
Institut Eurécom
Department of Corporate Communications

2229, route des Crêtes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-08-219

A Distributed Access Control Framework For XML
Document Centric Collaborations

April 25th, 2008

Mohammad Ashiqur Rahaman, Yves Roudier, and Andreas Schaad

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {rahaman,Yves.Roudier}@eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: BMW Group Re-
search & Technology - BMW Group Company, Bouygues Télécom, Cisco Systems, France Télécom,
Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.





A Distributed Access Control Framework For XML
Document Centric Collaborations

Mohammad Ashiqur Rahaman, Yves Roudier, and Andreas Schaad

Abstract

Collaboratively working on documents within a distributed context is a
non-trivial task, in particular if neither a centralized access control policy
enforcement platform nor a centralized document repository can be assumed
to be present. Decoupling the specification of the access control policy of
documents from its later autonomous enforcement can make it easier to edit
documents in a decentralized yet secure fashion.

This paper introduces a distributed and fine grained access control frame-
work for XML document centric collaborations. The framework addresses
the authenticity, confidentiality, integrity, and traceability of circulated doc-
uments and their updates. It is fully distributed in that each participant can
enforce and verify these security properties without relying on a central au-
thority.

Novel aspects of the proposed framework include the adoption of a de-
centralized key management scheme that provides support for the crypto-
graphic enforcement of a credential based access control policy. This scheme
is driven by the access interests expressed by the participants over document
parts. A protocol for the controlled edition of a document is finally intro-
duced based on these techniques.

Index Terms

XML documents, collaborative edition, access control in distributed and
mobile systems, cryptographic protocols





Contents

1 Introduction 1

2 Scope and Objectives 2

3 Motivating Example 3

4 Modeling Document Access Patterns 5
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Document Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Framework Overview 7

6 Access Interest Specification 9
6.1 Expression of Access Interest (EAI) . . . . . . . . . . . . . . . . 9
6.2 Advantages of EAI . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Access Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Document Authorization 13
7.1 Access Control Policy . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Determining a Common Access Interest . . . . . . . . . . . . . . 14

8 Key Management 14
8.1 Access Key Generation . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 Control Data Block Distribution . . . . . . . . . . . . . . . . . . 16
8.3 Common Secret Key Management . . . . . . . . . . . . . . . . . 16
8.4 Lazy Rekeying . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.5 Joining and Leaving . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Document-Related Security Metadata 22
9.1 Secure Document Envelope . . . . . . . . . . . . . . . . . . . . . 23
9.2 Document Protection Proof . . . . . . . . . . . . . . . . . . . . . 24
9.3 Document Navigation . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Controlled Document Edition 26
10.1 Interest Specification Phase . . . . . . . . . . . . . . . . . . . . . 26
10.2 Collaboration Phase . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Related Work 27

12 Conclusion and Future Work 29

v



List of Figures

1 The agreed EAW document Schema . . . . . . . . . . . . . . . . . . 3
2 EAW document instance whose parts are instances of ENU A, EJNM A,

EJNM B and NA B . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Message Exchange in Initiation Phase . . . . . . . . . . . . . . . . . 7
4 Message Exchange in Collaboration Phase . . . . . . . . . . . . . . . 8
5 Determining common access interest groups considering view primitive

subsumes append. (a) S2 is subsumed by S1. (b) Three common access
interest groups are determined with two disjoint sets of nodes. (c) S2

is partly subsumed by S1. (d) Four common access interest groups are
determined with three disjoint sets of nodes. . . . . . . . . . . . . . . 11

6 Determining common access interest groups considering append primi-
tive subsumes view. (a) S2 is subsumed by S1. (b) Three common access
interest groups are determined with two disjoint sets of nodes. (c) S2

is partly subsumed by S1. (d) Four common access interest groups are
determined with three disjoint sets of nodes. . . . . . . . . . . . . . . 12

7 Tree-based Group Diffie-Hellman (DH) key agreement for 4 participants
P1, P2, P3, P4. The participants host their DH values in the leaves. The
notation k → αk means that participants compute the DH private value
and then compute the DH public value BK = αk and broadcast it. . . . 15

8 Owner Oi’s key tree with two participants P1 and P2. Oi computes the
sibling paths for P1 and P2. . . . . . . . . . . . . . . . . . . . . . . 16

9 Lazy rekeying. (a) P1, P2 and P3’s key-paths with two data structure (i.e.
TES/TEK, Neighbor List). (b) after P4 joins to P1. (c) Lazy rekeying of
P2 and P3 after receiving document envelope from P1. DocEnv(..) is the
secure document envelope (Section 9.1). . . . . . . . . . . . . . . . . 17

10 Secure Document Envelope. . . . . . . . . . . . . . . . . . . . . . . 21
11 EJNMA document part schema nodes annotation with common secret

keys and corresponding navigation before sending of secure document
envelopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



1 Introduction

Documents are an increasingly central concern in today’s digital inter-organizational
exchanges and collaboration processes, as illustrated by the multiplication of XML
standards for instance. They have evolved from primitive forms and static collec-
tions of information, as used by humans, to complex, detailed, and ever-evolving
descriptions destined to automated processing and data interchange. This increas-
ing complexity has been accompanied by the need to handle detailed security poli-
cies defining all possible accesses to fine grained parts of documents. Such docu-
ments are composite in that they are originated by multiple responsible authorities
in charge of their own portion of the document and of ruling who may edit or read
it. In addition, the document edition process is becoming increasingly collaborative
with participants exchanging documents arbitrarily depending on context evolution
and on their mobility or churn rate. Contrary to centralized document repositories,
which have been vastly studied (see for instance [4,10,11,14,16,20,23]) and which
provide a central location for enforcing access control on a per request basis, such a
distributed setting pleads for new models of access control in which access control
specification is asynchronously decoupled from its enforcement.

Selective access to and collaborative updates of fine grained documents are
challenging tasks in that context. We develop in this paper a collaboration frame-
work and its associated protocols in order to support the cryptographic enforce-
ment of fine grained and multi-authority access control. Our approach in particular
aims at restricting document access through the encryption of its parts with keys
shared by groups of participants with similar access rights. Our scheme intends at
limiting the scope of document re-encryptions and key redistribution needs when
participants are added or removed. Furthermore, once a document is circulated one
participant should be able to verify the authenticity of the source of the document
and of the structural and content-wise integrity of updates so that the contents of
the documents are not altered during their transmission from one participant to the
other. Finally, a participant may need to trace the updates that other participants
performed over the document, in case one of them transgressed his update rights.

The rest of this paper is organized as follows. Section 2 discusses the scope
of the XML document centric collaborations we address and describes the secu-
rity objectives of our proposed distributed access control framework. Section 3
then introduces a motivating scenario featuring a collaborative edition of docu-
ments. Section 4 specifies the XML document model retained and in particular
details the document labeling scheme. Section 5 gives an overview of the pro-
posed distributed fine grained access control framework. The specification of the
access pattern descriptions used in this framework is introduced in Section 6. Doc-
ument authorization and access control policy specification are sketched in Section
7. Section 8 elaborates on the key management issues. Section 9 introduces secu-
rity meta data which then encompasses the secure document envelope. Section 10
then describes the different phases and operations of controlled document edition.

1



Section 11 finally presents related work and points out the significant differences
of our work.

2 Scope and Objectives

Assuming a distributed deployment of collaborative edition of XML docu-
ments, the system will exhibit specific properties due to the lack of a dedicated
security infrastructure, as opposed to a centralized framework for XML documents:

1. Distributed Document Sources. Multiple participants will author documents
simultaneously. This first makes it necessary for a common document schema
to be agreed upon by all participants. However, documents are instantiated
by the participants during collaborative work as opposed to being instanti-
ated by a centralized source. We assume that different document parts have
distinguished authorities (or owners) who may also participate in the collab-
oration.

2. Document Distribution. No central repository should be assumed to be avail-
able. Document editors are supposed to send new or updated documents to
other participants in push mode if no storage infrastructure is available, oth-
erwise they may store documents at a central repository devoided of any
security role and independent from the owner.

3. Distributed Document Access. One participant may need to access document
parts that are managed by an authority at any time, even if that authority is
unavailable, provided the document is being circulated to another available
participant.

4. Fine Grained Document Access. Access patterns may range from the whole
document to an individual element. Conversely, documents being composite,
the access rights distributed by multiple authorities will bear on a subset of
the document only.

We consider that attackers might intercept communications between the par-
ticipants, and also that some participants might modify parts of the document in
order to gain some advantage out of the modification like rendering the document
invalid, or changing its semantics or destination. However, we do not consider re-
silience to denial of service attacks other than through sending a document to all
participants.

Compared with a centralized access control framework, one cannot rely on
a central entity as authorized participants can autonomously circulate and access
document parts from other participants. This makes it necessary to consider addi-
tional authorization and protection issues on documents.
Document Authorization:

1. Access Decision Delegation: For scalability reasons, access control deci-
sions cannot be performed in centralized fashion, especially in scenarios in-
volving virtual organizations or multiple authorities.

2



Legends
Owner SubTree

Parent-Child
Attribute

EAW

WitnessRecords

WitnessRecord

ENU

EJNM

NA

ReqTime ReqToReqID

CMS ReqToReqFrom

ReqRec Steps

Status Content OrgName

ContactsReqTime
ReqRec

Time

Person
Name

ENU NA

EJNM
Country

TwfID

0

0

0

0

0 0

0

0

0
0

1 2 1

1
2 3 4 5

0 1 1 2

2

1

Country
0

Country

0

Figure 1: The agreed EAW document Schema

2. Distributed Control of Data Disclosure: Only authorized participants should
get access to the protected document parts, yet access control enforcement
should not rely on a central authority.

Document Protection:
1. Document Confidentiality: Selected document contents should only be dis-

closed to the authorized participants.

2. Document Authenticity: Upon receiving a document participants should ver-
ify that they receive the document from an authentic source.

3. Content-wise and Structural Integrity: Participants should be able to verify
the content-wise and structural integrity of a received document with respect
to the original document as malicious participants may circulate invalid doc-
uments which are not a part of the original document.

4. Traceability of Document Access: All access by participants should be tracked
if possible to check if the past access performed were authorized. Our pro-
posal addresses update access only, in particular to ensure that the update
of a document part was performed in conformance with the authorization
policy of its authority.

3 Motivating Example

This section introduces an example of the collaboration taking place between
two European Union (EU) administrative bodies (Europol and Eurojust), and asso-
ciated 27 member states authorities [7]. Europol and Eurojust have their represen-
tatives (Europol National Member and Eurojust National Member) for 27 member

3



EJNM

Person
Name

EJNM B

ReqFrom

OrgName

ContactsReqRec
Time

Contact
Time

Country

0

0

0

1

1 2

2

B2

12:30a.m EJNM A

NA B
Mr. A 13:00 p.m

NA B
NA

ReqRec
Time

Steps
0 1

3
Country
0

B

13:40p.m
Witness
Protected

ENU

ReqTime ReqToReqID

ENU A
0

0 1 2

Country
0

A

121 09:30 a.m. EJNM A

EJNM

CMS

EJNM A

0

4
ReqToReqFrom

Status Content

ReqTimeReqRec
Time

Country

TwfID

0

0

1 2 3

0 1

1

A

10:30 a.m.
ENU A

11
Opened Drug

Trafficking

EJNM B
12:00 a.m

EAW

WitnessRecords

0

0

WitnessRecord
0

Legends
Owner SubTree

Parent-Child

Attribute
Content

Figure 2: EAW document instance whose parts are instances of ENU A, EJNM A, EJNM
B and NA B

states. Each member state has its national contact points (National Authority) for
Europol and Eurojust. Europol, Eurojust, associated law enforcement authorities
and their employees (hereafter called participants) collaborate whenever there is
an occurrence of cross border organized crime in the EU: this entails a request for
Mutual Legal Assistance (MLA).

In this scenario, participants collaboratively define and work on a document
called European Arrest Warrant (EAW). The MLA scenario is structured as fol-
lows:

1. A Europol National Unit of country A (ENU A) makes a written request
of assistance (for a witness protection) to a Eurojust National Member of
country A (EJNM A).

2. The EJNM A opens a Temporary Work File (Twf) in a local Case Manage-
ment System (CMS).

3. The EJNM A contacts Eurojust National Member of country B (EJNM B)
by forwarding the request of assistance.

4. The EJNM B contacts the responsible national authority of country B (NA
B). Steps are taken by the responsible NA B to provide the requested assis-
tance.

The MLA scenario depicts a clear scenario of collaborative activities on different
parts of the EAW document. This scenario mirrors the mentioned properties and
requirements of Section 2.

Distributed Sources, Autonomy, and Access Policy. The different parts of the
EAW document are structured according to the local regulations and policies of
the authorities of the EU. For example, one country may require to know the reli-
gious belief of a suspect. On the contrary, the disclosure of one’s religious belief

4



may be prohibited by law in another country which compels instantiating different
document instances and having different access policies over that.

Distributed and Fine Grained Access. As the crime is cross border, various
sensitive information is possessed by different law enforcement authorities. EJNM
B employee may need to access a deeply nested element containing useful infor-
mation that is owned by ENU A.

Information Push. An information push model is observed in the MLA sce-
nario, the EAW document being circulated among different participants during
collaboration as updates are performed. Upon receipt, one participant may get
access to the document parts of the EAW.

Figure 1 shows a EAW document schema that is agreed among the participants
and it distinguishes the ownership of different parts of EAW schema by dotted rect-
angles around subtrees. ENU is the owner of the subtree rooted at ENU. Similarly
EJNM and NA are the owners of the subtrees rooted at nodes EJNM and NA respec-
tively. Figure 1 also shows the labels for every element and attribute of the EAW
schema.

4 Modeling Document Access Patterns

In this section, we present our document labeling scheme, which is partly in-
spired by [21], [3], and [12], and how it can be used to specify document access
patterns.

4.1 Preliminaries

Definition 1 Document: A Document, d, is a tree of XML elements and attributes
where each node represents either an element or an attribute. d is associated with
a set of Owners, Od, and each node in d is assigned a label based on a labeling
scheme Ld (Section 4.2). Formally: d = (Vd, v̂d, Od, Ld), where:
–Vd = V e

d ∪ V a
d is a set of XML elements and attributes respectively;

–v̂d is the root element of the document;
–Od represents the set of Owners;
–Ld = {l : l = Label(n), where n ∈ Vd and Label(n) is a labeling scheme};

According to Definition 1, a Document is a labeled tree where nodes represent
elements and attributes, and edges (assumed) represent the hierarchical relation-
ship among them. The tree (Figure 1) contains edges representing the element-sub
element (solid lines), element-attribute (dotted arrows), element-content (solid ar-
rows), and attribute-value (solid arrows) relationships. Each node is associated
with a non-negative integer label.

Definition 2 Participants: Pd represents a set of participants, Pi, i.e. owners of
document parts and interested readers and writers who take part in the collabora-

5



tive activities on a document d. Formally:

Pd =
{

Pi:Pi ∈ (Od ∪ ¬Od) }

Here, ¬Od, refers to the participants that are not owners but have certain access
interest (interested participants) on a document d. Owners may also have access
interests on other document parts. For the MLA scenario, the participants are all
the employees of ENU A, EJNM A, EJNM B, and NA B.

Definition 3 Document Owners: Document Owners, Odi
, of a document, d, repre-

sent a set of Participants who are agreed to design the document schema collabo-
ratively, and specify access control policies on their respective Document Parts,
di (Definition 4) autonomously.

By definition there can be a number of owners but for simplicity we consider
only one owner for each document part. In Figure 2, the EAW document instance
has four owners (OENUA, OEJNMA, OEJNMB, ONAB) and each of them owns
dENUA, dEJNMA, dEJNMB, dNAB document parts respectively.

Definition 4 Document Part: A Document Part, di, is a subtree of a Document,
d, rooted at d̂i, and is owned by an Owner Oi. Formally: di = (ni, d̂i, Oi, Lni),
where:
–ni ⊆ Vd is a sub set of XML elements and attributes of d;
–Oi ∈ Od represents the owner of di;
–Lni = {l : l = Label(n), where n ∈ ni};

A Document part may represent a part of schema or a document instance part.
In Figure 2, EAW document instance has four document part instances rooted at
ENU (dENU ), EJNM (dEJNM ), EJNM (dEJNM ), NA (dNA) respectively.

4.2 Document Labeling

Defining a fine grained access on a XML document means performing access
at the element or attribute level. We define a labeling scheme, comparable with [1]:
a non negative integer is assigned to each node of the tree when the tree is traversed
in breadth first fashion from the root node. For a document d with root element v̂d,
and n ∈ N:

Label(X) =



0 if X = v̂d;
C if X ∈ Vd;
where n is the number of child nodes of Vd;
0≤C ≤(n− 1) and ∀ l1, l2 ∈N ((l1 =Label(Xi))
∧ (l2 =Label(Xi+1))→ l2 >l1);
for 0<i< n and Xi+1 is the next pre-order
node of Xi.

6



dEJNM A

OENU

ONA B

dEJNM A

2. sendControlData CDo
1

CIGap

P1

Pm

dENU

dNA

1. sendAccessInterest()

OEJNM A

1. sendAccessInterest()

2. sendControlData CDo
m

Figure 3: Message Exchange in Initiation Phase

Figure 1 and Figure 2 show the labels for the EAW document schema and an EAW
document instance respectively. Each child of a node (including the root) is labeled
in pre-order with C, where 0≤C≤n− 1.

Several document modeling techniques have been proposed which are based on
labeling schemes. [9] proposed a scheme based on a k-ary tree with no more than
k children for each node. It is inefficient when k is large and [1] proposed another
scheme addressing this issue. The latter scheme is based on prefix labeling, where
the label of a node A is a prefix of the label of node B then A is an ancestor of B.
Likewise, B is a descendant of A. However, in this approach, the labels become
long because of skew [1] in the tree.

Dynamic changes in the document tree can be easily captured by the labeling
scheme. Considering NAB sends the steps information taken by it to ENUA, it might
add a new subtree rooted at SendTo under the node NA. In this case, SendTo
would get a label 2 without affecting the existing labels of the tree (Figure 1).

5 Framework Overview

In this section, we present the distributed document access control framework
designed to address the security requirements of Section 2. We give an overview
of the framework in light of the collaborative work of EAW document. This frame-
work features a two phase controlled edition protocol.

Based on the participants’ knowledge of the schema of the EAW document,
each of them can instantiate an empty document initially. We assume ENU A,
EJNM A, EJNM B, NA B and their employees are the participants, Pd and EJNM
A is the owner OEJNMA of a part dEJNMA of the EAW document d. Initially, all
the interested participants express their access interests to OEJNMA through the
use of access primitives (see Section 6.3).

7



CIGap

Upd(di)
P1

Pm

Upd(di)

SDE1

SDEm

di

Figure 4: Message Exchange in Collaboration Phase

Upon receiving all access interests, OEJNMA evaluates them with respect to
its access control policy (see Section 7.1) and determines the common interest
group (see Definition 6) CIGdi=EJNMA

ap . Figure 3 shows message exchanges in the
initiation phase of the framework.

The owner OEJNMA can compute a common secret key independently af-
ter it determined CIGdi

ap based on the list of EAIs. OEJNMA distributes con-
trol information to Pi ∈ CIGdi

ap = { ENU A employees, EJNM B employees,
NA B employees } using which Pi can compute the common secret key (Section
8.2). This distribution ends the initiation phase of the edition protocol.

The collaboration phase of the edition protocol, which consists of the actual
access to the document, can then start. Each participant Pi now computes the same
common secret key CKdEJNMA

ap∈{V,A,D,R} (see Section 8.3) after receiving the control
information. After generating the encrypted document and meta data block with
the common secret key, the participants can push the updated document part (see
Section 10) towards other participants; this part is protected through the use of
an adapted envelope SDE as described in Section 9.1. Any participant with the
knowledge of the common secret key can access the received protected document
part autonomously and verify that the updates performed result from a legitimate
access as captured in that document envelope. Figure 4 shows message exchanges
in the collaboration phase of the framework.

In the proposed framework, the access control enforcement and verification
is completely decoupled from the access control policy specified by the owner
OEJNMA. OEJNMA is only involved in determining the CIG members and in
distributing the corresponding control information. The later enforcement of access
control and the protection of the document part are independently handled by the
participants in the collaboration.

8



In the sequel of the paper, M and K denote the message and key space respec-
tively. h1 denotes one way hash function. hM denotes the Merkle hash function [2].
The encryption and signature of a message m∈M with a key K ∈K is written as
[m]K and Signa(m)=[h1(m)]Ka

(where Ka is the private key of a) respectively.

6 Access Interest Specification

This section describes how participants interested in accessing some document
part can express access patterns on the data structure. To this end, the framework
introduces a language for expressing access interests. The following introduces
the specification of such Expressions of Access Interest (EAI), which are used to
describe the targets in a document that are to be controlled, and related access
primitives (View, Append, Delete, Rename).

6.1 Expression of Access Interest (EAI)

An EAI e over the document d is an expression of labels and operators that
refer to a set of nodes N ⊆ d, defined as follows:

e =


ε | ∗ | (e1 + e2) | (e1 e2) | e1[e2 | ρ] | e();
where e1 and e2 are labels; ρ = e1 ⊕ e2;
and ⊕ ∈ {=, 6=, <, >,≤,≥,∈,3,∨,∧,⊂,⊆,⊃,⊇}.

ε and ∗ define empty and wild card expressions respectively. (e1+e2) and (e1e2)
define choice and concatenation expressions respectively. Finally, e1[e2 |ρ] and e()
define conditional expression and refers to the content of a node having the label e
respectively.

Definition 5 Valid EAI: Given a document tree d, Valid EAI is an EAI over d if it
allows a traversing from the root node to a node having the final label of EAI .

According to this definition each node n∈d is referable by a Valid EAI. Formally
–∀n (Vd(n)→ ∃e ivEAI(e, n)); where n is any XML node and e is any Valid EAI.
Here, Vd(n) and ivEAI(e, n) are two predicates stating n∈Vd and e is a Valid EAI
over n respectively.

Example 1 0001∗, 00012[0] are valid EAIs whereas 00015 is not a valid EAI
(Figure 2). Let us consider few Access Interests of different employee participants
of: EJNM A: (1) To view ReqID, ReqTime from ENU A. (2) To view Country
attribute from ENU A. EJNM B: (1) To view TwfID, ReqTime, Status from
EJNM A. (2) To copy ReqID, ReqTime from ENU A. (3) To copy the CMS from
EJNM A. NA B: (1) To view ReqID, ReqTime from ENU A. (2) To view ContactTime
from EJNM B. (3) To view ReqTime of EJNM A. ENU A: (1) To copy Steps from
NA B.

9



The access interests of Example 1 span from a view access interest for an at-
tribute to a copy access interest over a subtree. Moreover, employees of EJNM B
and NA B have similar access interest (View) over ReqTime of the document part
dEJNMA.

6.2 Advantages of EAI

The EAIs based on the labeling scheme are the means for managing access
interests through access primitives. Access interests of an organization may change
due to changes in regulations: for example, the new regulation of NA B requires
to retrieve the CMS information from EJNM A instead of getting information from
ENU A. The specification of an EAI allows participants to capture this regulation
change. EAIs offer other advantages:

• EAIs can be realized by X-Path [8] or X-Query [5] and are implementation
independent. Note that X-Path or X-Query can be used to refer to the target
nodes of a document. However, they are tightly bound to an XML document
instance. Two documents having a similar tree structure but different identi-
fiers have to employ different X-Path expressions, whereas a valid EAI can
be used for both documents.

• The EAI is expressive enough to specify different parts of a document from
the coarser grained form (i.e. the whole document) to the finest granular-
ity level (i.e. the deepest nested element or attribute in a document). For
example, 00012 refers to the node CMS (Figure 1) and EAI 000∗ refers to
the subtree rooted at node WitnessRecord (Figure 1). A flexible (using
prefix, suffix) EAI is possible. For example, 0001[0] refers to the attribute
Country of the node EJNM (Figure 1).

6.3 Access Primitives

An access interest specification for the framework is based on a set of access
primitives and allows participants to specify various access interests over the differ-
ent document parts. We extend [22] primitives by replacing its centralized X-Query
based centralized enforcement with a distributed encryption based enforcement.
Participants define unique public keys associated with its access interest, which
we term access keys (Section 8.1), are passed as parameters of the various prim-
itives and serve as principal identifiers (the use of these keys is further explained
in the following sections). An access primitive takes V alid EAIs (’targetEAI’
and ’sourceEAI’), a propagation value, and the interested participant’s access key
as inputs, and outputs a subset of a Document Part. The ’targetEAI’ and propa-
gation are evaluated on the owner’s document part. The propagation input takes a
non-negative integer value, n or +. If it is n ≥ 0 or + then the access interest is
also propagated toward the n-th descendant nodes (elements and its attributes) or

10



EJNM

CMS

Status Content
TwfID

11
Opened

Drug
Trafficking

EJNM

CMS

Status Content
TwfID

11
Opened Drug

Trafficking

View

Append

{P1,P2,P3}

{P4,P5}

CKView

={P1,P2,P3,P4P5}

CKAppend

={P4,P5}

CIGView

CIGAppend

CKView={P1,P2,P3}CIGView

(a) (b)

Determining Common
Access Interest Groups

EJNM

CMS

Status Content
TwfID

11 Opened
Drug

Trafficking

EJNM

CMS

Status Content
TwfID

11

Opened
Drug

Trafficking

View

Append

{P1,P2,P3}

{P4,P5}
CKAppend

={P4,P5}CIGAppend

CKView

={P1,P2,P3}CIGView

(c) (d)

Determining Common
Access Interest Groups

CKViewCIGView
={P1,P2,P3,P4P5}

CKAppend={P4,P5}CIGAppend

S1

S2

S1

S2

S1\ S2

S2\ S1

S1\ S2
S2\ S1

S1 S2

Figure 5: Determining common access interest groups considering view primitive sub-
sumes append. (a) S2 is subsumed by S1. (b) Three common access interest groups are
determined with two disjoint sets of nodes. (c) S2 is partly subsumed by S1. (d) Four
common access interest groups are determined with three disjoint sets of nodes.

the whole subtree respectively. Intuitively enough, propagation 0 means that the
access interest is not propagated toward the descendants.

1. View(key, targetEAI, [Propagation]). The View primitive returns the nodes
of the document part that matches the valid ’targetEAI’. For a propagation
value of 0, only the matching node with the ’targetEAI’ without the descen-
dant nodes is returned.

2. Append(key, targetEAI, newNode, [Propagation]). The Append primi-
tive creates a new node (i.e. element,attribute) with the name ’newNode’ as
a child node of each matching node of the valid ’targetEAI’. If the propaga-
tion value is 0 only the first matching node is considered.

3. Delete(key, targetEAI, [Propagation]). The Delete primitive deletes the
nodes rooted at the matching valid ’targetEAI’. The deletion is performed
either up to the n-th descendants of the matching node or the whole subtree
from that node.

4. Rename(key, targetEAI, newName[ ], [Propagation]). The Rename prim-
itive renames the nodes of the document parts matching the valid ’targetEAI’.
It is propagated either down to the n-th descendant nodes of the matching
node or down the whole subtree rooted at the matching ’targetEAI’. Each

11



EJNM

CMS

Status Content
TwfID

11
Opened

Drug
Trafficking

EJNM

CMS

Status Content
TwfID

11
Opened Drug

Trafficking

Append

View

{P1,P2,P3}

{P4,P5}

CKAppend

={P1,P2,P3}CIGAppend

CKView

={P1,P2,P3}

CIGView(a) (b)

Determining Common
Access Interest Groups

EJNM

CMS

Status Content
TwfID

11 Opened
Drug

Trafficking

EJNM

CMS

Status Content
TwfID

11

Opened
Drug

Trafficking

Append

View

{P1,P2,P3}

{P4,P5}
CKView

={P4,P5}CIGView

CKAppend

={P1,P2,P3}

CIGAppend

(c) (d)

Determining Common
Access Interest Groups

CKViewCIGView
={P1,P2,P3,P4P5}

CKAppendCIGAppend

S1

S2

S1

S2

CKAppendCIGAppend

={P1,P2,P3,P4P5}

={P1,P2,P3}

S1\ S2
S2\ S1

S1 S2

S1\ S2

S2\ S1

Figure 6: Determining common access interest groups considering append primitive sub-
sumes view. (a) S2 is subsumed by S1. (b) Three common access interest groups are
determined with two disjoint sets of nodes. (c) S2 is partly subsumed by S1. (d) Four
common access interest groups are determined with three disjoint sets of nodes.

propagation of the access primitive renames the corresponding descendant
node with a new name from the list ’newName[ ]’.

The Append, Delete, and Rename are generally called update primitives here-
after. Update primitives implicitly imply the View primitive to the nodes they
apply to. Based on these primitives, there might be other composite operations
like for example, Copy(key, sourceEAI, targetEAI, [Propagation]) and Move(key,
sourceEAI, targetEAI, [Propagation]). Copy creates an exact subtree up to n-th de-
scendants of the document parts rooted at the node matching the valid ’sourceEAI’.
The created subtree is then appended as a child of the nodes matching the valid ’tar-
getEAI’. Intuitively, it uses the Append primitive. Move does exactly the same op-
eration like Copy and in addition it deletes the subtree matched by the ’sourceEAI’.

Definition 6 Common Interest Group (CIG): Given a set of access primitives, ap∈
{V (iew), A(ppend), D(elete),
R(ename)} on a document part di, CIGdi

ap, is a set of public access keys PKi
ap,

that defines a set of participants who have same access interest (i.e. access primi-
tives with same ’targetEAI’ and Propagation) and satisfy the access policy of the
authority for di. Formally:

CIGdi
ap =


PKi

ap for i∈ [1, z] z participants; where
(∀api∈[1,z]∃(j, k)∈ [1, z]∧ j 6= k)
apj =apk for z access primitives.

12



7 Document Authorization

An owner has two roles for the authorizations on the collaborative XML doc-
uments. First, to specify the access control policy for the document part it owns.
Second, to determine the common access interest group to initiate the collabora-
tion.

7.1 Access Control Policy

Owners define access control policies to regulate access to their respective parts
of a document. Access interests from other participants are evaluated against these
policies. An access control policy can be complex enough, but for simplicity we
chose a simple credential based model to show how policy evaluation may occur.

Definition 7 Credential Specification: a Credential Specification, CS, consists of
any combination of the following:
–participant identifier, Pi;
–participant access key, PKi

ap;
–validEAI 1;
–if cs1, cs2 ∈ CS, then cs1 ∧ cs2 and cs1 ∨ cs2 are credential specifications.

In this approach, participants to which an access policy applies are implicitly
referred by a set of conditions in a credential specification. Each participant may
have one or more associated credentials. These credentials may be grouped within
signed certificates in order to prevent malicious participants from supplying fake
credentials, certificates may be used that would consist of signed credentials.

Example 2 The following are examples of credential specifications in CS:
–(EJNM B employee ∨ NA B employee): this denotes participants who are EJNM
B Employee or NA B employee;
–(NA B employee ∧ validEAI): this denotes the NA B employee who has an
access interest with validEAI .

Definition 8 Policy: A Policy poli of the owner Oi of document part di is a pair
consising of a credential C and of a reference N to a set of nodes in the document.
Formally:
– poli = (C,N); where C ∈ CS andN ⊆ di

Example 3 The following are examples of policies of OEJNMA over dEJNMA:
–(EJNM B employee∨NABemployee, CMS): this policy states any em-
ployee of EJNM B or NA B can get an access to CMS.
–(NA B employee ∧ validEAI): this policy states that any NA B em-
ployee who has an access interest described by access pattern validEAI is autho-
rized to get access to N = validEAI .

1This essentially represents nodes of a document part di that are requested for access.

13



7.2 Determining a Common Access Interest

After evaluating all the access interests, the authority determines a disjoint set
of common access interest groups, CIGs with respect to the ’targetEAI’s of all
the access primitives. We assume the authority is a member of every group it is
managing. The determination of the disjoint set of CIGs is described as follows:

Let us assume two access primitives ap1 and ap2 from P1 and P2 containing
targetEAIs e1, e2 respectively refer to the two subtrees S1 and S2 of the document
part di and Oi is the authority of di.

If S1 and S2 are disjoint, meaning S1 ∪ S2 = null, then e1 and e2 do not
overlap. P1 and P2 are assigned to two disjoint sets of common access interest
groups CIGap1 ={P1} and CIGap2 ={P2} respectively.

If any subtree S2 is either (1) entirely subsumed by the other S1, or (2) partly
subsumed by the other S1, then some overlapping occurs between e1 and e2. De-
termining the disjoint set of common access interest groups in this case proceeds
as follows. Regarding case (1), two disjoint subtrees of nodes are determined: one
with the subsumed subtree S2 and the other with S1\S2. Regarding case (2), three
disjoint subtrees of nodes are determined: one with S1\S2, the second with S1∩S2

and the last with S2\S1. Each disjoint subtree is associated with an access primitive
accordingly.

Update (U = ap∈{A,D, R}) primitives generate two different groups CIGUi

and CIGVi while View (V =V iew) primitives require only one group CIGVi to be
formed. Note that any participant having an Update access interest may need to be
a member of multiple groups because of the implicit granting of a view access and
of the overlapping of different access interests:

• In case (1), assuming that e1 and e2 respectively refer to view and update
primitives, the disjoint groups formed are: CIGV1\2 = {P1}, CIGV2 = {P2}
and CIGU2 = {P2}. If on the contrary e1 and e2 respectively refer to update
and view primitives, the disjoint groups formed are now: CIGV1\2 = {P1},
CIGU1\2 ={P1}, CIGV2 ={P1, P2} and CIGU2 ={P1}.

• In case (2), assuming that e1 and e2 respectively refer to view and update
primitives, the disjoint groups formed are: CIGV1\2 = {P1}, CIGV1∩2 =
{P1, P2}, CIGU1∩2 ={P2}, CIGV2\1 ={P2} and CIGU2\1 ={P2} . In contrast,
if e1 and e2 respectively refer to update and view primitives, the disjoint
groups formed are: CIGV1\2 = {P1}, CIGU1\2 = {P1}, CIGV1∩2 = {P1, P2},
CIGU1∩2 ={P1} and CIGV2\1 ={P2} .

Figure 6 depicts case (1) and (2) considering view and append primitives for S1

and S2 respectively from P1, P2, P3 and P4, P5.

8 Key Management

A participant may have different access interest (View, Append, Delete, Re-
name) depending on its collaboration needs which they convey to the authorities

14



0

P1 P2 P3 P4

4

Shared Secret

2

3 5 6

1

s1 s2 s3 s4s1 s2 s4s3

s1 s2s1s2 s3 s4s3s4

s3 s4s1 s2 P1’s key path

P1’s sibling path

Figure 7: Tree-based Group Diffie-Hellman (DH) key agreement for 4 participants
P1, P2, P3, P4. The participants host their DH values in the leaves. The notation k → αk

means that participants compute the DH private value and then compute the DH public
value BK = αk and broadcast it.

by sending access primitives. An authority needs to identify the participants based
on their signature in the access primitives. In effect the participants may not know
other participants who have the same access interest yet they want to compute a
common secret key keeping their privacy. In the case of unavailability of the au-
thority, participants should be able to act as delegate. As a result participants need
means using which they will be able to not only compute common secret keys of
the groups they are in but also to be a delegate dynamically.

This section introduces three different keys and their management to achieve
those. First, participant key pair (PKz, SKz) associated with each participant
Pz to relate them with credentials as described in Section 7.1 and is not discussed
further. Second, access keys associated with each access primitive identifies par-
ticular access interest of a participant. Finally, a common secret key defines each
common access interest group.

8.1 Access Key Generation

Each participant Pi possesses a set of access key pairs: (SKi
ap, PKi

ap) for
each access primitive. Based on a new unique private access key SKi

ap, the partic-
ipant generates his corresponding public access key using DH [13] protocol where
arithmetics are performed in a group of prime order p with generator α.

PKi
ap = αSKi

ap mod p (1)

Participants Pi send signed (using the private key SKi) access primitives including
the corresponding public access key PKi

ap as a parameter (see Section 6.3) to the
authority Ai.

Pi∈[1,n]

SignPi
(AccessPrimitive())

−−−−−−−−−−−−−−−−−→ Ai

15



0

3

2

4

1

O1 P1

P2

SK PK1
apO1

PK2
ap

PK1
ap

SKO1

PK1
ap

SKO1

PK2
ap

P1’s Key path = { 4 , 1 }

P1’s Sibling path SP1 = { 3 , 2}

P2’s Key path = { 2 }

P2’s Sibling path SP2= {1}

Figure 8: Owner Oi’s key tree with two participants P1 and P2. Oi computes the sibling
paths for P1 and P2.

8.2 Control Data Block Distribution

Participants do not know others with the same access interest yet they have
to compute a common secret key. After determining the common access inter-
est groups the authority takes the charge of building a control data block CDAi

containing information for common secret key computation for each member of
a group it manages. This block consists of a set of individual blocks CD

z∈[1,m]
Ai

destined to the m members of group CIGdi
ap and defined as follows:

CD
z∈[1,m]
Ai

= [SPz]PKz

SPz is the sibling path containing a list of public DH values which participant Pz

requires to compute its key-path. The number of such required values being vari-
able with the participant but always smaller or equal to number m of participants
in that group and larger than or equal to log(m) in case of a balanced tree. This
also prohibits one participant to identify other members in the group and thus they
remain anonymous to him.

The authority finally encrypts each individual block CDz
Ai

with the public
key PKz of every participant Pz as determined from the submitted credential and
signed requested access pattern and sends it afterwards.

Ai

CDz
Ai−−−−→ P

z∈CIG
di
ap

Knowledge of the control data block enables each participant to compute the com-
mon secret key of its respective groups and act as a delegate afterwards. Such a
message cannot be intercepted to gain access to protected documents since each
individual block is encrypted with authorized member’s public key.

8.3 Common Secret Key Management

In a distributed environment like the EAW scenario (Section 3), one cannot
assume the presence of any centralized entity for computing and distributing the

16



0

1

P1

P4

Join
2

0.1

1.1

P1

3.1

P4

TES / TEK

[2] / [1]

P2

P2

TES / TEK

[2] / [1]
[2] / [1.1]

TES / TEK

[2] / [1]

[P2 , P3] [P1 , P3]

P2P1

Neighbor List

P3

[P2 , P3 , P4 ] [P1]

CK1 CK2

0.1

1.1

P1

3.1

P4

P2

TES / TEK

[1] / [2]
[1.1] / [2]

TES / TEK
[2] / [1.1]

TES / TEK

[2] / [1.1]

CK 2

P1 P2

[  DocEnv(…, [2] / [1.1] ) ]

P1 P3

[  DocEnv(…, [1.1] / [2] ) ]

TES / TEK
[1] / [2]

[2] / [1]

[P1, P3, P4] [P1 , P4]
(a)

(a.1)

(b)

(b.1)

(c.2)

(c.6)

(c)

CK2

(a.2)
(a.2)

(a.1)

(b.2)
(b.2)

(c.1)

(c.3)

(b.1)

3 4 P3

TES / TEK

[2] / [1]

TES / TEK

[1] / [2]

P1

P2

P3

(a.2)

[P1 ]

P4

…..

P1

P2

P3

7 8

2

4 P3

TES / TEK

[2] / [1.1]P4

[P1 , P3]

[P2 , P3 , P4 ]

2

P34

7 8

P1

P2

P3

P4

[2] / [1]

TES / TEK

[2] / [1.1]

CK 2

CK1

CK1

CK 2

CK1

(c.5)

(c.4)

[P1, P2, P3]

[P1, P2, P3]

Figure 9: Lazy rekeying. (a) P1, P2 and P3’s key-paths with two data structure (i.e.
TES/TEK, Neighbor List). (b) after P4 joins to P1. (c) Lazy rekeying of P2 and P3

after receiving document envelope from P1. DocEnv(..) is the secure document envelope
(Section 9.1).

common secret key. Even if such an entity were available, it would constitute a
single point of failure thereby rendering the system vulnerable. In contrast, the
owner (original authority) takes the charge of initializing the group collaboration
by exploiting the key tree structure of TGDH. In particular, the owner generates
a key tree by providing its DH private value in one leaf node and taking other
participants’ DH public values (i.e Public access keys (PKi

ap)) one by one as other
leaf nodes. In the process of such bottom-up computation of the DH private values
in its key-path, a common secret is computed for the root node.

In effect, Every node in the key tree is assigned a unique number v, starting
with the root node that is assigned 0: the two child nodes of a non-leaf node v are
set to 2v + 1, and 2v + 2 respectively. Each node v is associated with a key pair
consisting of a DH private value Kv and of a DH public value BKv, relying on
the hardness of solving the discrete logarithm. For every node v, Kv is computed
recursively as follows:

17



Kv =



if v is a non-leaf node;
(BK2v+1)

K2v+2 mod p

= (BK2v+2)
K2v+1 mod p

= αK2v+1K2v+2 mod p
if v is a leaf node;
SKi

ap.

In short, computing the DH private value Kv of a non-leaf node requires the
knowledge of the DH private value of one of the two child nodes and the DH public
value of the other child node. In effect, one participant only needs to compute
the DH private values along its key-path. In other words, one participant only
needs to know the DH public values of the siblings of the nodes of its key-path
(sibling path). Therefore, the value K0 computed for the root is the secret for all
the participants (including owner). At this point, the common secret key is derived
from the shared secret as follows: CKdi

ap =h1(K0).

To illustrate this, taking two participants’ PK
i∈[1,2]
ap the owner O1 builds the

key tree in Figure 8. Once the key-tree is generated the owner can determine the
sibling path values SPz∈[1,2] required for each participant in the group which it
sends to them as part of control data block.

The owner being initializer of a group collaboration does not make the frame-
work a centralized one as all the participants need to compute the common secret
key along their key-paths by themselves. Moreover, the computation of the shared
secret is still contributory [15] in nature as the owner takes public access keys of
all participants as the leaf nodes of the logical key tree to compute the common
secret key and thereby to compute the SPz . Furthermore, this adopted scheme
has a two fold advantage. First, participants can compute the common secret key
neither generating the complete key tree nor identifying other participants in the
group, which is essential with respect to document centric exchanges. Second,
group membership scales as described in [15, 17].

Definition 9 Protected Document Part de
i : Given a common interest group CIGdi

ap

with a ’targetEAI’ e over a document part di, any participant in the group can build
a protected document part de

i by encrypting all nodes N ∈ e with the common
secret key CKdi

ap while other nodes of di (i.e. di\N ) are left unchanged.

According to the definition any participant having the common secret key CKdi
ap

is able to get ap ∈ {V,A, D, R} access to N ∈ e of de
i . The document owner

is assumed to originally distribute a protected document in which all subtrees are
protected with appropriate common secret keys as determined by the set of access
interests it received and in which nodes without any interest expressed may either
be left unencrypted or encrypted with the owner’s access key depending on its
access control policy.

18



8.4 Lazy Rekeying

Managing dynamically joining and leaving participants requires updating the
common secret key. Lazy rekeying refers to the act of re computation of a new
common secret key by a participant only when it requires to do so. This will take
place when interacting with a participant that knows about a different version of
the group, which may happen upon receiving a document envelope.

Definition 10 Neighbors: A participant Pi’s neighbors is a list of participants who
provide their DH public values in order to compute the DH private values along
the key path of Pi.

Definition 11 Top End Key-path Value (TEK) and Top End Sibling-path Value
(TES): A participant Pi’s TEK is the computed DH private value associated with
the top most node along its key path and TES is the received DH public value
associated with the top most node along its sibling path.

According to these definitions, in Figure 7 P1 and P2 are neighbors to each other
and so do P3 and P4. The DH values of nodes 1 and 2 are the TEK and TES for
P1, P2 respectively and the DH values of nodes 2 and 1 are the TEK and TES of
P3, P4 respectively. In other words, neighbors have exactly the same TEK and TES
for a common access interest group.

It can be observed from a participant’s point of view that any dynamic change
in its neighbors incurs an update in its key-path and similarly any dynamic change
in its non-neighbors incurs an update in its sibling path. In particular, incurred
dynamic changes cause new DH values to be computed in corresponding key paths
and sibling paths that are accumulated in TEK and TES respectively.

Lazy rekeying relies on the usage of Neighbor List and the pair TES/TEK
maintained by each participant in a group where TES/TEK values are piggybacked
with the secure document envelope (further described in Section 9.1). The usage
of Neighbor List and TES/TEK is as follows:

• Neighbor list is a history of neighboring participants with which Pi is col-
laborating.

• Pi updates its neighbor list and TEK only when acting as a delegate for a
joining/leaving event or receiving a secure document envelope containing
a new TEK value indicating there has been a change in its neighbor list. Pi

updates its TES only when it receives a document envelope containing a new
TES value meaning there is a dynamic change in the key-paths associated
with it’s TES. The TES/TEK being piggybacked merely adds simple value
in the envelope that makes it suitable for a scalable system .

As group membership changes (further described in Section 8.5), initial re
computation is performed only for the key-paths associated with the current au-
thority and the participant that is subject to join or leave. As such the authority

19



and the subject participant can immediately compute the new common secret key
along their key-paths. The pair TES/TEK also contains the subject participant’s
key (not shown in the Figure 9) so that recipient can update its neighbor list ac-
cordingly. At this point both can either exchange previous document updates to the
existing group members or perform new updates in documents and then exchange
new document updates to the current group members including/excluding the sub-
ject participant. For the former, the secure document envelope is piggybacked with
previous TES/TEK whereas for the latter the new TES/TEK is piggybacked.

To illustrate this in Figure 9, P1, P2 and P3 having their same original authority
Oi (not in the figure) maintain their initial Neighbor List as (P2, P3), (P1, P3) and
(P1) respectively (a.1). P1 and P2’s TES/TEK as [2]/[1]2 and P3’s TES/TEK as
[1]/[2] (a.1). All of them have computed the common secret key CK1 (a.2).

Now P4 joins with the delegate authority P1 and P1, P4 can compute their
new key-paths and update their corresponding Neighbor List as (P2, P3, P4) and
(P1, P2, P3) (b.1). P1 and P4 update their TES/TEK with the new value of [2]/[1.1]
(b.1). At this point P1 and P4 can compute the new common secret key CK2 (b.2).
However, P2 and P3 are unaware about this joining event and thus do not know the
identity of P4 at all.

Now if P1 being a neighbor sends a secure document envelope piggybacked
with updated TES/TEK [2]/[1.1] to P2 which will then notice that there has been
a change in its neighbor and thus in TEK by comparing its TES/TEK with the
received one (c.1). P2 then updates its TES/TEK (c.2) and computes the new com-
mon secret key CK2 in order to decrypt the document envelope (c.3). Similarly
P3 can update its neighbor and TES/TEK and compute the key CK2 if P1 sends
a secure document envelope piggybacked with updated TES/TEK [1.1]/[2] to P3

(c.4,c.5,c.6). Note that the sent TES/TEK is inversed for P3 with compare to P2 as
P3’s TEK is P2’s TES in the key tree.

Other members still can collaborate with their previous knowledge of com-
mon secret keys without stopping the collaboration as they do not even notice the
changes occurred by the join/leave event. However, they will be noticed when they
receive a secure document envelope containing new piggybacked information and
can re compute the new common secret key utilizing the received TES/TEK. Note
that the dynamic changes in the group is neither broadcasted nor requested yet
available participants continue collaboration with previous common secret key.

8.5 Joining and Leaving

The authority may delegate its access decision among the participants it is
managing so a group of participants with the same access interest might be up-
dated dynamically even when the owner (initial authority) is unavailable. While
the participants may only know their closest authority they do not know other par-
ticipants who have similar access interests yet they want to compute a common

2The labeled integer value of a key tree node represents the corresponding DH values.

20



Piggybacked blockDocument block

Sign ( MS   ( Upd (di ) ) , …

..,Sign    (MS   (Upd ( di ) ) ))

SKj

Upd (di) ,….., Upd (dj)PiP1

pjpj

p1

Sign ( Cert , ... ,

... Sign    (Cert ) ) )

SKj

Cert …CertA1 Aj

pj Aj

A1p1

Sign   ( MP    ( Upd ( di ) , Upd ( di ) ) ..

.. , Sign    ( MP   ( Upd ( di )  , di ) ) ) )

SKj

pj

p1

pj pj

MP    ( Upd ( di ) ,  di ) ) , …

.., MP    ( Upd ( di ) , Upd ( di ) )

p1

pj

p1

pj

p1

pj pj

Sign ( TES / TEK)

SKj

TES / TEK

pj

CKap
di

PKz

Meta data block

pj

p1p1
p1

Figure 10: Secure Document Envelope.

secret key. We now assume that the control data block CDAi introduced in Section
8.2 contains additional information, in particular the description of access decision
delegations and a description of the access control policy rules that apply to the
document part whose access is granted to group members, as follows:

CD
z∈[1,m]
Ai

= [SPz, CertA1..CertAi , SecObj]PKz

(CertA1..CertAi) denotes a chain of certificates originated from the owner Oi

(i.e. A1) to the participant Pz for an access primitive ap ∈ {V,A, D, R}. Each
certificate CertAi =SignAi(PKz, PKz

ap) asserts that the authority Ai authorizes
Pz to perform the access ap over the document nodes of di (i.e. ’targetEAI’∈ di).
The first certificate in the chain being from the owner enables a participant to be
a delegate which then also may add its certificate in the chain delegating further.
This certificate then can be used as a proof to other participants of CIGdi

ap that Pz

was entitled to access di. This can be also used to trace that Pz has performed the
updates on di.

’SecObj’ defines security objectives, i.e., access control policy rules relevant
for the ’targetEAI’, like for instance the fact that the data referred to in the ’tar-
getEAI’ should be reserved to the German police. Based on the chain of certificates
and the objectives, the participant, acting as a delegate for the owner, take over the
access decision related tasks of the owner in the interest specification phase, and
can evaluate the requested access.

A new participant sends its access primitives to an authority Pr it knows just
as described in Section 8.1. Pr being a delegate evaluates the new participant’s
request and determines its eligibility to becoming a new member of an existing
group (or to create a new group). Pr re-computes its key path taking the new mem-
ber’s access key into account and sends control information to the new members as
described in Section 8.2.

The access control policy might additionally specify whether backward secrecy
applies to the new participant, which should be described in ’SecObj’. If it does,
the new member can only start document exchanges using the new common secret
key from that point on. Otherwise, the authority sends the previous n common

21



secret keys to the new member Pj so that it can observe the previous updates and
collaborate on these if possible.

Pr

[CK1...CKi..CKn]PKj−−−−−−−−−−−−−−→ Pj

Note, that the other members may not collaborate on document updates performed
with the new key right way after new members join and thus do not re compute
the new common secret key. This means that available members recompute the
corresponding common secret key in lazy fashion as described in Section 8.4 and
depicted in Figure 9.

In case of a voluntary leave, the participant sends its associated certificate
CertAi = SignAi(PKz, PKz

ap) in similar fashion to the direct authority Pr it
joined before.

Pi∈[1,m]

[CertAi
]PKj−−−−−−−−→ Pj 6=i∈[1,m]

Pr deletes the leaving member node from its key path and recomputes its new
key-path. More often, the participant’s authority will decide on his group mem-
bers’ leave. If forward secrecy applies Pr immediately sends a secure document
envelope piggybacked with new TES/TEK values to the available members of the
groups werein the leaving participant was a member of so that they can re compute
the new common secret key. Then available members recompute the new com-
mon secret key and collaborate further using it. Otherwise, the other members re-
compute only when it receives a secure document envelope from other participants
in the group. In case the direct authority is unavailable the subject participant may
inform to the next indirect authority accordingly that it knows from the certificate
chain of the received control data block.

9 Document-Related Security Metadata

As mentioned earlier, the scheme described above makes no special assump-
tion regarding how participants interact. In particular, we target scenarios in which
only documents would be exchanged, possibly only on top of an asynchronous
messaging scheme like email for instance. In that context, a document should pig-
gyback all security metadata related to its content and data structure as well as
to the correctness of its updates so far. It should also carry the necessary security
metadata making it possible for the receiving participant to decide whether to rekey
as explained above in Section 8.4 and which key to use to decrypt the various doc-
ument parts. This section describes the secure document envelope data structure
that carries such security metadata, their use for document protection and how to
use them for a navigation through the protected document.

22



9.1 Secure Document Envelope

Document parts may be arbitrarily exchanged between and modified by an au-
thority/editor of any authorized participant. This requires ensuring the authenticity
and integrity of the data exchanged, even though the documents may be passed
through third-parties like unauthorized participants or a node on the communica-
tion network. The Merkle Tree authentication mechanism [19] used for instance
in [2] to produce a Merkle Signature out of a static XML document addresses such
issues. A unique digital signature can be applied at the root node of the document
to ensure both its authenticity and integrity as a whole. The collaborative edition
process iteratively modifies document fields, therefore this technique alone is not
enough. The following therefore introduces a document containment property sim-
ilar to the one discussed in [2] that addresses such concerns:

Definition 12 Document Containment: Given a set of updated nodes N ⊆ di of a
document part di, a Merkle signature [2] of MSi(d̂i) and the Merkle hash path 3

MP (N, d̂i): N is said to be contained in di if the locally computed Merkle hash
value of d̂i from the received N and MP (N, d̂i) is equal to the verified signature
value of MS(d̂i), where d̂i is the root node of di.

A secure document envelope SDEj consists of document block, meta data
block and piggybacked block. The document block, (UpdP1(di), ..., UpdPj (di)) is
the updated document parts of di after the authorized access ap performed by the
participants P1, ..., Pj respectively. Each participant Pj computes a Merkle sig-
nature over the root node of UpdPj (di) which it signs together with the received
Merkle signatures from the previous editors using its private key SKj . The com-
puted signature yields the value of

SignPj (MSPj ( ̂UpdPj (di)), SignPj−1

(MSPj−1( ̂UpdPj−1(di)), ..., SignP1(MSP1( ̂UpdP1(di)))).

The meta data block consists of a certificate chain and Merkle hash paths blocks.
Each certificate in the chain, (CertA1..CertAi) is formed as described in Section
8.5. Each participant Pj signs its certificate CertAj received from its authority
together with the received certificate chain with its private key SKj yielding the
signature as

SignPj (CertAj , SignPj−1(CertAj−1 , .. .., SignP1(CertA1))).

The Merkle hash path blocks, (MPP1(UpdP1(di), d̂i), ...,
MPPj (UpdPj (di), ̂UpdPj (di))) is a list of Merkle hash paths of the nodes of di

that are required for the recipient to compute the corresponding Merkle signatures
locally. Each participant Pj signs its Merkle hash path MPPj (UpdPj (di),

̂UpdPj (di)) together with the received Merkle hash paths starting from the owner
(i.e P1) with its private key SKj yielding the signature as

3a list of nodes’ hash values required to compute the root’s hash value.

23



SignPj (MPPj (UpdPj (di), ̂UpdP1(di)), SignPj−1

(MPPj−1(UpdPj−1(di), ̂UpdPj−1(di)), .. .., SignP1(MPP1(UpdP1(di), d̂i))).

The document and meta data blocks are bundled together and encrypted by the
common secret key CKdi

ap. The final block contains TES/TEK as being piggy-
backed (see Section 8.4) with the above mentioned encrypted block and signed by
Pj that resulted in SignPj (TES/TEK). Finally, the encrypted data block with the
piggybacked block is encrypted by the public key PKz of other interested partici-
pant Pz which only Pz 6=j ∈ CIGdi

ap can decrypt.

Pj
SDEj−−−−→ P

z∈CIG
di
ap

9.2 Document Protection Proof

A secure document envelope SDEj which is built and initially sent by Pj

can be forwarded by any participants in the group during collaboration. As the
document and meta data blocks are only be disclosed to a participant having the
common secret key and thus remain confidential to others unless they are able to
re-compute the required key in lazy fashion (see Section 8.4). The signature over
every block prevents any malicious participant in the group to include or exclude
any fake data block (i.e. fake document parts, certificates and Merkle hash paths).

Moreover, upon decrypting the encrypted data block any participant in the
group can verify the received document part’s authenticity and integrity as a whole.
It is important to note that an authority initially is assumed to send a secure doc-
ument envelope containing its current document updates (possibly empty) with its
Merkle signature to all the participants it manages so that participants can verify
the integrity and authenticity of the document part they are going to collaborate
with. To illustrate this, when Pj receives the initial secure document envelope
containing UpdA1(di) it can verify UpdA1(di)’s containment in the original docu-
ment di (i.e. authenticity and integrity) by computing a Merkle signature out of the
received Merkle hash path MPA1(UpdA1(di), d̂i) and locally computed hash val-
ues of UpdA1(di). The computed Merkle signature should match with the verified
signature value of SignA1(MSAi(d̂i)).

Any participant Pj upon receipt of a secure document envelope from Pj−1 can
verify the document integrity and authenticity by computing the Merkle signatures
out of the received Merkle hash paths MPP1(..), ..,MPPj−1(..) and locally com-
puted hash values of corresponding document part updates UpdP1(di), .., UpdPj−1(di).
Each locally computed Merkle signature should match with the corresponding ver-
ified signature values of SignPj−1(MSPj−1( ̂UpdPj−1(di)), ...,

SignP1( ̂UpdP1(di))).
Finally, as each participant signs its document updates along with the previous

series of updates performed by previous editors the recipient can trace everyone’s
updates by simply verifying the signatures iteratively. It can also verify the eligi-

24



…………

SKj

…………

SKj

…Upd (di)

………………….

SKj

MP    ( Upd ( di ) ,

Upd (di ) ,  …….

CK2

CMS

StatusTwfID

12
Processing

CK3

Cont ent
Human

Trafficking

ReqRec
Time

EJNM

CMS

EJNM A

ReqToReqFrom

Status

ReqTime

Country

TwfID

CK1

CK2

CK3

CK4

Content

Cert …CertA1 Aj

Pj Pj

Pj

…………

SKj

…………

…Upd (di)

………………….

MP    ( Upd ( di ) ,

Upd (di ) ,  …….Cert …Cert

SKj

A1 Aj

Pj

Pj

SKj

Figure 11: EJNMA document part schema nodes annotation with common secret keys
and corresponding navigation before sending of secure document envelopes.

bility of previous editor’s authorization by iterative verification of the certificate
chain.

9.3 Document Navigation

As described in Section 7.2, an accessible target document part can be divided
into several disjoint fine grained target nodes, thus the participants are assigned to
several common access interest groups with disjoint set of document nodes. This
also means that, in the collaboration phase, a document node will be encrypted by
a unique common secret key, which might change when participants join or leave
as described in Sections 8.4 and 8.5. However, participants possess the knowledge
of the document schema and thus know each document part’s structure. Given this
fact each participant annotates the document part schema nodes with the associated
common secret keys that it computes and uses those as encryption/decryption keys
for corresponding document envelopes. As such participants can determine which
key to use to encrypt/decrypt for which document part nodes while they are collab-
orating, in particular encrypting before sending and decrypting after the reception
of secured document envelopes.

• Before sending an updated document envelope participants parse the schema
to find the annotated common secret key associated with the updated docu-
ment part.

• After receiving a document envelope participants can determine the required
decryption key by observing the piggybacked TES/TEK value. If a re com-
putation of a new common secret key is performed as a result of new TES/TEK,
participants update their corresponding annotation in the schema with the as-
sociated new common secret key.

Figure 11 shows a EJNMA document part schema nodes: ReqRecTime,CMS,Content,Country
are annotated with CK1, CK2, CK3, CK4 respectively. Before sending two se-

25



cure document envelopes SDE2 and SDE3 the corresponding common secret
keys CK2, CK3 can be determined by parsing the annotated schema.

10 Controlled Document Edition

This section describes how the mechanisms presented so far are combined to
support the distributed execution of XML document centric collaborations. The
collaboration is initiated by the receipt of first wave of access interests of the par-
ticipants to the owners (original authorities) in an interest specification phase. The
collaboration phase, during which the document is actually edited and exchanged,
involves document viewing, update, and verification.

10.1 Interest Specification Phase

The interest specification phase consists of the following tasks with respect to
an authority Ai.

1. Reception of access interests from n other participants.

2. Evaluation of Access Control Policy: While owners will directly evaluate
the participants with its policy, the delegate can evaluate with the security
objective that it receives from its direct authority.

3. Determination of Common access interest groups.

4. Control data blocks: Generation of encrypted control data blocks CD
z∈[1,m]
Ai

and distribution of them.

In this phase, the authority decides of a fixed list of members of a common access
interest groups, for which access control is enforced later on by participants them-
selves using encryption. This scheme allows any participant having computed the
common secret key at this stage to access and update document parts at any time
after the interest specification phase.

Upon receipt of CDz
Ai

an authorized participant Pz performs following steps:

1. Retrieval of control data block: Decrypts the secure document envelope us-
ing SKz and retrieves the required sibling path values SPz . It also retrieves
the certificate chain associated with the access primitive ap and ’SecObj’
that enable Pz to manifest its eligibility to perform the corresponding access
ap and to be a delegate afterwards.

2. Common secret key computation: compute the common secret key CKdi
ap

using the received sibling path values.

10.2 Collaboration Phase

Upon receipt of a secure document envelope SDEj from Pi, Pj 6=i which is in
the same group performs the following tasks:

26



1. Retrieval of piggybacked block: Decrypt secure document envelope SDEj

with SKj and retrieve the TES/TEK value. Verify the integrity of TES/TEK
using PKi and checks whether it has the same TES/TEK value in its posses-
sion. If it possesses the value then it determines the required common secret
key as described in Section 9.3 otherwise re computes the key in lazy fashion
(see Section 8.4).

2. Retrieval of document and meta data blocks: Pj decrypts the encrypted block
of components with the common secret key.

3. Meta data integrity: Verify the integrity of certificate chain and Merkle hash
paths using PKi.

4. Authorization verification: Verify Pi’s eligibility of the performed access by
checking that the certificate chain contains a certificate CertAi(PKi, PKi

ap)
for Pi.

5. Document authenticity, integrity and containment check: Verify the received
document parts authenticity, integrity and containment as described in Sec-
tion 9.2.

After performing the authorized access ap over di a participant Pi can build
the secure document envelope SDEi incrementally as follows:

1. Document block: Compute a Merkle signature over the root node of UpdPi(di)
and sign it using SKi together with the received series of updates and add
the signature and updated document parts.

2. Meta data block: Compute a signature over its certificate together with the
chain of certificates using SKi and add the signature and the certificate
chain. Compute a signature of its Merkle hash path together with the previ-
ous editors’ Merkle hash paths, sign and add the signature and the Merkle
hash paths.

3. Determine the required common secret key to encrypt the document and
meta data blocks as described in Section 9.3 and encrypt those blocks with
the common secret key.

4. Piggybacked block: Compute signature of TES/TEK using SKi and add the
signature and the TES/TEK value.

5. Secure document envelope: Encrypt the whole block using recipient’s public
key.

11 Related Work

There has been a quite remarkable progress in the area of XML access control
in recent years. Significant improvements in the area of fine grained access control
on XML documents has been made in [11]. It depicts a client-server centralized
framework. Clients request the server for accessing a document. The server, which

27



is responsible for designing the document schema, decides about the authorizations
and at the same time enforces access control on the document. In [10] the authors
describe a fine grained access control technique for SOAP based communication
among web services. However, the aforementioned work does not address the
particular requirements of collaborative XML document edition as described in
this paper.

From the enforcement perspective, these approaches are known as view based
XML access control. However, the view based approach inherently contains two
significant limitations [4]: scalability and storage. As an increasingly large num-
ber of requesters is involved, the management of views does not scale up and the
increasing number of documents and clients demands more storage and cost on the
server side. The view based approach also does not consider the issue of document
updates where documents are dynamically exchanged among several participants
and in particular document protection aspects.

The most dominating assumption of those approaches is the fact that all the
security specifications are specified and enforced by a centralized entity (e.g. DBA)
of the XML data sources.

In [18] some mechanisms and algorithms for cooperative updates of XML doc-
uments in a distributed environment are provided. While this work is similar with
ours regarding the use of cryptography to support controlled document edition,
this does not consider distributed sources of documents and their ownership. This
approach is more tailored to a posteriori verification of the correct execution of a
document edition process.

Encryption as an enforcement mechanism for access control decisions made at
a server has been discussed in the literature for a while [3, 20]: the server encrypts
the data it stores with secret keys; the client can access these only provided it pos-
sesses the right decryption keys. This technique supports dynamic change only
through the use of the server as a centralized point of enforcement that computes
and distributes keys and therefore constitutes a single point of failure. Scalability
and performance are central issues growing with the number of clients accesses,
notably regarding the need for partial reencryption of data because of changes in
the access control rules. This technique also does not address the need for dis-
tributed sources of data. It should also be mentioned that these papers altogether
do not address traceability issues with respect to document updates.

The use of tamper-resistant modules as described in [6] however makes it pos-
sible to alleviate the limitation of the latest approach regarding policy dynamicity,
both in terms of access control decision and enforcement. This approach however
requires the difficult and expensive deployment of a trusted infrastructure. We in-
stead think delegation might be enough to adapt the access control policy in most
scenarios.

Our distributed access control solution is fundamentally different compared to
these approaches:

• Our solution is distributed as opposed to a centralized framework of [11].

28



• It provides an access interest specification based on primitives which allows
each participant to specify its fine grained access interests on the document
parts owned by other participants.

• Instead of a purely server based approach, it makes it possible to follow
indiscriminately a push or pull based approach since access control enforce-
ment does not rely on a central authority.

• While controlled by the owner, the edition of documents can be initiated and
run by all participants interacting autonomously.

12 Conclusion and Future Work

We proposed a distributed and fine grained access control framework for XML
document centric collaboration. This framework perfectly fits document edition
scenarios in which multiple organizations are involved and manage a part of a
composite document at their own discretion, as illustrated by the Europol-Eurojust
case of mutual legal assistance. To the best of our knowledge, this framework is
the very first work of its kind.

Our distributed access control framework addresses situations in which autho-
rization granting authorities may be offline or unavailable and may not be directly
in touch with collaboration participants. Access control is enforced thanks to the
combination of document authorization and document protection. Document au-
thorization relies on a cryptographic enforcement: only participants that have re-
ceived proper encryption keys can view or update a document part. Document
protection is necessary to address the fact that, compared with a centralized ac-
cess control scheme, a document is not stored in a safe repository but exchanged
between participants, and thus subject to attacks by malicious participants or by
outsiders. Document protection also encompasses verifying the conformance of
the update of a document part with the authorization policy of its authority. Ac-
cess control relies on two asynchronously decoupled phases: the initiation phase
addresses authorization decisions and preliminary key distribution concerns, while
the collaboration phase essentially focuses on enforcing the authorization policy
and document protection.

We are currently working on the design of an architecture to actually deploy
the framework and on synchronization and document reconciliation issues. Such
a system might for instance be run on top of a workflow. We are also considering
the handling of schema changes at runtime and of corresponding policy updates as
future work.

References

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor
queries. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM sympo-

29



sium on Discrete algorithms, pages 547–556, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics.

[2] E. Bertino, B. Carminati, and E. Ferrari. Merkle Tree Authentication in UDDI
Registries. Idea Group Inc, International Journal of Web Services Research,
1(2):37-57, 2004.

[3] E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Doc-
uments. ACM Trans. Inf. Syst. Secur., 5(3):290–331, 2002.

[4] W.-C. L. Bo Luo, Dongwon Lee and P. Liu. A Flexible Framework for Ar-
chitecting XML Access Control Enforcement Mechanisms, volume Volume
3178/2004 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, December 2004.

[5] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simon.
XQuery 1.0: An XML Query Language. Technical report.

[6] L. Bouganim, F. D. Ngoc, and P. Pucheral. Dynamic access-control policies
on xml encrypted data. ACM Trans. Inf. Syst. Secur., 10(4):1–37, 2008.

[7] A. D. A. Boujraf and M. Noble. Towards e-Administration in the Large
(R4eGov). Deliverable WP3-D7, 2007. EU IP R4eGov.

[8] J. Clark and S. DeRose. XML Path Language (XPath),
http://www.w3.org/tr/xpath.

[9] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Sym-
posium on Principles of Database Systems, pages 271–281, 2002.

[10] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. Fine
Grained Access Control for Soap E-services. In WWW ’01: Proceedings of
the 10th international conference on World Wide Web, pages 504–513, New
York, NY, USA, 2001. ACM.

[11] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. A Fine-
grained Access Control System for XML Documents. ACM Trans. Inf. Syst.
Secur., 5(2):169–202, 2002.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Securing
XML Documents. In International Conference on World Wide Web, 1999.

[13] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

[14] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML Querying With Se-
curity Views. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 587–598, New York,
NY, USA, 2004. ACM Press.

30



[15] Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-Tolerant Key Agreement
for Dynamic Collaborative Groups. In CCS ’00: Proceedings of the 7th ACM
conference on Computer and communications security, pages 235–244, New
York, NY, USA, 2000. ACM Press.

[16] G. Kuper, F. Massacci, and N. Rassadko. Generalized XML Security Views.
In SACMAT ’05: Proceedings of the tenth ACM symposium on Access control
models and technologies, pages 77–84, New York, NY, USA, 2005. ACM
Press.

[17] P. Lee, J. Lui, and D. Yau. Distributed Collaborative Key Agreement Pro-
tocols for Dynamic Peer Groups. In Network Protocols, 2002. Proceedings.
10th IEEE International Conference., pages 322– 331, New York, NY, USA,
12-15 Nov. 2002. ACM Press.

[18] G. Mella, E. Ferrari, E. Bertino, and Y. Koglin. Controlled and Coopera-
tive Updates of XML Documents in Byzantine and Failure-Prone Distributed
Systems. ACM Trans. Inf. Syst. Secur., 9(4):421–460, 2006.

[19] R. Merkle. A certified digital signature. In Advances in Cryptology - CRYPTO
’89 Proceedings, Lecture Notes in Computer Science, 435:218–238, 1989.

[20] G. Miklau and D. Suciu. Controlling Access to Published Data Using Cryp-
tography. In VLDB, pages 898–909, 2003.

[21] T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous
Data Translation. In VLDB ’98: Proceedings of the 24rd International Con-
ference on Very Large Data Bases, pages 122–133, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[22] S. Mohan, J. Klinginsmith, A. Sengupta, and Y. Wu. Acxess - access control
for xml with enhanced security specifications. In ICDE ’06: Proceedings of
the 22nd International Conference on Data Engineering, page 171, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[23] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control Using
Static Analysis. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 73–84, New York, NY, USA,
2003. ACM Press.

31


