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Abstract — This paper describes a technique to apply formal
methods to verify protocols for mobile ad hoc networks. In
contrast to other related proposals, our solution does not attempt
to model any particular network configuration. Instead, our
solution focuses on the possible implications caused by network
configurations to the behavior of a routing protocol for
MANETS. Following this strategy we were able to find design
errors in some well established protocols. The proposed
technique uses formal verification, more specifically model
checking, to detect, in a simple way, problems such as routing
loops, delivery message failures and errors in the protocol state
machine.

1. INTRODUCTION

Routing protocols play an important role in computer
networks once they are responsible for redirecting packets and
discovering routes through the computer network. The
correctness of these protocols is crucial in order to have more
sable and trustful networks. Unfortunately the development of
routing protocols, mainly for wireless networks, is a complex
and error prone task. This occurs, not only because the
distributed nature of the problem and its inherent complexity,
but also because the lack of good tools to help the protocol
designer on its task. Formal methods, especially formal
verification, can help the protocol designers to decrease the
development time , find design errors and quick validate
solutions for the encountered errors. Thus the use of such
tools improves the final quality of the protocols.

In the last years, many proposals have used formal
verification to validate routing protocols for wireless ad hoc
networks. However, such techniques differ from the one
presented here since they are: normally complex and
unsuitable to model mobility; some times applicable to one
single problem, or protocol; and typically such techniques
propose proofs based on particular scenarios. This work, on
the other hand, presents a simple, and more important,
topology independent approach.

The main contributions of this work are as follows: first it
presents new design failures found in some well known and
established routing protocols for wireless networks. Second, it

presents a way to make the verification topology independent,
avoiding a proof based on a particular scenario. Third, the
method presents a way to safely model flooding based
protocols, avoiding the combinatorial state space explosion
problem . Fourth, to decrease the protocol verification
complexity, the method proposes divide the verification into
internal and external protocol behavior. Finally, this work
presents a simple, yet powerful, method to apply formal
verification to validate routing protocols for mobile ad hoc
networks. To validate our methodology, three different and
well established routing protocols for MANETSs were verified.
After applying our technique, we were able to find design
flaws in all evaluated protocols.

This work is organized as follows. The next section presents
the related work focusing on the strengths and weaknesses of
the different proposals. Section 3 presents the proposed
methodology to model and verify protocols for mobile ad hoc
networks. In Section 4, we apply our technique to three
different protocols and present the flaws discovered with the
application of our method. Finally, Section 5 presents the
conclusions and future extensions of this work.

1I. RELATED WORK

Formal methods, in general, refer to mathematically based
techniques used in specification, development and verification
of software and hardware systems. The use of formal methods
increases the rigor on development of computational systems,
leading to more reliable ones. Because the mathematics
involved in the process, people tend to believe that the use of
formal methods, manly formal verification, worthies only for
safety critical systems. However, formal methods may help
the development of any system and the mathematics involved
on it is, in general, quite easy and straightforward .

This work focus on automated model checking techniques.
Model checking is a method to verify whether a formally
modeled system satisfies a given logic specification . In
automated model checking the prover tool often varies some
properties using an exhaustive search of all possible states that
the model could reach during its execution. On the other hand,



in our technique we propose to identify all possible relations
available on the model, not necessary all protocol states.

In and Obradovic et. al show how to use the theorem
prover HOL and the model checker SPIN to prove key
properties of distance vector routing protocols. The technique
focus mainly on distance vector algorithms. The main
disadvantage of this work is the intense user interaction . HOL
is a semi automatic theorem prover that needs the user to
guide it. Another problem is the complexity in defining the
theorems and lemmas to perform the real proof.

In , Wibling et al. use model checking to verify the
Lightweight Underlay Network Ad-hoc Routing (LUNAR)
Protocol. They use SPIN to verify the data and control aspects
of the LUNAR protocol and the UPPAAL tool to verify the
protocol timing properties. A possible drawback is that the
authors only verify LUNAR, which was designed by the same
group. Furthermore, the work is also based on some strong
assumptions: only bidirectional links are allowed, messages
must be delivered in order, and each node in the network can
only receive and handle one message at a time. Such
assumptions, in some cases, may even prevent the whole
protocol verification, if it is based on any of these points.

Chiyangwa and Kwiatkowska focus their work on the
timing aspects of AODV using UPPAAL. They build a timed
automata model and evaluate the effects of the standard
protocol parameters on the timing behavior of AODV. In that
work, they evaluate a linear topology in which the source is
node O and the destination is node n-I. All other nodes
involved are sequentially placed between the source and the
destination. The work focuses on this particular topology
because it intends to evaluate timing aspects of the routing
discovery problem and to find the maximum possible network
diameter. The work reaches its purpose, but it only verifies
timing aspects of the protocol and does not consider
qualitative aspects, such as loops and other routing problems.

In Yuan et al. illustrate the dynamic operations of a
MANET using Coloured Petri Nets. They show a simple, yet
powerful, way to model the dynamic topology changes of ad
hoc networks with Colored Petri Nets. Its great strength is the
simplicity and elegance of the model they propose to handle
mobility. However, because of the simplifications in the
modeling process, the work does not really handle the process
of sending messages. Thus there are no differences between
full and incremental routing table updates, for example. This
simplification may hide important errors that are not verified.
The technique also does not allow two different nodes to
receive and process, simultaneously, broadcast messages. In
this case errors caused by concurrent sending/receiving
messages are not be detected.

III. Tue METHODOLOGY

This work is an improvement over the one presented in ,
and it is a step-by-step procedure to verify routing protocols
for wireless ad hoc networks. In contrast to the work
presented in [2], our method focuses mainly in qualitative

aspects rather than quantitative ones. We are interested in
identify routing loops, packet delivery failures, unexpected
reception of messages and “pathological’’ cases not treated in
the original protocol specifications. However, quantitative
aspects, such as max/min number of messages exchanged
among nodes, behavior in a particular topology or timing
aspects, for now, are not the focus of the method.

Typical formal verification approaches applied to routing
protocols for MANETSs, such as Wibling et al. , and
Chiyangwa and Kwiatkowska , use either a specific network
configuration or a given number of nodes on the verification.
The problem with these approaches is that mobile ad hoc and
sensor networks are dynamic systems. Therefore, the
correctness proof of a particular configuration does not
guarantee the correctness of the protocol with respect to other
configurations.

This work is grounded on a complete different principle. It
does not model any particular network configuration. Instead
of that, it proposes that one should model all the possible
implications caused by network configurations to the behavior
of the routing protocol for MANETSs. In other words, the
verification should model all the possible relations among the
nodes. This is a key observation in our technique.

1. Ground Principles

To decrease the complexity of the models and avoid the
combinatorial explosion problem this work proposes that the
verification must follow some principles. They are: topology
abstraction, node position and lower layer services.

Topology abstraction: any proof that takes into account a
specific topology just proved that the protocol works for that
particular topology. So, instead of enumerate the infinite
possible topologies, it is better to avoid it. In order to do that
the methodology proposes to use three kinds of nodes, namely,
source, destination and intermediate nodes. The intermediate
node, in truth, represents not one node, but a set of nodes and
all possible effects of interconnections among them. For
example, a node with a neighbor and a packet transmitted
successfully, a node with a neighbor and a lost packet, and so
on. With this simple idea the topology becomes irrelevant
once the cloud of intermediate nodes will model the possible
relations not the topologies, in truth the method does not rely
in any particular topology what makes of it topology
independent. This greatly decreases the complexity and, in
consequence, the effort required to formally verify the
dynamics of routing protocols.

Node position: position awareness is one of the criteria for
classifying routing algorithms. However, with the topology
abstraction, the node position becomes irrelevant. This stands
even for position aware algorithms, since we are concerned
with the possible relations, not specific configurations.

Lower layers services: once they are not the object of study,
the services provided by the lower layers should be modeled
as available and trustable, unless some cross layer aspect is
crucial for the protocol validation. In this case, the



verification, for this cross layer aspect, should be done apart.

2. Modeling

Communicating channel: the communicating channel
should be available and common to every node in the network,
in a random way. This means that any node, or even no one at
all, may receive the packet. However, the way the protocol is
designed must determine if the packet will actually reach the
destination or not, regardless the way the channel is modeled.

Flooding representation: with this communication channel
two messages can represent all existing relations in a flooding.
However, when verifying a protocol, the designer must make
sure that all relations are reachable.

Mobility: from the node point of view, the main
consequence of the mobility is the occurrence of broken links.
So, as the model represents all possible relations among
nodes, including broken links, the mobility is also modeled.

The network: more important than to identify all possible
topologies is to identify all possible effects of different
topologies and node states to the routing protocol. For
instance, what can happen to a message after it is received by
a node? Some possible scenarios are: it can be lost because of
a node failure, it can be transmitted to a neighbor node with a
checksum error, it can be transmitted successfully, and so on.

Internal and external behavior: the protocol should be
divided into internal and external behavior, and each part
verified separately. Internal behavior refers to how the
protocol handles data and controls messages internally to the
node. In other words, the actions the node implements when it
receives, or sends, a specific message. The external behavior
refers to how the whole network reacts to the messages. Both
models should be independent and modeled in such way that
the internal behavior could act as a “procedure” of the
external behavior. This decreases the model complexity
without compromising the verification correctness because all
aspects could be easily integrated. Both behaviors start, in
general, with a packet and its relations. The initialization of
the packet data and its relations should be random to
guarantee the coverage of all relations.

Information modeling: every information regarding the
verified protocol should be modeled as a variable and, as far
as possible, randomly initialized (e.g., package type, packet
time-to-live (TTL), and table exchange trigger). When
possible, such information should also be modeled with
boolean variables. For example, if the packet has a TTL, not
all its values need to be verified: if the TTL was reached, or
not, is normally enough. In PROMELA this can be
represented as:

bool ttl;
if

(1) —> ttl 1
(1) —> ttl =0
£fi;
Simplifications: to avoid the combinatorial state space
explosion a protocol should be simplified as much as possible,

while it does not compromise the verification results. Once

over simplification can often lead to wrong conclusions. As an
example of a simplification, suppose a protocol that uses the
Dijkstra or Floyd protocol to find the minimum path. For the
verification purpose, it may be enough to model the shortest
path as a Boolean variable, either the protocol finds the path
or not. When verifying, the designer should be, normally,
more concerned about his own algorithm than the shortest
path one.

Abstraction: the protocol model should start with a simple
abstraction and increase its complexity appropriately. With
this approach, basic problems can be identified earlier and
possible solutions can be quickly validated. This also allows
the protocol designer to stop verifying the protocol whenever
it reaches a goal or a reasonable complexity.

Analysis: every time a property is verified and the tool
presents a response scenario, the designer must analyze
whether it is a fault on the protocol or on the model. For
example, simplifications can introduce errors in the model that
are not actually possible in the real world. This is a crucial
step and, unfortunately, it can not be done automatically.

In the following, we present a simplified description of the
verification methodology in an algorithmic form.

ALGORITHM
'VERIFICATION METHODOLOGY STEPS

1. Acquire needed information to model the protocol;
2. Create a detailed pseudo-code or finite state machine of the protocol;
3. Compare carefully all cases described in the protocol with the pseudo code
and verify if they are consistent, if not repeat the previous steps;
4. Create a table with all kinds of packets and the nodes that can generate
them (source, intermediate and destination node);
4.1. Specify the semantics of the packets to each node;
5. Divide the protocol into internal and external behaviors
= [nternal behavior: describes the message flows and behaviors for
the node;
=  External behavior. describes the behaviors related to the node
interactions;
5.1. Understand each aspect of the protocol, create an algorithm or an
state machine representation to understand it better;
6. Model the External vs. Internal interactions
® The internal behavior should be modeled as if it was a routine
call. In this way the external behavior becomes independent of the
internal behavior. Ideally, the external and internal behaviors
should be independent;
7. Start with a simple model and continuously increase the model complexity
7.1.  For each error found
7.1.1. Verify whether the error is due to a protocol failure or a
modeling failure;
7.1.2. Find a solution for the problem;
7.1.3. Model the solution;
7.1.4. Test the solution;
7.2. Increase the model complexity;
8. Identify and isolate verified procedures to be used in other protocols.

IV. METHODOLOGY APPLIED



To validate the methodology, we use three different routing
protocols for MANETSs: LAR , DREAM and OLSR . The first
two algorithms are geographic routing protocols and the last
one is a link state based protocol. Such algorithms were
carefully chosen to show the usefulness of the methodology.
The first two algorithms are well-established geographic
routing algorithms with some well known flows. The idea
behind this is to know whether the methodology can be
applied to geographic routing protocols, ignoring the node
position, and whether the methodology is able to, at least,
detect the known flows of such algorithms. Another point
observed is that they are flooding-based protocols, and we
wanted to make sure our technique really works with this class
of algorithms. On the other hand, OLSR is a well known and
cited algorithm, which became an RFC , and uses a
completely different routing approach.

Without exception all evaluated protocols, LAR1, LAR?2,
DREAM and OLSR, presented problems. Some of them are
well known, such as the inability of both LAR and DREAM to
find an existing route. However, others such as the presence of
a loop on both DREAM and LAR2, in the best of our
knowledge were not previously known for these algorithms.

A.  Evaluated protocols

The Location-Aided Routing (LAR) routing protocol has
two different variants, LARI and LAR2. Both are geographic
routing algorithms but working in a quite different way. LAR1
defines a rectangular requesting zone defined by the two
extreme points of the following diagonal: the sender position
and the old destination position including a circular expected
zone of this node. Inside the requesting zone the packets are
flooded to reach the destination. In LAR2, instead of a
rectangular expected zone, every node, when receives a
message, calculates its own distance from the destination and
verifies if such distance is greater than the one from the
previous node, considering a  threshold. If this distance is
greater, the packet is discarded, if not the packet is forwarded.

The Distance Routing Effect Algorithm for Mobility
(DREAM) is based on two simple observations, distance
effect and mobility rate. When a node needs to send a message
to any other node, it verifies the position, velocity and
information time of the destination node on its own routing
table. With these the source node estimates the area where the
node is and calculates the angle , which defines the
destination node expected reachable zone. With this expected
zone the source defines a triangular region between its
position and the tangents to the expected zone. Then it sends a
unicast message to the nodes within that region, which in their
turn repeat the same procedure until the message reaches the
destination.

The Optimized Link State Routing (OLSR) is an optimized
version of the standard link state routing algorithm. OLSR
periodically exchanges messages to update its routing table.
Instead of using a complete path, the protocol uses a hop-by-
hop approach that allows each node to use the most recent

information to forward the packet. To decrease the number of
control messages OLSR uses Multi Point Relays (MPRs).
Nodes chosen as MPRs are the minimal set of nodes required
to send a message to all two-hop distant neighbors, and only
the MPRs nodes can forward messages. This guarantees entire
coverage of those two hops nodes and with the minimum
number of sent messages.

B.  Modelling

In this work, we created all models in PROMELA and
verified them using SPIN . However, any other model checker
could be used. SPIN is a generic verification system largely
used to model and verify distributed systems. SPIN accepts
design specifications written in PROMELA and properties to
verify in Linear Temporal Logic (LTL).

The properties verified in this work where loop occurrence,
valuable packet dropped and packet not delivered. Each one of
such properties were modeled as boolean variables and the
occurrence or not of the property was the LTL formula
verified. The scenarios were small and occupied from 1.4 to
1.6 MB of space for each property verified. All verifications
used the default SPIN hash table state size, which is 2'%. The
stored or reachable states for the protocols, with the verified
properties, varied from 91 to 2489. The maximum longest
depth-first search path for the verified properties varied from
17 to 90 steps. These data are indicative of how tractable the
models became.

C. Results

Among the design errors found using the methodology we
report: (i) fail to deliver messages in LAR1, LAR2 and
DREAM, even though all three protocols use controlled
flooding to deliver messages, (if) loop scenarios in LARI,
LAR2 and DREAM, somehow unexpected for geographic
routing algorithms; (iif) fail to deliver messages in OLSR,
when a message arrives during a routing table recalculation;
(iv) discard newer table information in OLSR and (v) control
messages discarded in OLSR.

Fig. 1 shows a scenario where LAR2 fails to deliver a
message, although there is a path between source and
destination. This occurs if any node in the path is farther from
the destination than the previous node. This fail can occur also
in DREAM, Fig. 3, if the path is not inside the expected zone.
In LARI the delivery failure may occur if there is a path
outside the expected zone and no path inside it. This is
interesting because even doing a flooding there is no
guarantees that LAR or DREAM will effectively deliver a
message. Another identified situation where LARI may fail
delivering a message is when the expected zone and the origin
node are aligned. When this occours few, or no nodes at all,
are found inside the expected zone, and, thus, the packet is
lost.
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Figure 1. Delivery failure in Lar2 when a path it is available,
problem detected by the methodology.

In a broader point of view all three protocols may fail
delivering messages because route concavity. In other words,
if the only viable route passes through a node and this node is
far from the destination than the previous one this path is
discarded and the message will never reach the destination.

Fig. 2 shows the loop scenario in LAR2. This situation
occurs when all nodes are at the same distance from the
destination, considering as a distance threshold. In this
case the message will be forwarded from node to node
indefinitely.

Figure 2. Loop detected in LAR2, when a path it is available,
and all nodes are in the re gion in a near circle.

The loop on LARI1 occurs whenever the time during which
a packet is retransmitted inside the requested zone is greater
than the time nodes keep track of the transmitted packets.

The loop on DREAM, Fig. 3, can occur if the search angle
is greater than 90°. The path may not converge and loops are
possible. This is somewhat unexpected as DREAM authors
claim their algorithm being loop free . This just reinforces the
need of formal verification for routing protocols.
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Figure 3. Loop and delivery failure discovered in DREAM when a
series of nodes are in the angle of dissemination is big enough.

OLSR may fails to deliver messages, when these arrive
during a routing table recalculation. As the protocol is
described in , all table entries are erased during the routing
table recalculation. If a packet arrives exactly at this time it
may be discarded. The second problem found with OLSR is
that it does not control counter overflow, so whenever a
counter overflow occurs, the older information is kept on the
routing tables instead of newer ones. Other problem that
occurs in OLSR is that when a message arrives in a node, just
after the link is marked as unidirectional instead bidirectional,
the control messages may be discarded and not all two hop
neighbors may receive it. Again, in this case authors argue
that the MPR nodes are enough to guarantee that all two-hop
neighbors will receive the control messages, once they
represent the minimum set to cover all two-hop away nodes.

V. CONCLUSIONS

The method presented here showed to be robust and useful
to confirm the existence of problems in algorithms and even to
find new ones. With it, we were also able to verify flooding
based protocols, which, in general, become a problem for
other techniques because the state space explosion . The
topology abstraction, channel and information modeling
showed to be an effective and reliable form to build
verification models for routing algorithms.

However, the current version of the method does not help
determining the protocol limits. Other problem is that the
error scenarios must to be manually evaluated by the designer
who also needs to determine the sources of such errors.
Currently, we are working on extensions of this technique to
other protocols and building a library of verified procedures
that can be used to create more reliable protocols in the future.
The protocol verification built on top of such procedures, may
simplify the work of protocol designers and grant more
reliable protocols in the future.
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