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Nouha Oualha, Melek Onen, Yves Routlier

Abstract

This paper describes a cryptographic protocol fecusng self-organized data storage through periodi
verifications. Such verifications are beyond simpleegrity checks since peers generate a proofttiet still
conserve the data they are supposed to be stdrimgproposed verification protocol is efficient tetfeninistic,
and scalable and successfully prevents most ofséuerity threats to self-organizing storage veatfn. In
particular, a data owner can prevent data destrueti a specific holder by storing personalizedicap crafted
thanks to the use of elliptic curve cryptographyeTsecurity of this scheme relies both on the ECDLP
intractability assumption and on the difficulty @ihding the order of some specific elliptic curveeo Z,.
Furthermore, the protocol also makes it possibldife data owner to delegate the verification opamnao other
nodes without revealing any secret information.

Keywords: cryptographic protocols, proof of data possesgwoof of knowledge, self-organization, online data
storage
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1. INTRODUCTION

Online backup and storage has become an increpgdoglular and important application, especiallyegivthe
increasingly nomadic use of data and the ubiquitydata producing processes in our environment.-Self
organization, as illustrated by the developmenPaP applications like AllMyData, today represerits best
approach to achieving scalable and fault-tolertorage, even though it proves far more demandintgrims of
security than classical distributed or remote gferdn particular, no public key infrastructure d@massumed to
be available in such a setting, and the nodescizating to a storage application are constantigifg and
leaving on a large scale. P2P file sharing has laisoght to light the novel issue of free-ridensselfish nodes:
selfishness represents an entire new class okatt@lsereby nodes try to optimize their resourcesaamption at
the expense of other nodes. Attempts at securi@gliaring however have essentially focused oiitialica fair
distribution of upload and download contributiorisiodes.

Self-organizing data storage goes one step fuithéying to ensure data availability on a longntebasis.
This objective requires developing appropriate finmas, that is, storage verification protocolsr fitetecting
dishonest nodes free riding on the self-organizatagage infrastructure. In contrast with simplegrity checks,
which make sense only with respect to a potentiddifective yet trusted server, efficient primitivesed to be
defined for detecting voluntary data destructionabgemote node. In particular, verifying the preseof these
data remotely should not require transferring theaok in their entirety; it should neither make @cessary to
store the entire data at the verifier. The latsguirement simply forbids the use of plain messatggrity codes
as a protection measure since it prevents the reatisin of time-variant challenges based on suahipives.

This paper presents a secure and self-organizorgge protocol exhibiting a low resource overhédus
protocol was designed with scalability as an essleabjective: it enables generating an unlimitadnber of
verification challenges from the same small-sizecusity metadata. The security of the storage sehmlies on
the hardness of specific problems in elliptic cuorgptography. The protocol is also especially ioad with
respect to scalability: it both enables data repilbm while preventing peer collusion, and delegatof data
storage verification to third parties. The latteature proves specifically interesting since veaifion, and not
only storage, can be distributed.

The paper is structured as follows: Section 2 pedlithe security and efficiency requirements thaelé&
organized data storage protocol must meet, and difsusses existent solutions that have been pedptis
address data storage selfishness. Section 3 deseatlitsecurity primitives required both for stgripersonalizing
and verifying the storage of data. Section 4 dbssrhow to define a selfishness-resilient storagegpol based
on this primitive and analyzes its security andfgrenance. Section 5 finally describes a refinemaithis
protocol to handle other security threats.

2. PROBLEM STATEMENT

This section describes the requirements that shoeilshet by a self-organizing storage protocol ahated work
about secure data storage.



2.1 Protocol requirements

We consider a self-organizing storage applicatiomhich a node, called the dataner, replicates its data by
storing them at several peers, called detlalers The latter entities agree to keep data for agineed period of
time negotiated with the owner. Their behavior niigle evaluated through the adoption of a routineckh
through which the holder should be periodicallymppbed to respond to a time-variant challenge a®maf phat it
holds its promise. Enforcing such a periodic veafion of the data holder has implications on trehigecture,
performance, and security of the storage protagbich must fulfill requirements reviewed under fiodowing
three subsections.
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Figure 1. Architecture of a self-organizing storagpstem. (1) The data owner (Peer 1) requests géofeom two holders
(peers 2 and 3). (2) Peer 1 delegates the verificadf its data to three verifiers (peers 4, 5, &)dtwo verifiers per holder).
(3) The verifiers periodically check the behavibholders.

2.1.1. Architecture

Self-organization addresses highly dynamic enviremis like P2P networks in which peers frequently pnd
leave the system: this assumption implies the rfeedhe owner to delegate data storage evaluatothitd
parties, termederifiers thereafter, to ensure a periodic evaluation ofitwd after his leave (see Figure 1). That
interactive check may be formulated as a proof radWedge [16] in which the holder attempts to cooei a
verifier that it possesses some data, which is deimated by correctly responding to queries thauire
computing on the very data.

The need for scalability also pleads for distribgtithe verification function, in particular to bate
verification costs among several entities. Lastrimitleast, ensuring fault tolerance means prewgritie system
from presenting any single point of failure: tostlend, data verification should be distributed tdtiple peers as



much as possible; data should also be replicatetigare their high availability, which can onlyraintained at
a given level if it is possible to detect storagéedtion.

2.1.2. Efficiency

The costs of verifying the proper storage of so@@ dhould be considered for the two parties dia part in the
verification process, namely the verifier and tioédbr.
= Storage usageThe verifier must store a meta-information thake®it possible to generate a time-
variant challenge based on the proof of knowledg#opol mentioned above for the verification of
the stored data. The size of this meta-informatiarst be reduced as much as possible even though
the data being verified is very large. The effemtigss of storage at holder must also be optimized.
The holder should store the minimum extra inforgrain addition to the data itself
= Communication overhead.The size of challenge response messages mustibezegl. Still, the fact
that the proof of knowledge has to be significasthyaller than the data whose knowledge is proven
should not significantly reduce the security of gieof.
= CPU usageResponse verification and its checking duringwbefication process respectively at the
holder and at the verifier should not be computetily expensive.

Some authors have emphasized how the storage asaheommunication overhead requirements differ
between verification primitives for secure selfamngzing storage and classical proof of knowledgatqmols
through the use of a specific terminologyoofs of data possessifor [5], andproofs of retrievabilityfor [7].

2.1.3. Security

The verification mechanism must address the folhgwpotential attacks which the data storage préteco
exposed to:
= Detection of data destruction.The destruction of data stored at a holder mustidiected as soon as
possible. Destruction may be due to generic dataiption or to a faulty or dishonest holder.
= Denial-of-Service (DoS) preventionDoS attacks aim at disrupting the storage apptinatPossible DoS
attacks are:

0 Flooding attack: the holder may be flooded by veaifon requests from dishonest verifiers, or
from attackers that have not been delegated bypwmeer. The verifier may be as well subject to
the same attack.

0 Replay attack: a valid challenge or response messamaliciously or fraudulently repeated or
delayed so as to disrupt the verification.

= Collusion-resistance Collusion attacks aim at taking unfair advantaf#he storage application. There is
one possible attack: replica holders may colludéhsd only one of them stores data, thereby defgati
the purpose of replication to their sole profit.

The main security problem is the detection of dhstruction combined with the risk of collusionveetn
holders. We propose security primitives to handhs tproblem based on proof of possession and
personalization mechanisms. Prevention means dadaa$ attacks are presented in the refined versidghe
secure storage protocol.

2.2 Related work

The security of online backup and storage appboathas been increasingly addressed in recent, yeaich has
resulted in various approaches to the design ehgeoverification primitives. The literature digiirishes two
main categories of verification schemes: probaiglisnes that rely on the random checking of pogiof stored



data and deterministic ones that check the consenvaf a remote data in a single, although poédigtimore
expensive operation.

2.2.1. Probabilistically secure storage

Probabilistic schemes allow the verification of artmn of data at holders. The POR protocol (Probf
Retrievability) in [7] is based on verification eéntinels which are random values independent ebttiner’s
data. These sentinels are disguised among ownataskdocks. The verification is probabilistic witie number
of verification operations allowed being limitedttee number of sentinels.

In the solution of [1], the owner periodically cleiges its holders by requesting a block out ofstieeed data.
The response is checked by comparing it with tHiel \dock stored at the owner’s disk space. Thhs, adwner
obtains a proof of possession from the holder spoading to one data chunk out of the full datam@ared to
[7], the number of challenges that the owner cardoot is unlimited.

A probabilistic verification approach using Merktees proposed by Wagner is reported in [6]. Tha diored
at the holder is expanded with a Merkle hash tredaia chunks and the root of the tree is kephbyverifier. It
is not required from the verifier to store the ddtae verification process checks the possessiamefdata chunk
chosen randomly by the verifier that requests aé avéull path in the hash tree from the root téstrandom
chunk.

[3] proposes a probabilistic verification approaamilar to [1] and the Merkle-based solution menéd in [6].
However, the verifier is not required to keep theole data for verification. In counterpart, the del keeps not
only the data but an extra-information used forwbsfication: the holder is holding data chunksrej with their
signatures. The verifier chooses probabilisticalhe index of these chunks. The index is sent tddhaer which
will answer with the corresponding chunk with itgr&ture. The verifier checks then the signatutaligga of the
chunk. [4] demonstrates that this scheme succeildshigh probability in detecting selfish holdeas\d also that
this probability of success increases with the nemtf chunks verified per challenge sent by thefieer
However, the communication costs linearly increagk this because the holder has to send all regdehunks
with their signatures. The PDP model (Provable Qatssession) in [5] does not employ signature egyiity
proofs but presents new forms of integrity proofsdata chunks: homomorphic verifiable tags wherany
number of them chosen randomly can be compressedust one value by far smaller in size than thesteal
tags.

A further probabilistic approach proposed in [Lbed not need any extra information for verificationbe
stored in the system. The approach permits cheakata by requesting algebraic signatures of datekblstored
at holders, and then comparing the parity of thegeatures with the signature of the parity blosksred at
holders too. The main drawback of the approachasif the parity blocks do not match, it is difilt (depends on
the number of parity blocks used) and computatigreadpensive to recognize the faulty holder.

2.2.2. Deterministically secure storage

Deterministic solutions allow verifying the storagethe full data at each holder. The first solntaescribed in
[8] requires pre-computed results of challengebeatored at the verifier, where a challenge cpmeds to the
hashing of the data concatenated with a random aurime can also follow a similar approach usirgrttodulo
operation (less expensive than the hash operatiom)erifier keeps a finite setl{mod r}; whered is an integer
that maps to the data amdare random numbers, and challenges the holdeehgirsy one of these random
numbers. Both protocols require less storage atdtiéer, yet they allow only a fixed number ofadlenges to be
performed.

A simple deterministic approach with unlimited nweniof challenges is proposed in [2] where the iarifke
the holder is storing the data. In this approahhb, Holder has to send the MAC of data as the regptmthe
challenge message. The verifier sends a fresh n@nc@ique and randomly chosen value) as the keyhi®
message authentication code: this is to prevenhdfger node from storing only the result of thelnag of the
data.



The SEC scheme (Storage Enforcing Commitment) [npfeposes a deterministic verification approach
where the verifier is not required to keep neitbata nor any extra information. The approach usedas
homomorphic tags as in [5] whose number is equabtotimes the number of data chunks and makesehter
choose a random value that will be used to shéftitlidexes of tags to be associated with the daiakshwhen
constructing the response by the holder.

The second solution described in [8] uses an RS#&dbgroof. This solution requires little storagetres
verifier side yet makes it possible to generatar@imited number of challenges. A similar RSA-basetlition is
described by Filho and Barreto in [9] that makes of a key-based homomorphic hash functitinin each
challenge of this solution, a nonce is generatethbyerifier which the prover combines with theéadasingH to
prove the freshness of the answer. The prover{zorese will be compared by the verifier with a vateenputed
overH(data) only, since the secret key of the verifier allawe following operationd for data, ana for nonce):
H(d + r) = H(d) x H(r). The exponentiation operation used in the RSAitam makes the whole data as an
exponent. To reduce the computing time of veriftaat Sebé et al. in [10] propose to trade off thenputing
time required at the prover against the storagaired, at the verifier. The data is split in a numiveof chunks
{di} 15i<m, the verifier holds F(d)} 1<i<m and asks the prover to compute a sum functiohefiata chunksd} 1<i<m
andm random numbersr{ 1<<m generated from a new seed handed by the veriiee¥ery challenge.Here
again, the secret key kept by the verifier allolis bperation} 1<i<m H(d + 1))=Y 1<<m H(d}) x H(r;). The indexm
is the ratio of tradeoff between the storage kgphke verifier and the computation performed by haver.

The main characteristics of the existing verifioatprotocols seen in this section are summarizdabie 1.

Table 1. Comparison of existing verification praitsc
The variable n corresponds to the data size.

Storgge at CPU at holder Communication
verifier overhead
Limited O(2) hash
verifications POR protocol [7] (1) transformation O(1)
N O(1) simple
Lillibridge et Al. [1] O(n) comparison O(2)
. O(log(n)) hash
Propabll!snc - Wagner(6] o(1) transformation Olog(m)
verification Unlimited O(1) signature
verifications | Oualha and Roudier [3] o) ) sighatul o(1)
validation
PDP model [5] 0O(1) 0O(1) exponentiation 0O(1)
. O(2) signature
Schwarz, and Miller [11] O(2) validation O(2)
Limited Deswarte et Al. [8]: pre- o(1) O(1) hash o(1)
verifications | computed challenges transformation
. O(n) hash
Deterministic Caronni and Waldvogel [2] O(n) transformation o(1)
verification Unlimited | SEC scheme [6] 0(1) 0O(1) exponentiation 0(1)
verifications | Deswarte et Al. [8], Filho and o
Barreto [9]: RSA solution o(1) O(n) exponentiation O(1)
Sebé et Al. in [10] 0O(1) O(1) exponentiation 0O(1)

Considering all these security and performancesyoeé propose in the next section a verificatiootgarol
whereby an owner that whishes to store a data gmseindividual replicas for holders, and delegdtes
verification to different nodes.

3. SECURE STORAGE SCHEME



A secure storage scheméis a three-party protocol executed between an pwad@older, and a verifier. The
scheme is specified by four phas&stup Storage Delegation and Verification The owner communicates the
data to the holder at trstoragephase and the meta-information to the verifiethatdelegationphase. At the
verification phase, the verifier checks the holder’'s possessiatata by invoking an interactive process. This
process may be executed an unlimited number oktime
= Setup: The owner setups the scheme by runningedup algorithm that takes in input a security
parametek and returns system parameters (see Figure 2).

Owner
params— Set up(k)

Figure 2. Setup phase

= Storage: The owner stores its data at one or several hal@&ch holder is storing a personalized version
of data. For data personalization, the owner euRsr sonal i ze algorithm that takes in input the data
and the identity of the holder and returns an itlebased encrypted version of data (we assume that
nodes are uniquely identified in the system) (Sgarg 3).

Owner Holder
d' < Per sonal i ze(data, IDyoiger)

Y

Figure 3. Storage phase

= Delegation: The owner generates meta-information to be usedhb verifier for verifying the data
possession of one holder. Therefore, the owner muMet aGen algorithm that outputs the meta-
information needed for verification, by taking aput the identity of the very holder and the datat it
stores. The meta-information is a reduced-size slligé the data stored at the holder. This meta-
information is sent for storage to the verifierttlsaresponsible of verifying the holder (see Fay4).

Owner Verifier
h «— Met aGen(d’, IDyoiger)

\4

Figure 4. Delegation phase

= Verification: The verifier checks the presence of data at théenolt generates a challenge by running a
Chal | enge algorithm that returns the variable to be senh&holder. Upon reception of this message,
the holder runs thBesponse algorithm that takes in input the data stored thiedchallenge variable and
outputs a proof to be sent to the verifier. Withs throof as input, the verifier runs tBheck algorithm
that returns a Boolean variable to decide whetmeptoof is accepted or rejected (see Figure 5).

Verifier Holder
C, < Chal | enge(ry)

R; < Response(d’, Cy)

Check(Ry, ry, h) <€
{acceptreject —

Ci < Chal | enge(r)
R < Response(d’, C)

\ 4

Check(R, r;, h)
{acceptreject —

A

Figure 5. Verification phase



The remainder of this section details our verifmatscheme incrementally: essential notions irpgtlicurve
cryptography and hard problems used in our secsdheme are first introduced; two versions of teeusty
primitives are then described.

3.1.Security background

Our secure storage protocol relies on elliptic ewryptography ([12], [13]). The security of thefarcol is based
on two different hard problems. First, given sorequired conditions, it is hard to find the orderaaf elliptic

curve. Furthermore, one of the most common problemelliptic curve cryptography is the Elliptic G

discrete logarithm problem denoted by ECDLP. Thaok#ie hardness of these two problems, our sestarage
protocol ensures that the holder must use the wiiala to compute the response for each challemgthis

section, we formalize these two problems in orddutther describe the security primitives thay reh them.

3.1.1. Elliptic Curves over Z,

Let n be an odd composite square free integer ana, lebe two integers ifi,, such thagcd4a® + 2% n) = 1
(*gcd” means greatest common divisor). An elliptic cuBy@, b) over the rind, is the set of the points,(y) U
7.xT, satisfying the equatioy? = x> + ax + b, together with the point at infinity denot&y.

3.1.2. Solving the order of elliptic curves

The order of an elliptic curve over the rifig wheren=pq is defined in [14] ad, = Icm(#Ey(a, b), #E4(a, b)
(“lem” for least common multiple, “#” means order oN).is the order of the curve, i.e., for aRy] E.(a, b) and
any integek, (k N, + 1)P =P.

If (a=0 andp=qg=2mod3) or b= 0 andp= q= 3 mod4), the order oE,(a, b) is equal toN, = lcm(p+1,
g+1). We will consider for the remainder of the pafiee case whera = 0 andp = q = 2 mod3. As proven in
[14], given N, = Icm(#Ey(a, b), #E4(a, b)) = lcm(p + 1, q + 1), solvingN, is computationally equivalent to
factoring the composite number

3.1.3. The elliptic curve discrete logarithm problem

ConsideKK a finite field ande(K) an elliptic curve defined ovét. ECDLP in K is defined as given two elements
P andQ O K, find an integer, such thaf) = rP whenever such an integer exists.

3.2 Data-based security primitives

The data file, stored in the system, is uniquelyppea into a numbed (I N in some publicly known way (for
example, conversion from binary representation d@oimal representation). In our context, the tedats file or
data and the numberare often used interchangeably. As shown aboees¢lcure storage scheme relies on six
polynomial time algorithmsSet up, Per sonal i ze, Met aGen, Chal | enge, Response, andCheck. The
construction of these algorithms is presented kmas.
= Set up: The algorithm (Figure 6) is run by the owner dgrihesetupphase. It takes in input a chosen
security parametek (k > 512 bits). It generates two large prinpeandq of sizek both congruent to 2
modulo 3, and computes their prodact pg. Then, it considers an elliptic curve over they@pdenoted
by E.(0O, b) whereb is an integer such thgtdb, n)=1, to compute a generatBrof E,(0, b). The order of
E.(O, b) is N, = Icm(p+1, g+1). The algorithm outputb, n, P, andN,. The parameterb, P, andn are
published and the ordél, is kept secret by the owner.



Set up(K):
. generate two primgsandq of sizek: p, =2 mod 3

computen = pq

computeN, =lcm(p+1, g+1)

generate random integek n, gcdb, n)=1

computeP a generator of,(0, b)

output (public =, b, P), secret 2N,)

oukwnhE

Figure 6. Setup algorithm

= Personalize: The algorithm (Figure 7) is run by the owner dgrthestoragephase. The algorithm
takes in input the datd to be personalized and a secret random nurslef sizel). This algorithm
requires a keyed incompressible functign, . {0, 1}' = {0, 1} (like in [15]) wherelD e is the

unique identity of the holder and| is the size of the data file. The algorithm outplits d + fip, ;. (S)-

Per sonal i ze(d, 9):
1. computed’ =d+ fip, 4 (9)

2. outputd’

Figure 7. Personalize algorithm

= NMet aGen: The algorithm (Figure 8) is run by the owner dgrthedelegationphase. The algorithm takes
in input the datal' and returnsl = (d modN,)P O E,(0, b). The pointT is stored by the verifier.

Met aGen(d, n, Ny, b, P):
1. computeT = (d modN,)P
2. outputT

Figure 8. MetaGen Algorithm

= Chal | enge: The algorithm (Figure 9) is run by the verifi@r $tart theverification phase. It takes in
input a random numberand returns the poi@ = rP [ E,(0, b). The pointQ will be sent to the holder as
a challenge.

Chal | enge(r, n, b, P):
1. computeQ=rP
2. outputQ

Figure 9. Challenge algorithm

= Response: The algorithm (Figure 10) is run by the holderidg theverification phase. It takes in input
a pointQ and datal’ and outputdR =d' Q O E,(0, b). The pointRis sent to the verifier as a response to a
challenge. To reduce communication overhead, thdehonay just send the abscissa of the pRint

Response(d’, Q, n, b):
1. computeR=d' Q
2. outputR

Figure 10. Response algorithm

= Check: The algorithm (Figure 11) is run by the verifiat the end of theverification phase. The
algorithm takes in input the resporBethe random numbar of the challenge, and the metadatalt
verifiers if Ris equal taT, and decides if the holder’s proof is acceptecected.
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Check(R,r, T, n, b):
1. computeT
2. if R=rT then output “accept” else then output “reject”

Figure 11. Check algorithm

With the presented security primitives, the verifieeps an extra-informatioif)(needed for the verification
that is twice the size af (< 2k) which is assumed smaller than the size of theedtdata (2Kb compared with
100Mb or 1Gb of data). For verification, the vegifihas to compute two point multiplications withsimall
random number, in contrast with the holder whotbasompute a point multiplication with the wholdgala

3.3 Chunk-based security primitives

This section introduces an improved version of ¢heecurity primitives described above whereby the
computation complexity at the holder is reducedhin version, the data is split inbochunks, denotedd(} 1<i<m,
and the verifier stores the corresponding ellipticve points T; = diP}1<-m. We assume that the size of each data
chunk is much larger thark4vherek is the security parameter that specifies the sizp and g, because the
verifier must keep less information than the fatal

The owner runs th&et up algorithm during thesetupphase like in the previous version. It personalite
data by running th&er sonal i ze algorithm of the previous version, then splits flexsonalized data im
chunks of the same size (the last chunk is paddihdzeroes): €'} 1<i<m.

The owner runs a new algorith@hunkMet aGen, to obtain the curve point3{ i<, sent to the verifier.

=  ChunkMet aGen: This algorithm (Figure 12) is run by the owneridgrthedelegationphase. It takes in

input the set of personalized data chunig {<<, and returns the set of metadata# d'iP} 1<i<m.

ChunkMet aGen({d' }1<i<m, N, b, P):
foriin 1 tomdo
1. T«—Met aGen(d'j, n, b, P)
end
2. output {Ti}1<i<m

Figure 12. ChunkMetaGen algorithm

During theverification phase, the verifier generates a random se@ize ofc > 128 bits). Then, it runs the
Chal | enge algorithm as in the previous version. It sendsrdsulted outpu@ and the seed to the holder.
Upon reception of this, the holder runs a new atlgor, ChunkResponse, to obtain the response to the
challenge that is sent back to the verifier.

= ChunkResponse: This algorithm (Figure 13) is run by the holdetrtta verification phase. It takes in

input the data chunksd{j} 1<i<m and the seed. It generatesn random numberscf} 1<i<, from the seed.
Finally, it outputs the poirR = 1 i< 6d'iQ.

ChunkResponse({di}i<i<ms Q, C, N, b):
1. generatenrandom numbers from the seed ¢} 1<i<m
2. computed’¢ = ¥ 1<i<m Gd';
3. R—Response(d, Q, n, b)
4. outputR

Figure 13. ChunkResponse

To decide whether holder’s proof is accepted arateld, the verifier runs a new algorithm: €reunk Check
algorithm.
=  ChunkCheck: This algorithm (Figure 14) is run by the verifigr the end of theerification phase. It
takes in input the poirRR sent back by the holder, the random number othaflenger, the seed, and
the stored set of metadatad ¥ The algorithm uses these metadata points to ctargsum that will

11



be compared with the holder’s response. The alguriteturns an accept statement if the equalityghold
and a reject statement otherwise.

ChunkCheck(R,r, ¢, {Ti}i<ci<ms N, b):
1. generatenrandom numbers from the seed ¢} 1<i<m
foriin 1 tomdo
2. computegT;
end
3. COmMpUteY im GT;
4. computer (Yaici<m GT)
5. ifR=r(Y1<<m GT;) then output “accept” else then output “reject”

Figure 14. ChunkCheck algorithm

Compared with the previous version of primitivesenénthe data is considered as a whole, these mawitge
primitives make the holder computepoint multiplications of the same elliptic curveimowhere the size of the
scalar is the size of the data chunk instead ofuhelata. Also, the verifier has to keeppoints instead of one
point in the previous version. The number of chumks the ratio of tradeoff between the storage rexlat the
verifier and the computation consumed at the ho(tlee casem = 1 corresponds to the previous version of
primitives).

For performance reasons, it is possible to disp#resholder and the verifier from using the seetihe holder
computes, for eachin [1, m R = d';Q, and then the sufi-n i[R]x mod nwhere R]x denotes the abscissa of
the elliptic curve poinR. The verifier computes the same sum but with tle¢ahata it is storingy 1<i<m i[I'Ti]x
mod n Then, it compares this sum with the holder’s oesg, which significantly reduces the CPU usage.

4. PROTOCOL EVALUATION

In this section, we evaluate the proposed secuveag# protocol considering both the security and th
performance aspects. We remind the protocol inreid5.

Phases Description

Owner
Setup
1) (public = @, b, P), secret N,)) — Set up(k)

Owner Holder

1)d'— Personal i ze(d, 9
Storage 2) splitd’ into m chunks: '} 1<i<m
3) sendmy, = {d' } 1<i<m m_ 4) receivem,

5) keep @'} 1<i<m

Oowner Verifier

1) ChunkNEt a@n({d’i}liiimv n, bv P)
Delegation | {T} 1<i<m<

2) send; = {Ti} 1<i<m m__ 3) Receivem,
4) keep {li} 1<i<m

Verifier Holder

Verification | 1) Q < Chal | enge(r,n, b, P)
2) sendmnz=Q 103 ) 3) receivemg
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4) ChunkResponse({d'} 1<i<m Q, €, N, b)
R«

6) receivemy ¢ my 5) sendny,=R
7) ChunkCheck(R, r, ¢, {T} 1<i<m» N, D)

{"accept”, “reject"} «

Figure 15. Secure storage verification protocol

4.1 Security analysis

This section analyzes the completeness and thalsess of the protocol that are the two essentigiguties of a
proof of knowledge protocol [16]: a protocoldempleteif, given an honest claimant and an honest veriftee
protocol succeeds with overwhelming probabilitg.,i.the verifier accepts the claimant’s proof; atqcol is
soundif, given a dishonest claimant, the protocol fdils. the claimant’s proof is rejected by the fierj except
with a small probability.

Theorem 1- The proposed protocol isomplete: if the verifier and the holder correctly follow tipeoposed
protocol, the verifier always accepts the proofvakd.

Proof: Thanks to the commutative property of point miitggtion in an elliptic curve, we have for eaiclm
[1,m]: d'irP=rd’;P. Thus, the equatior¥.1<i<m Gd'irtP = (3 1<<m Gd'iP). O

Theorem 2-The proposed protocol ound: if the claimant does not store the data, thenwefier will not
accept the proof as valid.

Proof: If the holder does not store the data churkg {i-, it may try first to collude with other holderoeng

the same data. However, this option is not feasiinlee data stored at each holder is securely paliged during
the storage phase. Sintés a one-way function and the parametés secret, no node except the owner can
retrieve the original datdfrom d'. The other way to generate a correct respondeowitstoring the data relies on
only storing {'iP} 1<i<m (Which is much smaller than the full data sizedl agtrievingr from the challengeP in
order to compute the correct response. Findiisghard based on ECDLP. The last option for theléwoto cheat

is to keep §'; mod N} << instead ofd’ (whose size is very large). The holder cannot pot@N, based on the
hardness of solving the order Bf(0, b). Thus, if the response is correct then the hdldeps the data correctly.
O

4.2 Performance analysis

The suggested verification protocol consists of foases, only three of them are considered indggi#e since
the owner can be the verifier of the data (delegapihase is optional). The first and the secondlearrespond
to a traditional storage of data in the system. Vdfication phase comprises authentication messages, then
challenge-response messages. Thus, we consicandtysis only the verification part of the protacol

In the proposed protocol, challenge-response messaginly consist each of an en elliptic curve paif,’.
Thus, messages’ size is function of the securityofek (size ofn~2k). Reducing communication overhead then
means decreasing the parameter of security. Sqatt@netek is one parameter of tradeoff between efficiency
and security.

The verification protocol requires from the verifie store a set of elliptic curve points that akoproducing
on demand challenges for the verification. Finatlye creation of proof and its verification rely qoint
multiplication operations.

The number of data chunks is a variable of tradeoff between the storage requat the verifier and the
computation expected from the holder: when increpsi, the verifier is required to keep more information
the verification task, but at the same time thedéplis required to perform ormoint multiplication operation
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using much smaller scalar. Thusjs a ratio of tradeoff between the amount of stertdmg verifier volunteers to
concede and the complexity of computation the hraddeees to perform.

Table 2. Summary of resource usage of the veridiogirotocol.
The variable n corresponds to the data size (nurbédata chunks is assumed constant).

Communication Storage space Computation complexit
overhead usage P piexity
Challenge | Response| At At At holder At verifier
size size holder | verifier
O(2) point multiplication operations | O(1) sum of integers #O(1) point
O(1) o(1) o) O(1) + O(1) sum of points multiplication operations

5. PROTOCOL REFINEMENT

As explained previously, four phases are definethnsecure storage protoceetup storage delegation,and
verification At each phase, nodes run the secure storagetipamthat are described in Section 3.3. HoweVer, t
protocol is still weak against some security thgeddscribed in section 2.1.3. This section refithessecurity
mechanisms introduced in the protocol to addressetradditional attacks. Every node in the framewsrk
assumed to be uniquely identified by an identifienoted byDy.

External DoS attacks At each phase of the protocol, messages are rdighed with common signature
algorithms such as RSA. Therefore each node passespair of public and private key®Ky, SKy}.This
authentication inherently prevents external DewialService (DoS) attacks whereby intruders genesatae
flooding attacks against holders. Only authorizedfiers are allowed to run the verification phakeorder to
provide this security restriction, during the delegn phase, the owner provides each verifier desrgal that
allows the verifier to run the verification phasedé Figure 16). Therefore, verifiers generate @masiges for each
message at the verification phase and send thigtsige and their credentials together with the lehgk
message. Since the stored data are assumed tenle, dhe cost of storage is assumed to be muck mor
expensive than the cost of verifying or generatirdigital signature. Moreover, thanks to this tégha message
integrity is also provided.

Owner Verifier

1.— b) computeert(O, ID veritier, |DHo|der).:_
S'gr‘:‘,l@wner(lDOwnen IDverifier |DHoiden Va“dlty, CTh)
2) Senan = {Ti} 1<i<m Cert(O, IDverifiers IDHoIder)a Om2 M, Om2

Delegation

\ 4

Figure 16. Delegation certification

Internal DoS attacks In addition to external DoS attacks, some autleariverifiers might also generate some
flooding attacks against holders. In this partic@ase, authentication is not a direct solutiorcesiverifiers are
authorized to participate to the communication. iMas first propose to limit the number of verifighsat can
request each holder. This number is predefinechén dtorage phase between the owner and the hojder b
considering the capacity of the holder. We als@gpse to define a threshold value for requestsratgig from a
verifier. Hence, the holder keeps a quota coutyiefor each authorized verifier that is incrementeéach new
challenge (see Figure 17). If this counter excebdgiven threshold value during a time interviag verifier is
not allowed to challenge the holder and the chgemessage is automatically dropped.
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Verifier Holder

Verification 3-b) verifyc;: 3-b-1)¢; > ¢y — STOP

3-b-2) <cy, » go to 4)

Figure 17. Quota enforcement

Replay attacks Replay attacks whereby valid challenge messagemaliciously repeated or delayed so as to
disrupt the verification phase are also taken amtasideration. Indeed, during the verification ghas addition to
the challenge message, its signature and the pomdsg credential, the verifier will send a newggnerated
noncerny (see Figure 18).Thanks to this well-known techaigtne holder will be able to automatically detect
replay attacks.

Verifier Holder

1-b) generate a noncg

Verification 2) sendry , g Wherems = Cert(O, Vi, Hi), Q, ng M, Oms

53 sendmy , gme Wherem, =
R, ng
mi Um4

6-b) verify n, <

Figure 18. Replay protection

6. CONCLUSION

We presented in this paper a protocol that sasisfie performance, and security requirements &fosghnizing
storage applications. Its security relies on aiptédl curve cryptographic scheme which we showe#tanaise of
very limited resource. The security mechanisms twhiere developed in this paper make it possibleetify
whether a data storing peer that responds to dedigal still possesses some data as it claims, attbui
sacrificing security for performance. This verificm can also be delegated to third party verifighereby
fulfilling an essential architectural requiremefself-organizing storage.

Assessing the actual state of storage in such licapon represents the first step towards effittiereacting
to misbehavior: active replication strategies carbbilt based on such evaluations and we are iigadisty how
to securely rejuvenate the replicas of some dad@mattack. We are also actively working on thestaction of
cooperation incentives using this protocol as aseolation primitive. Stimulating peer cooperatisnrhowever
more complex than assessing their instantaneoysecaiion with the execution of a challenge-respgmséocol.
The use of a cooperation stimulation scheme shaltitthiately make it possible to detect and isolatkish and
malicious peers.
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