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Abstract—We present a simple and efficient way of tracking a
Mobile Terminal (MT) using multiple antennas at the transmitter
and the receiver. We consider the double directional model and
use the Bayesian framework in order to estimate the speed
and direction of the MT. We show in particular how to exploit
the space dimension, inherently present in a MIMO system, to
increase the estimation accuracy. In contrast to the majority of
solutions that have been proposed so far for MT localization and
tracking, this new method is suitable for a Non-Line-of-Sight
(NLoS) propagation scenario and employs only one Base Station
(BS) 1.

I. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) systems have at-

tracted much interest from an information-theoretic perspec-
tive, as it was proved that they increase the capacity linearly
with the number of antennas [1]. In this paper we investigate
how MIMO systems can be used in terms of localization.
Antenna arrays have been extensively used in the past (at one
or both sides of a communication system) for estimating the
directions of arrival (DoAs) and/or the directions of departure
(DoDs) of a signal (see for example the very appealing
algorithms in [2],[3],[4]). This utility of MIMO systems will
play a key role in the proposed tracking method.
One of the major problems that arise when trying to

estimate location or movement dependent parameters from
measured channel impulse responses is the errors due to
the presence of NLoS components. To improve the accuracy
under these conditions, researchers have adopted two entirely
different approaches: Mitigate the errors, by trying to reduce
or completely eliminate the impact of these components [5], or
take these components into account and use the information
contained in them to increase accuracy [6]. We will adopt
the second approach, since this is the only applicable when
there is no LoS component, a situation which is met often in
real propagation environments. However, in contrast to most
of the work that has been presented so far, in which a single
bounce of the signal to any scatterer is the basic principle
behind channel modeling [7],[8], in our tracking method, a
more general model is used.
The rest of the paper is organized as follows: In section II

we present the channel model. In section III we briefly de-
scribe the principles of Bayesian inference and estimation and
we derive a formula which enables us to estimate parameters

1The work presented herein was supported by the project Semaphor.
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Fig. 1. Double directional model for a MIMO system.

in separate steps, easily. Simulation results for systems with
different number of antennas and at different Signal-to-Noise
(SNR) ratios are presented in section IV. Finally conclusions
and suggestions for future work are given in section V.
Notation: Throughout the paper, upper case and lower case

boldface symbols will represent matrices and column vectors
respectively. (·)t will denote the transpose, (·)∗ the conjugate
and (·)† the conjugate transpose of any vector or matrix. For
a M ×N matrix A = [a1, . . . ,aN ] , vec(A) = [at

1, . . . ,a
t
N ]t

is a vector of length MN , while for a M × 1 vector a =
[a1, . . . , aM ], diag(a) is an M ×M diagonal matrix with a’s
entries along it’s main diagonal. Finally by f(A) we denote
a matrix whose {i, j} entry is f(ai,j).

II. SYSTEM MODEL

In the following, we consider the double directional model,
which describes a time-variant, frequency-selective channel,
taking into account the DoAs, the DoDs, the Delays, the
Bandwidth and the transmitted and received powers. Based
on the Maximum Entropy principle, Debbah et al. validated
this model in [9]. The authors also proved in [10], that
the double directional model encompasses the “Kronecker”,
“Müller”, “Virtual Representation” and “keyhole” models as
special cases. According to the model, the nr × nt MIMO
matrix H is given by:

Hnr×nt
(f, t) =

1√
srst

Φ̂nr×sr
(t)Pr(Θsr×st

� Dsr×st
(f))PtΨ̂st×nt

(t)

(1)

where nr,nt,sr,st are the number of receiving and transmitting
antennas and the number of scatterers in the area of the
receiver and the transmitter respectively (See figure 1). The
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entries of Θ are i.i.d. complex Gaussian with zero mean and
unit variance. Pr and Pt are diagonal matrices containing the
powers of the steering directions. The rest of the matrices on
the right hand side (r.h.s.) of (1) are defined as :

Φ̂ = e(Br+2π
fc
c

υrcos(Φ−αrI)t) (2)
Ψ̂ = e(Bt+2π

fc
c

υtcos(Ψ−αtI)t) (3)
D = e−j2πfT (4)

so that their (k, l) entries are:

φ̂k,l = ej(βr
kl+2π

fc
c

υrcos(φk,l−αr)t) (5)
ψ̂k,l = ej(βt

kl+2π
fc
c

υtcos(ψk,l−αt)t) (6)
dk,l = e−j2πfτk,l (7)

respectively. βr
kl is the initial phase of the signal from scatterer

l to receiving antenna k and φk,l is the angle between a
line perpendicular to the antenna array and the wavefront’s
direction. υr and αr are the receiver’s speed and direction. The
parameters βt

k,l and ψk,l along with υt and αt can be defined
in a similar way for the transmitter. τk,l is the unknown delay
required for the signal to propagate from scatterer l at the
transmitter’s side to scatterer k at the receiver’s side.
The factors 2π fc

c
υrcos(φkl − αr)t and 2π fc

c
υtcos(ψkl −

αt)t in the exponents of the entries of the matrices Φ̂ and
Ψ̂ respectively, represent the shift in frequency due to the
movement of the receiver and the transmitter (doppler effect).
We are particularly interested in the entries of Φ̂, since these
depend on the speed υr and the direction αr of the MT.
Although the analysis will be carried out for the general
channel model, in our simulations we focus on Uniform Linear
Arrays (ULA) at both the receiver and the transmitter. These
are of practical interest and simplify our channel model (by
reducing the number of unknown random variables), so that
the (k, l) entries of Φ̂ and Ψ̂ become2:

φ̂k,l = ej2π(
d(k−1) sin(φl)

λ
+ f

c
υrcos(φl−αr)t) (8)

ψ̂k,l = ej2π(
d(l−1) sin(ψk)

λ
+ f

c
υtcos(ψk−αt)t) (9)

(10)

where we have used the fact that under the far field
approximation, the initial phase βr

kl (βt
kl) varies linearly with

the sine of φk,l (ψk,l).

III. BAYESIAN ESTIMATION OF LOCATION-DEPENDENT
PARAMETERS

We consider the estimation of the speed and the direction
of the MT via the transmission of a training sequence. The
design of an optimal3 training sequence for frequency selective
MIMO channels is beyond the scope of this work. The training
sequence considered in this paper consists of a set of N
orthogonal sub-vectors of size nt each and is assumed to be

2Any two-dimensional antenna array can be considered instead of ULAs
with a simple modification of the exponent of the entries of these matrices.
3A training sequence that minimizes the estimation error.

transmitted within the channel’s coherence time T 4. Each sub-
vector is given by xl = [0t

(l−1), x,0t
(nt−l)]

t , l = 1, . . . , N ,
where x is the training symbol which is known at the receiver.
This training sequence was derived in [11] and was proven to
be optimal5 for MIMO OFDM systems with cyclic prefix.
The discrete-time model describing the input-output rela-

tionship of a time-variant frequency-selective MIMO channel
is :

yl(fi, tj) = H(fi, tj)xl + nl(fi, tj) (11)

where i = 1, . . . , Nf , j = 1, . . . , Nt. Nf and Nt are the
numbers of different frequency and time samples respectively.
n is the nr × 1 noise vector whose entries are i.i.d. complex
Gaussian with mean 0 and variance σ2.
Let X = [x1, . . . ,xN ] denote the nt × N channel in-

put training matrix, Y(fi, tj) = [y1(fi, tj), . . . ,yN (fi, tj)]
denote the nr × N channel output matrix and N(fi, tj) =
[n1(fi, tj), . . . ,nN (fi, tj)] denote the nt × N noise matrix.
The input-output relationship becomes:

Y(fi, tj) = H(fi, tj)X + N(fi, tj) (12)

Without loss of generality we will choose N = nt and the
training symbol x = 1 so that the input training matrix is
X = Int

. This reduces (12) to the simpler form:

Y(fi, tj) = H(fi, tj) + N(fi, tj) (13)

The joint conditional density of all the received matrices,
denoted hereafter as f(Y|{H11 . . .HNf Nt

}) = f(Y|SH), is
given by:

f(Y|SH) =

Nf∏
i=1

Nt∏
j=1

1

(πσ2)nrnt
e−

|Y(fi,tj)−H(fi,tj)|2

σ2

=

Nf∏
i=1

Nt∏
j=1

nt∏
p=1

nr∏
q=1

1

(πσ2)
e−

|yp,q(fi,tj)−hp,q(fi,tj)|2

σ2

(14)

Based on (14) a Maximum Likelihood (ML) estimator can
be implemented to compute the speed and the direction of a
MT. The ML estimator is actually equivalent to the Maximum
A-Posteriori (MAP) estimator, since both the speed and the
direction have uniform a-priori distributions. Let pint be the
vector containing the parameters to be estimated (“parameters
of interest”) and pnuis be the vector of all the rest parameters
in H (“nuisance parameters”). These two vectors will be
explicitly defined later. For the time being it suffices to state
that pnuis = [θ, τ , ...], where θ = vec(Θ) and τ = vec(T).
Under the Bayesian Framework [12], we can infere on the
a-priori distributions of all the random variables composing
the entries of H, therefore also composing pint and pnuis.
Specifically the p.m.f. of the number of scatterers at both sides
is f(s) = 1

Nf Nt
, s = 1, . . . , NfNt, where s represents either

4We assume that the random matrices composing H, do not change within
T and choose to send a set of orthogonal training sub-vectors x that span the
column space of the MIMO matrix during this interval.
5In the sense that it maximizes capacity when used for channel estimation.
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sr or st. The priors of the continuous random variables are
given below:

αr, αt, φq,k, βr
q,k, ψl,p, β

t
l,p ∼ U [0, 2π]

υr ∼ U [0, υr
max] , υt ∼ U [0, υt

max]

τk,l ∼ U [0, τmax] , θk,l ∼ CN(0, 1)

pr
k,k ∼ U [0, pr

max] , pt
l,l ∼ U [0, pt

max]

∀q = 1, . . . , nr , k = 1, . . . , sr , p = 1, . . . , nt , l = 1, . . . , st

According to ML estimation,

p̂int = argmax
pint

f(Y|pint) (15)

where f(Y|pint) is the joint density of the received data
matrices Y(fi, tj) conditioned only on the parameters of
interest. We can obtain this density by marginalizing over all
the “nuisance parameters”, according to:

f(Y|pint) =

∫
A

f(Y|SH) · f(pnuis)dpnuis (16)

since f(Y|SH) = f(Y|pint,pnuis). By A we denote the
vector space where the vector pnuis lies. f(pnuis) is the prod-
uct of the a-priori densities of all the “nuisance parameters”,
some of which are conditioned on sr, st or both. Since all the
parameters except θ are uniformly distributed , we can write:

f(pnuis) = O(sr, st)e
−θ†θ (17)

We can procede first by marginalizing over the Gaussian
vector θ as follows:

f(Y|pint) =

∫
Ã

∫
Csrst

f(Y|pint,pnuis)f(pnuis)dθdp̃nuis

=

∫
Ã

∫
Csrst

Nf∏
i=1

Nt∏
j=1

nt∏
p=1

nr∏
q=1

(
1

(πσ2)
·

e−
|yp,q(fi,tj)−hp,q(fi,tj)|2

σ2

)
O(sr, st)e

−θ†θdθdp̃nuis

=

∫
Ã

[ ∫
Csrst

M∏
m=1

(
1

(πσ2)
e−

|ym−
�S

s=1 cm,sθs|
2

σ2

)
·

e−
�S

s=1 |θs|
2

dθ
]
O(sr, st)dp̃nuis

=

∫
Ã

JθO(sr, st)dp̃nuis (18)

where p̃nuis is vector comprised of all the elements of pnuis

except the θ and lies on the space Ã, while the vector θ lies
on Csrst . In the second equality above we used the fact that
according to our model, hp,q(fi, tj) can be expressed as:

hp,q(fi, tj) =

=
1√
srst

sr∑
k=1

st∑
l=1

pr
k,kφ̂p,k(tj)ψ̂l,q(tj)p

t
l,ldk,l(fi)θk,l

=

sr∑
k=1

st∑
l=1

cp,q,k,l(fi, tj)θk,l =

S∑
s=1

cm,sθs (19)

where, for ease of notation, we replaced the subscripts p, q, i, j
with a single subscript m = 1, . . . , M and the subscripts
k, l with s = 1, . . . , S. M = NfNtntnr and S = srst.
Introducing cm � [cm,1, . . . , cm,S ]t, c′m � ymc∗m and Cm �

c∗mct
m we can show that:

e−
1

σ2 |ym−
�S

s=1 cm,sθs|
2

= e−
|ym|

2

σ2 e−
1

σ2 [−c′
†
mθ−θ†c′m+θ†Cmθ]

(20)
In the following analysis we will use the subscript “all” to

denote a a vector or a matrix that is equal to the sum of all
M vectors or matrices, respectively, which are represented by
the same symbol. After substituting the r.h.s. of (20) in Jθ we
can procede as follows:

Jθ =

∫
Csrst

1

(πσ2)M
e−

1
σ2

�M
m=1 |ym|2 ·

e−
1

σ2

�M
m=1[−c′

†
mθ−θ†c′m+θ†Cmθ]e−θ†θdθ

=
1

(πσ2)M
e−

1
σ2 y†y ·

∫
Csrst

e−
1

σ2 [−c′
†
all

θ−θ†c′all+θ†Callθ+σ2θ†θ]dθ

where the data vector y = [y1, . . . , yM ]t contains all the re-
ceived signal values, over different time and frequency samples
in different receiving antennas and for different transmitted
training vectors. Also Call =

∑M

m=1 Cm =
∑M

m=1 c∗mct
m

is an S × S Hermitian matrix of rank r = min{M, S}. Let
C′

all = Call+σ2I. C′
all is also a Hermitian matrix of rank S

(full rank). Therefore it’s inverse exists and is also Hermitian
and positive definite. Using this fact we can integrate over θ

and get an explicit expression for Jθ:

Jθ =
det(C′−1

all )

(πσ2)(M−S)
e−

1
σ2 y†ye

1
σ2 (c′†

all
C′
−1
all

c′all)

=
det((C∗

GCt
G + σ2I)−1)

(πσ2)(M−S)
e−(y†(Ct

GC∗G+σ2I)−1y) (21)

where we have introduced the S × M matrix CG :

CG =

⎡
⎣ ↑ . . . ↑

c1 . . . cM

↓ . . . ↓

⎤
⎦ (22)

and we have applied the matrix inversion lemma. After careful
inspection we can write CG as6

CG =
[

CL,(1,1) . . . CL,(Nf ,Nt)

]
(23)

with each submatrix given by :

CL,(i,j) = diag(di)(Ψ̃j ⊗ Φ̃t
j) (24)

and di = vec(D(fi)), Ψ̃j = PtΨ̂(tj) and Φ̃t
j = Φ̂(tj)Pr.

From (23) and (24) the dependency of CG on p̃nuis becomes
apparent. Substituting Jθ in f(Y|pint) we finally obtain:

6This representation is not unique. By permuting the rows and/or the
columns we get S!M ! equivalent representations but we should permute the
elements of y as well.
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f(Y|pint) =

∫
Ã

O′(sr, st) det((C∗
GCt

G + σ2I)−1)

e−(y†(Ct
GC∗G+σ2I)−1y)dp̃nuis

(25)

Furthermore if we consider the case of Nf = 1, i.e. the case
when we sample the frequency response of the time-varying
channel7at only one frequency, the r.h.s. of eq. (25) does not
depend on τ either. This is not suprising, since if Nf = 1 we
can replace (Θsr×st

�Dsr×st
(f)) with a new matrix Θ′

sr×st

that has the same distribution.
Notice that so far no explicit categorization of the param-

eters has been made (except from the unknown amplitudes
contained in θ and the delays contained in τ ). One can define
pint to contain just the parameters that need to be estimated for
tracking the mobile or even choose to include some nuisance
parameters and jointly estimate all. Whether the Bayesian
estimation, based on the marginal pdf, or the joint estimation
will yield better results is not trivial to show analytically.
Marginalization would require integration over a subspace with
many dimensions and is not guaranteed to always result in high
accuracy. On the other hand joint estimation would lead to an
algorithm with very high computational complexity, since we
would need to keep track of a multivariate density. Thus, we
chose to sacrifice optimality for efficiency and do a step-by-
step Bayesian estimation by recognizing that the DoAs φ and
the DoDs ψ must be estimated prior to or jointly with υr

and αr for the tracking method to give accurate results. The
proposed algorithm for a MIMO system is summarized below:

• Set pint = [sr,φ], p̃nuis = [st,ψ,pr,pt] and use (25) to
find the DoAs, using only one observation,Nf = Nt = 1.

• Set pint = [st,ψ], p̃nuis = [sr,φ,pr,pt] and use (25) to
find the DoDs, using only one observation,Nf = Nt = 1.

• Set pint = [υr, αr], p̃nuis = [υt, αt,p
r,pt]8 and use

(25) to estimate our true parameters of interest, using all
observations.

The reason for using only spatial (and no temporal) informa-
tion to estimate DoAs and DoDs is that the terms due to the
doppler frequency shift cancel out of the expression (this is
why υr, αr, υt, αt are not contained in p̃nuis) leading to fewer
nuisance parameters and higher estimation accuracy. In steps
one and two of the above method, the algorithms in [2], [3],
[4] could be employed instead. However that would require the
implementation of a separate algorithm and the whole method
is not guaranteed to yield higher accuracy, especially if a multi-
dimensional -instead of a 1-dimensional- maximum likelihood
estimation is adopted. For a system with a single transmit and
a single receive antenna (SISO), only the third step can be
implemented.

7Obtained by taking the Fourier transform with respect to the delay τ .
8The discretization error (if any) of φ, ψ could be modeled as uniformly

distributed in [−ε, ε] and included in p̃nuis.
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IV. SIMULATION RESULTS
For sake of simplicity, we assume that the BS is fixed,

i.e. υt = αt = 09. We further assume that the main lobe
of the transmitting and the receiving antenna array is steered
to a direction perpendicular to the array and has a beamwidth
of 180o. The energy of the signal components transmitted to
or received from other directions is negligible. This implies
that the DoAs and the DoDs are either in [−π/2, π/2] or
in [π/2, 3π/2]. The power gains of the steering directions
are also assumed to be known. To compute the value of the
multidimensional integral in (25), Monte Carlo simulations
have been performed. Normally 100 iterations are enough for
the algorithm to converge to the true density. To make our
graphs more clear and emphasize our results, we have plotted
the 1-dimensional normalized log-likelihoods − 1

ln f(Y|υr) and
− 1

ln f(Y|αr) as a function of υr and αr, respectively, for
different nr × nt systems. The vertical dashed line depicts
the true value.
In figures 2 and 3 the advantage of MIMO over SISO at

high SNR (20dB) is clearly illustrated. With just one antenna

9Or υr = αr = 0 if we consider transmission in the uplink.
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at each side of the communication link, it is almost impossible
to track the mobile. With as many as 2 antennas at each side,
the estimation error becomes already very small. In figures 4
and 5 we show that even with noisy measurements (SNR=
10dB), υr and αr can be estimated correctly in a 4 × 4 and
a 2 × 8 system. On the other hand in a 2 × 2 or a 2 × 4
system our parameters of interest are slightly misestimated
at low SNR as shown in figure 6. Our results indicate that
decreasing the SNR or the number of antennas leads to an
increase in the variance of the estimated parameter (and thus
of the estimation error). It further results in a second peak
in the log-likelihood corresponding to αr. This stems from
the fact that our expression (r.h.s. of 25) depends on αr only
through its cosine and cos(φl −αr) = cos(αr −φl), ∀l. Thus
if most of the DoAs cannot be estimated (SISO case or MIMO
with just a few antennas) or if their effect cannot be removed
succesfully by integration, this ambiguity cannot be resolved.

V. CONCLUSIONS - REMARKS

In this contribution we have pointed out how the speed and
the direction of a MT can be estimated accurately, by using an
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Fig. 6. Performance at low SNR

appropriate, for NLOS conditions, channel model and exploit-
ing the coefficients corresponding to the Doppler frequency
shift with the aid of the Bayesian framework. We have shown
the enhanced performance of a MIMO over a SISO system,
in terms of estimation accuracy. This enhancement mainly
stems from the fact that with a MIMO system, information
contained in the space dimension can be exploited to estimate
nuisance parameters (like the DoAs and the DoDs) and then
use their values as prior knowledge. In future work we intend
to show how the presence of a LoS path can be integrated in
our method.
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