tool that helps answering this key question, and basic statis-
tical estimation tools applied to our data sets indicate that
contact-time distributions extracted from a virtual environ-
ment are similar to those obtained in real-world experiments.
An interesting area of future research would be to build the
network of “relationships” among SL users. Based on the
“relation graph”, new questions can be addressed such as
the frequency and the strength of contact between acquain-
tances.

Our measurements are publicly available and constitute a
useful material for trace-driven simulations of a large variety
of applications: the study of epidemics and information dif-
fusion in networks, the performance analysis of forwarding
schemes in DTNs, and MANET are just few examples.
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