

Institut Eurécom 1

Department of Mobile Communications
2229, route des Crêtes

B.P. 193
06904 Sophia-Antipolis

FRANCE

Research Report RR-08-211

Practical and Unified Process for developing
the Future Mobile Internet with Simultaneous

Access (MISA)

February 26, 2008

Huu Nghia NGUYEN

Prof. Christian BONNET

Tel: (+33) 04.93.00.82.38
Fax: (+33) 04.93.00.26.27

Email : {Huu-Nghia.Nguyen,Christian.Bonnet}@eurecom.fr

1 Institut Eurécom's research is partially supported by its industrial members: BMW, Bouygues Télécom,
Cisco Systems, France Télécom , Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales

 1

Table of contents

Table of contents .. 2
Abstract... 3
Introduction .. 3
1. Abbreviations & Terminology ... 3
2. Classification of Virtualization Technologies .. 3

2.1. Full virtualization ... 4
2.2. Paravirtualization.. 4
2.3. Operating system-level virtualization... 5
2.4. Comparison of UML, VMware (KVM, , QEmu), OpenVz 6

3. Basic User Mode Linux (UML) ... 7
4. Unified Process for developing MISA ... 8
5. Use case: Compiling guest kernel supporting MIPv6 .. 11

5.1. Preparing for the guest kernel... 11
5.2. Compiling the guest kernel... 11
5.3. Building/downloading the guest file system ... 12
5.4. Enabling Mobile IP in the guest kernel .. 13

5.4.1. Kernel Space... 13
5.4.2. User Space .. 14

5.5. Creating a virtual testbed.. 14
References .. 17
Appendix A – Known bugs while compiling and running... 18
Appendix B – Building UML root file system... 18

Using Yellow dog Updater Modifier (YUM)... 18
Using linux installation disk... 20

 2

Abstract
Future Mobile Internet has to cope with multi-interface mobile nodes and multi-access

networks that provide simultaneous use of access technologies for wireless bandwidth aggregation
and load balancing. However working in such a multi-homing & mobility environment requires
cost, time and efforts; a new process based on virtualization should be considered. When it comes
to virtualization, there's not just one way to do it; this document explores the ideas behind each
virtualization technologies for virtual machines and describes in details the User Mode Linux
(UML) approach that can be adapted easily to different purpose: virtual networking, distributed
application development, driver or kernel development. We then propose a practical and unified
process for developing the future Mobile Internet with Simultaneous Access (MISA) using UML and
Mobile IPv6 for Linux (MIPL).

Keywords: User Mode Linux, UML, B3G, Multi-homing, Mobility, Mobile IPv6 for Linux, MISA

Introduction

This document describes in details the User Mode Linux (UML) approach that can be
adapted easily to different purposes: virtual networking, distributed application development, driver
or kernel development. We also explore the ideas behind each virtualization technology for virtual
machines. A practical and unified process for developing the Mobile Internet with Simultaneous
Access (MISA) is also proposed for both UML and real testbed.

1. Abbreviations & Terminology

Guest OS/kernel/file system The OS/kernel/file system for the virtual machine

Host OS/kernel/file system The OS/kernel/file system for the real host on which the virtual
machine is running

OS Operating System

VM Virtual Machine

UML User Mode Linux

2. Classification of Virtualization Technologies
This section introduces you to three of the most common methods of virtualization in Linux

and identifies their relative strengths and weaknesses.

 3

2.1. Full virtualization
Full virtualization, otherwise known as native virtualization, is an interesting method of

virtualization. This model uses a virtual machine (hypervisor) that mediates between the guest
operating systems and the native hardware of the host machine (see Figure 1). Certain protected
instructions must be trapped and handled within the hypervisor because the underlying hardware
isn't owned by an operating system but is instead shared by it through the hypervisor.

Figure 1. Full virtualization uses a hypervisor to share the underlying hardware

Advantages Performance is less than bare hardware because of the hypervisor mediation.
The biggest advantage of full virtualization is that any operating system can
run unmodified on the guest machine.

Disavantages The only constraint is that the operating system must support the underlying
hardware (virtualized hardware device)

Examples VMware, Microsoft VirtualPC, QEMU, Xen (extended to full)

Of all these products, VMWare has been being the leader for the virtualization because it
supports a wide range of OS for both guest and host machines. It has been widely used for
deploying and testing complex applications in enterprises. However, full virtualization totally
isolates the guest OS from the host OS; therefore it costs same or more time and efforts for
developing new protocols on the virtual machine (comparing to a real environment).

2.2. Paravirtualization
Paravirtualization is another popular technique that has some similarities to full

virtualization. This method uses a hypervisor for shared access to the underlying hardware but
integrates virtualization-aware code into the guest OS itself (see Figure 2). This approach obviates
the need for any recompilation or trapping because the guest OS themselves cooperate in the
virtualization process.

 4

Figure 2. Paravirtualization integrates virtualization-aware code into the guest OS

Advantages Paravirtualization offers performance near that of an unvirtualized system.

Disavantages Paravirtualization requires the guest operating systems to be modified for
interacting with the hypervisor (except UML). It can only support linux OS.

Examples Xen, User Mode Linux (A new architecture named ‘um’ is created so there is
no modification in kernel modules)

Note 1: Intel has contributed modifications to Xen to support their VT-x (formerly
Vanderpool) architecture extensions. These technologies, while differing quite substantially in their
implementation and instruction sets, are managed by a common abstraction layer in Xen and enable
unmodified guest operating systems to run within Xen virtual machines, starting with Xen 3.0.
Hardware assisted virtualization offers new instructions to support direct calls by a paravirtualized
guest/driver into the hypervisor, typically used for I/O or other so-called hypercalls. "Hardware"
accesses are under complete control of the hypervisor.

Note 2 : User Mode Linux is considered as a paravirtualization solution. However, it
integrates a new virtualization architecture into the guest OS to avoid modifying existing kernel
modules. In this sense it can be considered as a full virtualization for linux systems.

2.3. Operating system-level virtualization
The final technique, operating system-level virtualization, uses a different technique than

those covered so far. This method uses a single kernel for both the host and the guests. To improve
the performance, all guest machines share the same scheduler and kernel modules with the host
machine. To ensure the independent servers from one another, each guest (private server) has
separated virtual environment and this require modifying the kernel at every kernel modules:
ieee802.11, IPv4, IPv6, UDP, TCP, SCTP…

 5

Figure 3. Operating system-level virtualization isolates servers

Advantages Native performance

Disavantages Operating system-level virtualization requires changes to the operating
system kernel (even kernel modules)

Examples OpenVz

Developing a new protocol with this virtualization technology requires using the notion of

Virtual Environment in the source code. A module created for running with this virtualization
technology can not run with the real environment; therefore a double effort must be done.

2.4. Comparison of UML, VMware (KVM, , QEmu), OpenVz

Name Modification of

Guest OS
Device Driver Method of

operation
 Best Use Guest OS speed

relative to Host
OS

VMware

No A set of
virtualized
device: can not
add new
hardware
device.

Full Experiment of
existing
protocols,
apps.

Development
of apps.

Near native

KVM

No Depends on
QEMU.

Full Experiment of
existing
protocols,
apps.

Development

Near native

 6

http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

of apps.

QEMU

No A set of
virtualized
device. Need
to modify
QEMU source
for extension

Full Experiment of
existing
protocols,
apps.

Application
development

Near native

User Mode
Linux

Yes (add a new
branch
ARCH=um)

Easy to create
new virtual
device &
device driver.

Para,
extensible
to Full

Kernel
development,

Application
development.

Virtual
Networking,

Near native

Our test show
the perfornace is
fine for many
VMs with TLS
(Thread Local
Storage) support

Some
documents
consider slow as
they didn’t have
TLS support at
that moment

OpenVZ Yes (modify all
kernel modules
for virtual
environment)

Share with the
host OS
(Linux)

OS-level Virtualized
Server
Isolation, User
space
applications
development

Native

3. Basic User Mode Linux (UML)
User-Mode Linux is a safe, secure way of running Linux versions and Linux processes. Run

buggy software, experiment with new Linux kernels or distributions, and poke around in the
internals of Linux, all without risking your main Linux setup. User-Mode Linux gives you a virtual
machine (the guest) that may have more hardware and software virtual resources than your actual,
physical computer. Disk storage for the virtual machine is entirely contained inside a single file on
your physical machine. Nothing you do on the virtual machine can change or damage your real host
computer, or its software.

UML has two major components: a guest kernel and a guest root file system. The guest
kernel is basically a version of the mainline linux kernel provided with a new architecture named

 7

http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/User_Mode_Linux
http://en.wikipedia.org/wiki/User_Mode_Linux
http://en.wikipedia.org/wiki/OpenVZ

um ,i.e. user mode architecture, while the guest root file system is a single file emulating an actual
linux file system that may reside on your hard disk. The easiest way to start experimenting with
UML is to download a pre-compiled guest kernel and a matching guest root file system (Fedora,
Ubuntu, Debian, Gentoo…) Both of these can be downloaded from the UML homepage:

http://user-mode-linux.sourceforge.net/old/dl-sf.html

http://uml.nagafix.co.uk/

http://www.dit.upm.es/vnumlwiki/index.php/Download

From the command line:

wget http://downloads.sourceforge.net/vnuml/linux-2.6.16.27-bs2-xt-1m.tar.bz2

wget http://downloads.sourceforge.net/vnuml/root_fs_tutorial-0.5.1.bz2

bzcat root_fs_tutorial-0.5.1.bz2 > rootfs.img

tar xjf linux-2.6.16.27-bs2-xt-1m.tar.bz2

 linux-2.6.16.27-bs2-xt-1m/linux-2.6.16.27-bs2-xt-1m ubd0=rootfs.cow,rootfs.img eth0=tuntap,,,

The guest virtual machine should start up and prompt for username and password. You can logon
using root/xxxx as username/password. To turn off the guest virtual machine, use the halt
command. Note that you can optimize the performance by applying the Separated Kernel Address
Space (skas patch) to the host kernel. If you have any problem of running UML, refer to Appendix
A.

There also exist some tools for working with UML:

UML Utilities This package contains userspace utilities for use with User-mode Linux,

including uml_mconsole, uml_moo, uml_switch, uml_net and tunctl.

VNUML http://www.dit.upm.es/vnumlwiki/index.php/Main_Page

VNUML (Virtual Network User Mode Linux) is an open-source general
purpose virtualization tool designed to quickly define and test complex
network simulation scenarios based on the great User Mode Linux (UML)

It has been developed with the partial support from the European
Commission under the Euro6IX IST research project

4. Unified Process for developing MISA
Future Mobile Internet has to cope with multi-interface mobile nodes and multi-access

networks that provide simultaneous use of access technologies for wireless bandwidth aggregation
and load balancing. In this section, we propose a practical and unified process for developing the
future Mobile Internet with Simultaneous Access (MISA) using UML and Mobile IPv6 for Linux
(MIPL).

 8

http://user-mode-linux.sourceforge.net/old/dl-sf.html
http://uml.nagafix.co.uk/
http://www.dit.upm.es/vnumlwiki/index.php/Download
http://www.dit.upm.es/vnumlwiki/index.php/Main_Page

MIPL releases, up to 1.1, are for Linux kernel 2.4 series. Releases 0.x and 1.x implement
the whole MIPv6 inside the kernel. Later releases (2.x) are exclusively for 2.6 kernels. MIPL 2.0 is
a complete rewrite of the protocol, implementing only the absolutely necessary infrastructural
support for MIPv6 in the kernel and moving most functionality to user space. Enabling Mobile IP
feature in linux requires you to recompile the linux kernel.

Apply UML kernel patch
(*)

Download
Kernel source
MIPL source
UML patch

Virtualized?

guest kernel:
linux

Guest file
system:

rootfs.img

Compile guest kernel
make xconfig ARCH=um

make ARCH=um

Compile linux kernel
make xconfig

make

linux kernel:
linux, bzImage

Build/Download guest
file system

Apply MIPL kernel patch
(*)

Apply MIPL kernel patch
(*)

Compile and install user-space
MIPL on $ROOTFS

Yes

Start

End

No

host machine: ROOTFS=/
virtual machine:
 mount -o loop rootfs.img /mnt/loop
 ROOTFS = /mnt/loop

Provide a new architecture named 'um'
(equivelent to existing arch: 386,x86...)
Doesn't modify code source of
existing kernel modules.

(*) Has been integrated in the
mainline linux kernel. No need to
do the patch since version 2.6.20

Figure 4. Unified Process for Mobile IP in UML/real testbed

 9

The above figure shows a practical and unified process for developing/deploying Mobile IP
in UML as well as in real testbed. This process reduces the cost of equipments but also the time and
effort for developing/deploying/debugging. The process stays the same if you want to develop a
new kernel module.

UML has been integrated into the mainline Linux kernel. So starting from the linux kernel
source, we apply the UML kernel patch to add a new architecture for UML (ARCH=um) to the
linux kernel source tree. From now on, the developer can work on this kernel source for both real
machine and virtual machines. To develop Mobile IP, we apply MIPL patch, add new
functionalities to MIPL, develop new protocols, and compile it. If we want to deploy in the real test
bed, just compile this linux kernel source in the x86/sparc/mips architecture, otherwise, we create a
guest kernel running in UML architecture by compiling the kernel source with ‘ARCH=um’ option
in the make command line.

The guest root file system is a normal file that can be mount directly to the host file system
using ‘-o loop’ option. This allows developers to work with the guest file system without the need
of turning on the virtual machine.

Copy On Write (COW) is another interesting feature when playing with UML as it allow
different virtual machines to run on the same guest root file system and save the disk space by
storing the differences in .cow files.

Figure 5. The guest file system is shared by different Virtual Machine

 10

From the figure, the two main components of UML are the guest kernel (linux) and the
guest file system (rootfs.img). Using COW, these components are considered as a template and
each command linux ubd0=rootfs.cown,rootfs.img corresponds to a guest virtual machine having
access to roofs.cown (read/write) and rootfs.img (read only). This allow to save disk space, to create
and run as many virtual machines as we want just with a script of 3 lines using the for loop ☺.

5. Use case: Compiling guest kernel supporting MIPv6

5.1. Preparing for the guest kernel
Download all the necessary files to the local host before installing your host and UML

kernels. In our setup, we assume to use the kernel 2.6.16 for compatibility with the newest MIPL
2.0.2

Linux kernel www.eu.kernel.org

Guest UML kernel patches http://www.user-mode-linux.org/~blaisorblade/patches/guest/

MIPL user space http://www.mobile-ipv6.org/software/download/mipv6-2.0.2.tar.gz

MIP kernel patch http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-
2.6.16.patch.gz

mkdir ~/uml

cd ~/uml

wget http://www.eu.kernel.org/pub/linux/kernel/v2.6/linux-2.6.16.tar.gz

wget http://www.user-mode-linux.org/~blaisorblade/patches/guest/uml-2.6.16-bs2/uml-2.6.16-
bs2.patch.bz2

wget http://www.user-mode-linux.org/~blaisorblade/patches/skas3-2.6/skas-2.6.16-v9-pre9/skas-
2.6.16-v9-pre9.patch.bz2

wget http://www.mobile-ipv6.org/software/download/mipv6-2.0.2.tar.gz

wget http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-2.6.16.patch.gz

5.2. Compiling the guest kernel
Compiling UML kernel is just like compiling any kernel, except that you have to include

‘ARCH = um’ in the command line. For the real deployment, just remove ‘ARCH=um’ from the
command line (you may need to issue make mrproper when switching between um, i386, x86,
mips, sparc architecture). Let's go through the steps:

 11

http://www.eu.kernel.org/
http://www.user-mode-linux.org/%7Eblaisorblade/patches/guest/
http://www.mobile-ipv6.org/software/download/mipv6-2.0.2.tar.gz
http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-2.6.16.patch.gz
http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-2.6.16.patch.gz

1. Unpack file(s)

tar -xzf linux-2.6.16.tar.gz

2. Apply the uml kernel patch

cd ~/uml/linux-2.6.16

bzcat ~/uml/uml-2.6.16-bs2.patch.bz2 | patch -p1 --dry-run --verbose

3. Run your favorite config (can be xconfig, menuconfig or config)

make xconfig ARCH=um

make config ARCH=um

make menuconfig ARCH=um

Set the following options in UML-Specific options. You can leave the remaining options unchanged

CONFIG_MODE_TT=N

CONFIG_STATIC_LINK=Y

CONFIG_HOSTFS=M

CONFIG_HIGHMEM=Y

X86_GENERIC=Y

Note: If the host is configured with a 2G/2G address space split rather than the usual 3G/1G split,
then the packaged UML binaries will not run. They will immediately segfault.

4. Compile the kernel in UML architecture. If you have problems while compiling, refer Appendix
A for some common errors. The result is a file called `linux' in the top directory of your source tree.

make linux ARCH=um

5. You may notice that the final binary is pretty large. This is almost entirely symbol information.
The actual binary is comparable in size to a native kernel. You can run that huge binary, and only
the actual code and data will be loaded into memory, so the symbols only consume disk space
unless you are running UML under gdb. You can strip UML to see the true size of the UML kernel

strip linux

5.3. Building/downloading the guest file system
We recommend to use a pre-build UML root filesystem (Fedora, Ubuntu, Debian,

Gentoo…) downloaded from http://uml.nagafix.co.uk/ and make it compatible with VNUML if
you want to use VNUML for creating virtual testbed as in
http://www.dit.upm.es/vnumlwiki/index.php/Create-rootfs.

cd ~/uml

wget http://uml.nagafix.co.uk/FedoraCore6/FedoraCore6-x86-root_fs.bz2

 12

http://uml.nagafix.co.uk/
http://www.dit.upm.es/vnumlwiki/index.php/Create-rootfs

bzcat FedoraCore6-x86-root_fs.bz2 > rootfs.img

You can also make your own file system as shown in Appendix B

Note: To speed up the performance, mount the rootfs.img to /mnt/loop and comment the line
‘/sbin/start_udev’ in /mnt/loop/etc/rc.d/rc.sysinit of the guest file system to disable udev file system.
You may need to run MAKEDEV to create tty devices in /dev directory.

5.4. Enabling Mobile IP in the guest kernel
If your UML machine runs well, it’s time to enable the Mobile IP feature. Follow the instruction in
http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/ to enable Mobile IP feature, as if you are
working with a normal linux kernel, then recompile the kernel.
Note: The HOWTO document is decicated to MIPL 1.x and is out of date. Only use it as reference

5.4.1. Kernel Space
Unpack file(s) and apply the MIPL patch to the kernel

cd ~/uml

gunzip mipv6-2.0.2-linux-2.6.16.patch.gz

cd ~/uml/linux-2.6.16

patch -p1 --dry-run < ~/uml/mipv6-2.0.2-linux-2.6.16.patch

The --dry-run option checks that the patch will apply correctly. If you get any failed hunks, you
should not proceed. If everything went fine do

patch -p1 < ~/uml/mipv6-2.0.2-linux-2.6.16.patch.

Now your kernel tree is ready for configuration. Run your favorite make xconfig ARCH=um. The
MIPv6 options are under "Networking Options". The following options should be present in
".config":

CONFIG_EXPERIMENTAL=y
CONFIG_SYSCTL=y
CONFIG_PROC_FS=y
CONFIG_MODULES=y
CONFIG_NET=y
CONFIG_NETFILTER=y
CONFIG_UNIX=y
CONFIG_INET=y

CONFIG_IPV6=y
CONFIG_IPV6_TUNNEL=y
CONFIG_IPV6_ADVANCED_ROUTER=y
CONFIG_IPV6_MULTIPLE_TABLES=y
CONFIG_IPV6_SUBTREES=y
CONFIG_IPV6_MIP6=y
CONFIG_IPV6_MIP6_DEBUG=y

Compile kernel & modules.

 13

http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

make ARCH=um

Install new modules to guest file system (rootfs.img)

su

mount –o loop ~/uml/rootfs.img /mnt/loop

export UMLROOT=/mnt/loop

make modules_install ARCH=um INSTALL_MOD_PATH=$UMLROOT

5.4.2. User Space
Su back as normal user; unpack the file(s) and compile as any normal user space application.

tar -xzf mipv6-2.0.2.tar.gz

cd mipv6-2.0.2

export CPPFLAGS="-isystem $HOME/uml/linux-2.6.16/include"

export UMLROOT=/mnt/loop

./configure --with-builtin-crypto --enable-vt --prefix=$UMLROOT/usr/local

make

su

make install

Note: repair the file config.sub. Search for “maybe_os” and modify | linux-gnu* | to | linux-gnu* |
linux-oldld* | if you can not run configure

5.5. Creating a virtual testbed
Here is the scenario, written for VNUML, based on the tutorial for Linux Mobile IPv6 Howto 1.x
(http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/)

Figure 5. Mobile IPv6 Testbed

 14

http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE vnuml SYSTEM "/usr/local/share/xml/vnuml/vnuml.dtd">

<!--
VNUML Mobile IPv6 Scenario
Authors: Nguyen Huu Nghia, Christian Bonnet
This scenario is based on the tutorial for Linux Mobile IPv6 Howto for 1.x
http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/
-->
<vnuml>
 <global>
 <version>1.8</version>
 <simulation_name>mip6</simulation_name>
 <automac/>
 <vm_mgmt type="none" />
 <vm_defaults exec_mode="mconsole">
 <filesystem type="cow">/home/nguyenhn/MIPL/fc6/root_fs.fc6</filesystem>
 <kernel>/home/nguyenhn/MIPL/linux-2.6.16.8/linux</kernel>
 <console id="0">xterm</console>
 <!--xterm>gnome-terminal,-t,-x</xterm-->
 <console id="1">pts</console>
 <console id="2">pts</console>
 <console id="3">pts</console>
 <console id="4">pts</console>
 <console id="5">pts</console>
 </vm_defaults>
 </global>
 <net name="Inter" mode="virtual_bridge" />
 <net name="Home" mode="virtual_bridge" />
 <net name="Visit" mode="virtual_bridge" />
 <!-- Mobile Node -->
 <vm name="MN">
 <if id="0" net="Home">
 <ipv6>3ffe:2620:6:1::4/64</ipv6>
 </if>
 </vm>
 <!-- Home Agent -->
 <vm name="HA">
 <if id="0" net="Home">
 <ipv6>3ffe:2620:6:1::2/64</ipv6>
 </if>
 <route type="ipv6" gw="3ffe:2620:6:1::1">::/0</route>
 </vm>
 <!-- Router -->
 <vm name="R">
 <if id="0" net="Inter">
 <ipv6>3ffe:2620:6:2::2/64</ipv6>
 </if>
 <if id="1" net="Home">
 <ipv6>3ffe:2620:6:1::1/64</ipv6>
 </if>
 <route type="ipv6" gw="3ffe:2620:6:2::1">::/0</route>
 </vm>

 15

http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

 <!-- Access Router-->
 <vm name="AR">
 <if id="0" net="Inter">
 <ipv6>3ffe:2620:6:2::1/64</ipv6>
 </if>
 <if id="1" net="Visit">
 <ipv6>3ffe:2620:6:3::1/64</ipv6>
 </if>
 <route type="ipv6" gw="3ffe:2620:6:2::2">3ffe:2620:6:1::/0</route>
 </vm>
</vnuml>

TODO: Configure radvd, mipd (sripts are downloadable from my site)

TODO: Simulate the mobility of the MN using brctl (scripts are downloadable from my site)

http://www.eurecom.fr/~nguyenhn/uml/scripts/

 16

http://www.eurecom.fr/%7Enguyenhn/uml/scripts/

References

[1] http://user-mode-linux.sourceforge.net/old/dl-sf.html

[2] http://uml.nagafix.co.uk/

[3] http://www.dit.upm.es/vnumlwiki/index.php/Main_Page

[4] http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems

[5] http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html

[6] http://www.ibm.com/developerworks/library/l-linuxvirt/index.html

[7] http://www.ibm.com/developerworks/linux/library/l-linux-kvm/

[8] http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

 17

http://user-mode-linux.sourceforge.net/old/dl-sf.html
http://uml.nagafix.co.uk/
http://www.dit.upm.es/vnumlwiki/index.php/Main_Page
http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems
http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html
http://www.ibm.com/developerworks/library/l-linuxvirt/index.html
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/
http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

 Appendix A – Known bugs while compiling and running
� Problem about the threads.h

ln –s $HOME/uml/linux-2.6.16/include/linux arch/um/include/linux

� Apply patches jmpbuf and no-syscallx downloadable from

http://www.eurecom.fr/~nguyenhn/uml/patches/

� Apply skas patch for host kernel and recompile the host kernel with the patch. If you want to use the
same kernel source as the guest. This not only optimize the performance of UML and but also solve the
problem of hanging after 'VFS: Mounted root...'

� Solution for other running problem can be found at http://user-mode-linux.sourceforge.net/problems.htm

Appendix B – Building UML root file system

Using Yellow dog Updater Modifier (YUM)
There are many ways to build a UML root file system. We present here a convenient way to
create file system is using yum (Yellow dog Updater, Modified) to create a CHROOT environment.
Here are some tools found on the UMLWiki page for building such a root file systems

https://lists.dulug.duke.edu/pipermail/yum/2005-January/005950.html

https://lists.dulug.duke.edu/pipermail/yum/2005-February/006055.html

http://uml.jfdi.org/uml/Wiki.jsp?page=Yum3

1. First of all, you need to install yum and configure yum in your host machine. Then create the
following files:

vi yum.fc6.conf

[main]
cachedir=/var/cache/yum
debuglevel=2
logfile=/var/log/yum.log
exclude=*-debuginfo
gpgcheck=0
obsoletes=1
reposdir=/dev/null

[base]
name=Fedora Core 6 - i386 - Base
mirrorlist=http://fedora.redhat.com/download/mirrors/fedora-core-6
enabled=1

[updates-released]

 18

http://www.eurecom.fr/%7Enguyenhn/uml/patches/
http://user-mode-linux.sourceforge.net/problems.htm
https://lists.dulug.duke.edu/pipermail/yum/2005-January/005950.html
https://lists.dulug.duke.edu/pipermail/yum/2005-February/006055.html
http://uml.jfdi.org/uml/Wiki.jsp?page=Yum3

name=Fedora Core 6 - i386 - Released Updates
mirrorlist=http://fedora.redhat.com/download/mirrors/updates-released-fc6
enabled=1

vi yum3.sh

#!/bin/bash
UMLROOT=/mnt/loop
echo " --> Setting up chroot env in $UMLROOT"

if ~[`id -u` = "0"] ; then
 mkdir -p \
 $UMLROOT/etc \
 $UMLROOT/dev \
 $UMLROOT/proc \
 $UMLROOT/sys \
 $UMLROOT/var/tmp \
 $UMLROOT/var/cache/yum
 touch $UMLROOT/etc/fstab
 mknod $UMLROOT/dev/null c 1 3
 chmod 666 $UMLROOT/dev/null
 mount --bind /proc $UMLROOT/proc
 mount --bind /sys $UMLROOT/sys
 rpm --root $UMLROOT --import http://fedora.redhat.com/about/security/4F2A6FD2.txt
 rpm --root $UMLROOT -Uvh --nodeps --force
http://download.fedora.redhat.com/pub/fedora/linux/core/6/x86_64/os/Fedora/RPMS/fedora-release-
6-4.noarch.rpm
 yum -y -c ./yum.fc6.conf -C --installroot=$UMLROOT groupinstall "Base"
 umount $UMLROOT/proc
 umount $UMLROOT/sys
else
 echo " *** Sorry, you must be root to setup a chroot environment"
 exit 1
fi

2. Create an file system image and install the file system

dd if=/dev/zero of=rootfs.img bs=1M count=1 seek=700

mke2fs rootfs.img

su

mkdir –p /mnt/loop

mount rootfs.img /mnt/loop

./yum3.sh
3. Then configure the guest file system: /etc/inittab & /etc/fstab & /dev

 19

4. Install UML modules with

 cd ~/uml/linux-2.6.16

make modules_install ARCH=um INSTALL_MOD_PATH=$UMLROOT

Note: to resize a root file system, use the following command sequence:

e2fsck –f rootfs.img

dd if=/dev/zero of=rootfs.img bs=1M count=1 seek=<newsize> conv=notrunc

resize2fs –p rootfs.img

e2fsck –f rootfs.img

Using linux installation disk
You can also build your UML rootfs from a linux installation disk as shown in

http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems

http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html

1. First create the empty file that we will use for our disk image. Decide how large you want your
disk image to be. Example: If you want a 500Mb disk

dd if=/dev/zero of=~/disk.img bs=1M count=1 seek=500

2. Now you can use and initrd file from any linux distribution installer you want as it on a real disk.

./linux mem=128M ubd0=initrd ubd1= disk.img ubd2r=/dev/cdrom rw

3. After the installation you will load the disk image as for real device.

./linux mem=128M ubdb= disk.img root=/dev/ubdb1

If you experience trouble with hardisk names try fake_ide fake_hd on the command line.

./linux mem=128M ubdb= disk.img root=/dev/ubdb1 fake_ide fake_hd

 20

http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems
http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html

	Table of contents
	 Abstract
	
	Introduction
	1. Abbreviations & Terminology
	
	2. Classification of Virtualization Technologies
	2.1. Full virtualization
	2.2. Paravirtualization
	2.3. Operating system-level virtualization
	2.4. Comparison of UML, VMware (KVM, , QEmu), OpenVz
	3. Basic User Mode Linux (UML)
	4. Unified Process for developing MISA
	5. Use case: Compiling guest kernel supporting MIPv6
	5.1. Preparing for the guest kernel
	5.2. Compiling the guest kernel
	5.3. Building/downloading the guest file system
	5.4. Enabling Mobile IP in the guest kernel
	5.4.1. Kernel Space
	5.4.2. User Space

	5.5. Creating a virtual testbed

	 References
	 Appendix A – Known bugs while compiling and running
	Appendix B – Building UML root file system
	Using Yellow dog Updater Modifier (YUM)
	Using linux installation disk

[image: image1.png]

Institut Eurécom

Department of Mobile Communications

2229, route des Crêtes

B.P. 193

06904 Sophia-Antipolis

FRANCE

Research Report RR-08-211

Practical and Unified Process for developing

the Future Mobile Internet with Simultaneous Access (MISA)

February 26, 2008

Huu Nghia NGUYEN

Prof. Christian BONNET

Tel: (+33) 04.93.00.82.38

Fax: (+33) 04.93.00.26.27

Email : {Huu-Nghia.Nguyen,Christian.Bonnet}@eurecom.fr

Table of contents

2Table of contents

3Abstract

3Introduction

31.
Abbreviations & Terminology

32.
Classification of Virtualization Technologies

42.1.
Full virtualization

42.2.
Paravirtualization

52.3.
Operating system-level virtualization

62.4.
Comparison of UML, VMware (KVM, , QEmu), OpenVz

73.
Basic User Mode Linux (UML)

84.
Unified Process for developing MISA

115.
Use case: Compiling guest kernel supporting MIPv6

115.1.
Preparing for the guest kernel

115.2.
Compiling the guest kernel

125.3.
Building/downloading the guest file system

135.4.
Enabling Mobile IP in the guest kernel

135.4.1.
Kernel Space

145.4.2.
User Space

145.5.
Creating a virtual testbed

17References

18Appendix A – Known bugs while compiling and running

18Appendix B – Building UML root file system

18Using Yellow dog Updater Modifier (YUM)

20Using linux installation disk

Abstract

Future Mobile Internet has to cope with multi-interface mobile nodes and multi-access networks that provide simultaneous use of access technologies for wireless bandwidth aggregation and load balancing. However working in such a multi-homing & mobility environment requires cost, time and efforts; a new process based on virtualization should be considered. When it comes to virtualization, there's not just one way to do it; this document explores the ideas behind each virtualization technologies for virtual machines and describes in details the User Mode Linux (UML) approach that can be adapted easily to different purpose: virtual networking, distributed application development, driver or kernel development. We then propose a practical and unified process for developing the future Mobile Internet with Simultaneous Access (MISA) using UML and Mobile IPv6 for Linux (MIPL).

Keywords: User Mode Linux, UML, B3G, Multi-homing, Mobility, Mobile IPv6 for Linux, MISA

Introduction

This document describes in details the User Mode Linux (UML) approach that can be adapted easily to different purposes: virtual networking, distributed application development, driver or kernel development. We also explore the ideas behind each virtualization technology for virtual machines. A practical and unified process for developing the Mobile Internet with Simultaneous Access (MISA) is also proposed for both UML and real testbed.

1. Abbreviations & Terminology

		Guest OS/kernel/file system

		The OS/kernel/file system for the virtual machine

		Host OS/kernel/file system

		The OS/kernel/file system for the real host on which the virtual machine is running

		OS

		Operating System

		VM

		Virtual Machine

		UML

		User Mode Linux

2. Classification of Virtualization Technologies

This section introduces you to three of the most common methods of virtualization in Linux and identifies their relative strengths and weaknesses.

2.1. Full virtualization

Full virtualization, otherwise known as native virtualization, is an interesting method of virtualization. This model uses a virtual machine (hypervisor) that mediates between the guest operating systems and the native hardware of the host machine (see Figure 1). Certain protected instructions must be trapped and handled within the hypervisor because the underlying hardware isn't owned by an operating system but is instead shared by it through the hypervisor.

[image: image2.png]Apps Apps
Guest0S | Guest0S Momt
Hypervisor (VMM)

Hardware

Figure 1. Full virtualization uses a hypervisor to share the underlying hardware

		Advantages

		Performance is less than bare hardware because of the hypervisor mediation. The biggest advantage of full virtualization is that any operating system can run unmodified on the guest machine.

		Disavantages

		The only constraint is that the operating system must support the underlying hardware (virtualized hardware device)

		Examples

		VMware, Microsoft VirtualPC, QEMU, Xen (extended to full)

Of all these products, VMWare has been being the leader for the virtualization because it supports a wide range of OS for both guest and host machines. It has been widely used for deploying and testing complex applications in enterprises. However, full virtualization totally isolates the guest OS from the host OS; therefore it costs same or more time and efforts for developing new protocols on the virtual machine (comparing to a real environment).

2.2. Paravirtualization

Paravirtualization is another popular technique that has some similarities to full virtualization. This method uses a hypervisor for shared access to the underlying hardware but integrates virtualization-aware code into the guest OS itself (see Figure 2). This approach obviates the need for any recompilation or trapping because the guest OS themselves cooperate in the virtualization process.

[image: image3.png]Apps Apps

Modified | Modified

GuestOS | GuestOS Mgt
Hypervisor (VMM)

Hardware

Figure 2. Paravirtualization integrates virtualization-aware code into the guest OS

		Advantages

		Paravirtualization offers performance near that of an unvirtualized system.

		Disavantages

		Paravirtualization requires the guest operating systems to be modified for interacting with the hypervisor (except UML). It can only support linux OS.

		Examples

		Xen, User Mode Linux (A new architecture named ‘um’ is created so there is no modification in kernel modules)

Note 1: Intel has contributed modifications to Xen to support their VT-x (formerly Vanderpool) architecture extensions. These technologies, while differing quite substantially in their implementation and instruction sets, are managed by a common abstraction layer in Xen and enable unmodified guest operating systems to run within Xen virtual machines, starting with Xen 3.0. Hardware assisted virtualization offers new instructions to support direct calls by a paravirtualized guest/driver into the hypervisor, typically used for I/O or other so-called hypercalls. "Hardware" accesses are under complete control of the hypervisor.

Note 2 : User Mode Linux is considered as a paravirtualization solution. However, it integrates a new virtualization architecture into the guest OS to avoid modifying existing kernel modules. In this sense it can be considered as a full virtualization for linux systems.

2.3. Operating system-level virtualization

The final technique, operating system-level virtualization, uses a different technique than those covered so far. This method uses a single kernel for both the host and the guests. To improve the performance, all guest machines share the same scheduler and kernel modules with the host machine. To ensure the independent servers from one another, each guest (private server) has separated virtual environment and this require modifying the kernel at every kernel modules: ieee802.11, IPv4, IPv6, UDP, TCP, SCTP…

[image: image4.png]Private
server

Private
server

Private
server

Operating System

Hardware

Figure 3. Operating system-level virtualization isolates servers

		Advantages

		Native performance

		Disavantages

		Operating system-level virtualization requires changes to the operating system kernel (even kernel modules)

		Examples

		OpenVz

Developing a new protocol with this virtualization technology requires using the notion of Virtual Environment in the source code. A module created for running with this virtualization technology can not run with the real environment; therefore a double effort must be done.

2.4. Comparison of UML, VMware (KVM, , QEmu), OpenVz

		Name

		Modification of Guest OS

		Device Driver

		 Method of operation

		 Best Use

		Guest OS speed relative to Host OS

		VMware

		No

		A set of virtualized device: can not add new hardware device.

		Full

		Experiment of existing protocols, apps.

Development of apps.

		Near native

		KVM

		No

		Depends on QEMU.

		Full

		Experiment of existing protocols, apps.

Development of apps.

		Near native

		QEMU

		No

		A set of virtualized device. Need to modify QEMU source for extension

		Full

		Experiment of existing protocols, apps.

Application development

		Near native

		User Mode Linux

		Yes (add a new branch ARCH=um)

		Easy to create new virtual device & device driver.

		Para, extensible to Full

		Kernel development,

Application development.

Virtual Networking,

		Near native

Our test show the perfornace is fine for many VMs with TLS (Thread Local Storage) support

Some documents consider slow as they didn’t have TLS support at that moment

		OpenVZ

		Yes (modify all kernel modules for virtual environment)

		Share with the host OS (Linux)

		OS-level

		Virtualized Server Isolation, User space applications development

		Native

3. Basic User Mode Linux (UML)

User-Mode Linux is a safe, secure way of running Linux versions and Linux processes. Run buggy software, experiment with new Linux kernels or distributions, and poke around in the internals of Linux, all without risking your main Linux setup. User-Mode Linux gives you a virtual machine (the guest) that may have more hardware and software virtual resources than your actual, physical computer. Disk storage for the virtual machine is entirely contained inside a single file on your physical machine. Nothing you do on the virtual machine can change or damage your real host computer, or its software.

UML has two major components: a guest kernel and a guest root file system. The guest kernel is basically a version of the mainline linux kernel provided with a new architecture named um ,i.e. user mode architecture, while the guest root file system is a single file emulating an actual linux file system that may reside on your hard disk. The easiest way to start experimenting with UML is to download a pre-compiled guest kernel and a matching guest root file system (Fedora, Ubuntu, Debian, Gentoo…) Both of these can be downloaded from the UML homepage:

http://user-mode-linux.sourceforge.net/old/dl-sf.html

http://uml.nagafix.co.uk/

http://www.dit.upm.es/vnumlwiki/index.php/Download

From the command line:

wget http://downloads.sourceforge.net/vnuml/linux-2.6.16.27-bs2-xt-1m.tar.bz2

wget http://downloads.sourceforge.net/vnuml/root_fs_tutorial-0.5.1.bz2

bzcat root_fs_tutorial-0.5.1.bz2 > rootfs.img

tar xjf linux-2.6.16.27-bs2-xt-1m.tar.bz2

linux-2.6.16.27-bs2-xt-1m/linux-2.6.16.27-bs2-xt-1m ubd0=rootfs.cow,rootfs.img eth0=tuntap,,,

The guest virtual machine should start up and prompt for username and password. You can logon using root/xxxx as username/password. To turn off the guest virtual machine, use the halt command. Note that you can optimize the performance by applying the Separated Kernel Address Space (skas patch) to the host kernel. If you have any problem of running UML, refer to Appendix A.

There also exist some tools for working with UML:

		UML Utilities

		This package contains userspace utilities for use with User-mode Linux, including uml_mconsole, uml_moo, uml_switch, uml_net and tunctl.

		VNUML

		http://www.dit.upm.es/vnumlwiki/index.php/Main_Page

VNUML (Virtual Network User Mode Linux) is an open-source general purpose virtualization tool designed to quickly define and test complex network simulation scenarios based on the great User Mode Linux (UML)

It has been developed with the partial support from the European Commission under the Euro6IX IST research project

4. Unified Process for developing MISA

Future Mobile Internet has to cope with multi-interface mobile nodes and multi-access networks that provide simultaneous use of access technologies for wireless bandwidth aggregation and load balancing. In this section, we propose a practical and unified process for developing the future Mobile Internet with Simultaneous Access (MISA) using UML and Mobile IPv6 for Linux (MIPL).

MIPL releases, up to 1.1, are for Linux kernel 2.4 series. Releases 0.x and 1.x implement the whole MIPv6 inside the kernel. Later releases (2.x) are exclusively for 2.6 kernels. MIPL 2.0 is a complete rewrite of the protocol, implementing only the absolutely necessary infrastructural support for MIPv6 in the kernel and moving most functionality to user space. Enabling Mobile IP feature in linux requires you to recompile the linux kernel.

[image: image5.emf]Apply UML kernel patch

(*)

Download

Kernel source

MIPL source

UML patch

Virtualized?

guest kernel:

linux

Guest file

system:

rootfs.img

Compile guest kernel

make xconfig ARCH=um

make ARCH=um

Compile linux kernel

make xconfig

make

linux kernel:

linux, bzImage

Build/Download guest

file system

Apply MIPL kernel patch

(*)

Apply MIPL kernel patch

(*)

Compile and install user-space

MIPL on $ROOTFS

Yes

Start

End

No

host machine: ROOTFS=/

virtual machine:

 mount -o loop rootfs.img /mnt/loop

 ROOTFS = /mnt/loop

Provide a new architecture named 'um'

(equivelent to existing arch: 386,x86...)

Doesn't modify code source of

existing kernel modules.

(*) Has been integrated in the

mainline linux kernel. No need to

do the patch since version 2.6.20

Figure 4. Unified Process for Mobile IP in UML/real testbed

The above figure shows a practical and unified process for developing/deploying Mobile IP in UML as well as in real testbed. This process reduces the cost of equipments but also the time and effort for developing/deploying/debugging. The process stays the same if you want to develop a new kernel module.

UML has been integrated into the mainline Linux kernel. So starting from the linux kernel source, we apply the UML kernel patch to add a new architecture for UML (ARCH=um) to the linux kernel source tree. From now on, the developer can work on this kernel source for both real machine and virtual machines. To develop Mobile IP, we apply MIPL patch, add new functionalities to MIPL, develop new protocols, and compile it. If we want to deploy in the real test bed, just compile this linux kernel source in the x86/sparc/mips architecture, otherwise, we create a guest kernel running in UML architecture by compiling the kernel source with ‘ARCH=um’ option in the make command line.

The guest root file system is a normal file that can be mount directly to the host file system using ‘-o loop’ option. This allows developers to work with the guest file system without the need of turning on the virtual machine.

Copy On Write (COW) is another interesting feature when playing with UML as it allow different virtual machines to run on the same guest root file system and save the disk space by storing the differences in .cow files.

[image: image6.emf]Host Machine

is mounted

use

host file system

«file»

guest file system (rootfs.img)

«executable»

guest kernel (linux)

«file»

rootfs.cown

«file»

rootfs.cow2

«file»

rootfs.cow1

...

share

./linux ubd0=rootfs.cown,rootfs.img

eth0=tuntap,,,

Guest

VM 1

Guest

VM 2

Guest

VM n

...

access

create

Figure 5. The guest file system is shared by different Virtual Machine

From the figure, the two main components of UML are the guest kernel (linux) and the guest file system (rootfs.img). Using COW, these components are considered as a template and each command linux ubd0=rootfs.cown,rootfs.img corresponds to a guest virtual machine having access to roofs.cown (read/write) and rootfs.img (read only). This allow to save disk space, to create and run as many virtual machines as we want just with a script of 3 lines using the for loop (.

5. Use case: Compiling guest kernel supporting MIPv6

5.1. Preparing for the guest kernel

Download all the necessary files to the local host before installing your host and UML kernels. In our setup, we assume to use the kernel 2.6.16 for compatibility with the newest MIPL 2.0.2

		Linux kernel

		www.eu.kernel.org

		Guest UML kernel patches

		http://www.user-mode-linux.org/~blaisorblade/patches/guest/

		MIPL user space

		http://www.mobile-ipv6.org/software/download/mipv6-2.0.2.tar.gz

		MIP kernel patch

		http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-2.6.16.patch.gz

mkdir ~/uml

cd ~/uml

wget http://www.eu.kernel.org/pub/linux/kernel/v2.6/linux-2.6.16.tar.gz

wget http://www.user-mode-linux.org/~blaisorblade/patches/guest/uml-2.6.16-bs2/uml-2.6.16-bs2.patch.bz2

wget http://www.user-mode-linux.org/~blaisorblade/patches/skas3-2.6/skas-2.6.16-v9-pre9/skas-2.6.16-v9-pre9.patch.bz2

wget http://www.mobile-ipv6.org/software/download/mipv6-2.0.2.tar.gz

wget http://www.mobile-ipv6.org/software/download/mipv6-2.0.2-linux-2.6.16.patch.gz

5.2. Compiling the guest kernel

Compiling UML kernel is just like compiling any kernel, except that you have to include ‘ARCH = um’ in the command line. For the real deployment, just remove ‘ARCH=um’ from the command line (you may need to issue make mrproper when switching between um, i386, x86, mips, sparc architecture). Let's go through the steps:

1. Unpack file(s)

tar -xzf linux-2.6.16.tar.gz

2. Apply the uml kernel patch

cd ~/uml/linux-2.6.16

bzcat ~/uml/uml-2.6.16-bs2.patch.bz2 | patch -p1 --dry-run --verbose

3. Run your favorite config (can be xconfig, menuconfig or config)

make xconfig ARCH=um

make config ARCH=um

make menuconfig ARCH=um

Set the following options in UML-Specific options. You can leave the remaining options unchanged

CONFIG_MODE_TT=N

CONFIG_STATIC_LINK=Y

CONFIG_HOSTFS=M

CONFIG_HIGHMEM=Y

X86_GENERIC=Y

Note: If the host is configured with a 2G/2G address space split rather than the usual 3G/1G split, then the packaged UML binaries will not run. They will immediately segfault.

4. Compile the kernel in UML architecture. If you have problems while compiling, refer Appendix A for some common errors. The result is a file called `linux' in the top directory of your source tree.

make linux ARCH=um

5. You may notice that the final binary is pretty large. This is almost entirely symbol information. The actual binary is comparable in size to a native kernel. You can run that huge binary, and only the actual code and data will be loaded into memory, so the symbols only consume disk space unless you are running UML under gdb. You can strip UML to see the true size of the UML kernel

strip linux

5.3. Building/downloading the guest file system

We recommend to use a pre-build UML root filesystem (Fedora, Ubuntu, Debian, Gentoo…) downloaded from http://uml.nagafix.co.uk/ and make it compatible with VNUML if you want to use VNUML for creating virtual testbed as in http://www.dit.upm.es/vnumlwiki/index.php/Create-rootfs.

cd ~/uml

wget http://uml.nagafix.co.uk/FedoraCore6/FedoraCore6-x86-root_fs.bz2

bzcat FedoraCore6-x86-root_fs.bz2 > rootfs.img

You can also make your own file system as shown in Appendix B

Note: To speed up the performance, mount the rootfs.img to /mnt/loop and comment the line ‘/sbin/start_udev’ in /mnt/loop/etc/rc.d/rc.sysinit of the guest file system to disable udev file system. You may need to run MAKEDEV to create tty devices in /dev directory.

5.4. Enabling Mobile IP in the guest kernel

If your UML machine runs well, it’s time to enable the Mobile IP feature. Follow the instruction in http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/ to enable Mobile IP feature, as if you are working with a normal linux kernel, then recompile the kernel.

Note: The HOWTO document is decicated to MIPL 1.x and is out of date. Only use it as reference

5.4.1. Kernel Space

Unpack file(s) and apply the MIPL patch to the kernel

cd ~/uml

gunzip mipv6-2.0.2-linux-2.6.16.patch.gz

cd ~/uml/linux-2.6.16

patch -p1 --dry-run < ~/uml/mipv6-2.0.2-linux-2.6.16.patch

The --dry-run option checks that the patch will apply correctly. If you get any failed hunks, you should not proceed. If everything went fine do

patch -p1 < ~/uml/mipv6-2.0.2-linux-2.6.16.patch.

Now your kernel tree is ready for configuration. Run your favorite make xconfig ARCH=um. The MIPv6 options are under "Networking Options". The following options should be present in ".config":

CONFIG_EXPERIMENTAL=y

CONFIG_SYSCTL=y

CONFIG_PROC_FS=y

CONFIG_MODULES=y

CONFIG_NET=y

CONFIG_NETFILTER=y

CONFIG_UNIX=y

CONFIG_INET=y

CONFIG_IPV6=y

CONFIG_IPV6_TUNNEL=y

CONFIG_IPV6_ADVANCED_ROUTER=y

CONFIG_IPV6_MULTIPLE_TABLES=y

CONFIG_IPV6_SUBTREES=y

CONFIG_IPV6_MIP6=y

CONFIG_IPV6_MIP6_DEBUG=y

Compile kernel & modules.

make ARCH=um

Install new modules to guest file system (rootfs.img)

su

mount –o loop ~/uml/rootfs.img /mnt/loop

export UMLROOT=/mnt/loop

make modules_install ARCH=um INSTALL_MOD_PATH=$UMLROOT

5.4.2. User Space

Su back as normal user; unpack the file(s) and compile as any normal user space application.

tar -xzf mipv6-2.0.2.tar.gz

cd mipv6-2.0.2

export CPPFLAGS="-isystem $HOME/uml/linux-2.6.16/include"

export UMLROOT=/mnt/loop

./configure --with-builtin-crypto --enable-vt --prefix=$UMLROOT/usr/local

make

su

make install

Note: repair the file config.sub. Search for “maybe_os” and modify | linux-gnu* | to | linux-gnu* | linux-oldld* | if you can not run configure

5.5. Creating a virtual testbed

Here is the scenario, written for VNUML, based on the tutorial for Linux Mobile IPv6 Howto 1.x (http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/)

[image: image7.png]3ffe:2620:6:3::/84 ffe: 2620:6:1:/64

3ffe:2B20:6:2:/64

Internet

Visited Netwark Home Network

Figure 5. Mobile IPv6 Testbed

		<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE vnuml SYSTEM "/usr/local/share/xml/vnuml/vnuml.dtd">

<!--

VNUML Mobile IPv6 Scenario

Authors: Nguyen Huu Nghia, Christian Bonnet

This scenario is based on the tutorial for Linux Mobile IPv6 Howto for 1.x

http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

-->

<vnuml>

 <global>

 <version>1.8</version>

 <simulation_name>mip6</simulation_name>

 <automac/>

 <vm_mgmt type="none" />

 <vm_defaults exec_mode="mconsole">

 <filesystem type="cow">/home/nguyenhn/MIPL/fc6/root_fs.fc6</filesystem>

 <kernel>/home/nguyenhn/MIPL/linux-2.6.16.8/linux</kernel>

 <console id="0">xterm</console>

 <!--xterm>gnome-terminal,-t,-x</xterm-->

 <console id="1">pts</console>

 <console id="2">pts</console>

 <console id="3">pts</console>

 <console id="4">pts</console>

 <console id="5">pts</console>

 </vm_defaults>

 </global>

 <net name="Inter" mode="virtual_bridge" />

 <net name="Home" mode="virtual_bridge" />

 <net name="Visit" mode="virtual_bridge" />

 <!-- Mobile Node -->

 <vm name="MN">

 <if id="0" net="Home">

 <ipv6>3ffe:2620:6:1::4/64</ipv6>

 </if>

 </vm>

 <!-- Home Agent -->

 <vm name="HA">

 <if id="0" net="Home">

 <ipv6>3ffe:2620:6:1::2/64</ipv6>

 </if>

 <route type="ipv6" gw="3ffe:2620:6:1::1">::/0</route>

 </vm>

 <!-- Router -->

 <vm name="R">

 <if id="0" net="Inter">

 <ipv6>3ffe:2620:6:2::2/64</ipv6>

 </if>

 <if id="1" net="Home">

 <ipv6>3ffe:2620:6:1::1/64</ipv6>

 </if>

 <route type="ipv6" gw="3ffe:2620:6:2::1">::/0</route>

 </vm>

 <!-- Access Router-->

 <vm name="AR">

 <if id="0" net="Inter">

 <ipv6>3ffe:2620:6:2::1/64</ipv6>

 </if>

 <if id="1" net="Visit">

 <ipv6>3ffe:2620:6:3::1/64</ipv6>

 </if>

 <route type="ipv6" gw="3ffe:2620:6:2::2">3ffe:2620:6:1::/0</route>

 </vm>

</vnuml>

TODO: Configure radvd, mipd (sripts are downloadable from my site)

TODO: Simulate the mobility of the MN using brctl (scripts are downloadable from my site)

http://www.eurecom.fr/~nguyenhn/uml/scripts/

References

		[1]

		http://user-mode-linux.sourceforge.net/old/dl-sf.html

		[2]

		http://uml.nagafix.co.uk/

		[3]

		http://www.dit.upm.es/vnumlwiki/index.php/Main_Page

		[4]

		http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems

		[5]

		http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html

		[6]

		http://www.ibm.com/developerworks/library/l-linuxvirt/index.html

		[7]

		http://www.ibm.com/developerworks/linux/library/l-linux-kvm/

		[8]

		http://www.tldp.org/HOWTO/Mobile-IPv6-HOWTO/

 Appendix A – Known bugs while compiling and running

· Problem about the threads.h

ln –s $HOME/uml/linux-2.6.16/include/linux arch/um/include/linux

· Apply patches jmpbuf and no-syscallx downloadable from

http://www.eurecom.fr/~nguyenhn/uml/patches/

· Apply skas patch for host kernel and recompile the host kernel with the patch. If you want to use the same kernel source as the guest. This not only optimize the performance of UML and but also solve the problem of hanging after 'VFS: Mounted root...'

· Solution for other running problem can be found at http://user-mode-linux.sourceforge.net/problems.htm

Appendix B – Building UML root file system

Using Yellow dog Updater Modifier (YUM)

There are many ways to build a UML root file system. We present here a convenient way to create file system is using yum (Yellow dog Updater, Modified) to create a CHROOT environment. Here are some tools found on the UMLWiki page for building such a root file systems

https://lists.dulug.duke.edu/pipermail/yum/2005-January/005950.html

https://lists.dulug.duke.edu/pipermail/yum/2005-February/006055.html

http://uml.jfdi.org/uml/Wiki.jsp?page=Yum3

1. First of all, you need to install yum and configure yum in your host machine. Then create the following files:

vi yum.fc6.conf

		[main]

cachedir=/var/cache/yum

debuglevel=2

logfile=/var/log/yum.log

exclude=*-debuginfo

gpgcheck=0

obsoletes=1

reposdir=/dev/null

[base]

name=Fedora Core 6 - i386 - Base

mirrorlist=http://fedora.redhat.com/download/mirrors/fedora-core-6

enabled=1

[updates-released]

name=Fedora Core 6 - i386 - Released Updates

mirrorlist=http://fedora.redhat.com/download/mirrors/updates-released-fc6

enabled=1

vi yum3.sh

		#!/bin/bash

UMLROOT=/mnt/loop

echo " --> Setting up chroot env in $UMLROOT"

if ~[`id -u` = "0"] ; then

 mkdir -p \

 $UMLROOT/etc \

 $UMLROOT/dev \

 $UMLROOT/proc \

 $UMLROOT/sys \

 $UMLROOT/var/tmp \

 $UMLROOT/var/cache/yum

 touch $UMLROOT/etc/fstab

 mknod $UMLROOT/dev/null c 1 3

 chmod 666 $UMLROOT/dev/null

 mount --bind /proc $UMLROOT/proc

 mount --bind /sys $UMLROOT/sys

 rpm --root $UMLROOT --import http://fedora.redhat.com/about/security/4F2A6FD2.txt

 rpm --root $UMLROOT -Uvh --nodeps --force http://download.fedora.redhat.com/pub/fedora/linux/core/6/x86_64/os/Fedora/RPMS/fedora-release-6-4.noarch.rpm

 yum -y -c ./yum.fc6.conf -C --installroot=$UMLROOT groupinstall "Base"

 umount $UMLROOT/proc

 umount $UMLROOT/sys

else

 echo " *** Sorry, you must be root to setup a chroot environment"

 exit 1

fi

2. Create an file system image and install the file system

dd if=/dev/zero of=rootfs.img bs=1M count=1 seek=700

mke2fs rootfs.img

su

mkdir –p /mnt/loop

mount rootfs.img /mnt/loop

./yum3.sh

3. Then configure the guest file system: /etc/inittab & /etc/fstab & /dev

4. Install UML modules with

cd ~/uml/linux-2.6.16

make modules_install ARCH=um INSTALL_MOD_PATH=$UMLROOT

Note: to resize a root file system, use the following command sequence:

e2fsck –f rootfs.img

dd if=/dev/zero of=rootfs.img bs=1M count=1 seek=<newsize> conv=notrunc

resize2fs –p rootfs.img

e2fsck –f rootfs.img

Using linux installation disk

You can also build your UML rootfs from a linux installation disk as shown in

http://uml.jfdi.org/uml/Wiki.jsp?page=BuildingRootFileSystems

http://www.tldp.org/HOWTO/Bootdisk-HOWTO/buildroot.html

1. First create the empty file that we will use for our disk image. Decide how large you want your disk image to be. Example: If you want a 500Mb disk

dd if=/dev/zero of=~/disk.img bs=1M count=1 seek=500

2. Now you can use and initrd file from any linux distribution installer you want as it on a real disk.

./linux mem=128M ubd0=initrd ubd1= disk.img ubd2r=/dev/cdrom rw

3. After the installation you will load the disk image as for real device.

./linux mem=128M ubdb= disk.img root=/dev/ubdb1

If you experience trouble with hardisk names try fake_ide fake_hd on the command line.

./linux mem=128M ubdb= disk.img root=/dev/ubdb1 fake_ide fake_hd

� Institut Eurécom's research is partially supported by its industrial members: BMW, Bouygues Télécom, Cisco Systems, France Télécom , Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales

PAGE

12

_1265531836.vsd

Apply UML kernel patch
(*)

Download
Kernel source
MIPL source
UML patch

Virtualized?

Start

guest kernel:
linux

Guest file system:
rootfs.img

Compile guest kernel
make xconfig ARCH=um
make ARCH=um

Compile linux kernel
make xconfig
make

linux kernel:
linux, bzImage

Build/Download guest file system

Yes

Apply MIPL kernel patch
(*)

Apply MIPL kernel patch
(*)

Compile and install user-space MIPL on $ROOTFS

End

No

host machine: ROOTFS=/
virtual machine:
 mount -o loop rootfs.img /mnt/loop
 ROOTFS = /mnt/loop

Provide a new architecture named 'um'
(equivelent to existing arch: 386,x86...)
Doesn't modify code source of
existing kernel modules.

(*) Has been integrated in the
mainline linux kernel. No need to
do the patch since version 2.6.20

_1257687212.vsd

host file system

is mounted

«file»
guest file system (rootfs.img)

«executable»
guest kernel (linux)

«file»
rootfs.cown

«file»
rootfs.cow2

«file»
rootfs.cow1

...

share

use

./linux ubd0=rootfs.cown,rootfs.img
eth0=tuntap,,,

Guest VM 1

...

access

Host Machine

Guest VM 2

Guest VM n

create

