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Abstract— Recent results show that sum-rate maximizing mul-
ticell power allocation promises significant gains in interference-
limited data networks. Finding practical, i.e. distributed, versions
of this global optimization problem however remains a challeng-
ing task. In this work, we establish a general framework for the
distributed power allocation problem for N mutually interfering
links enabling us to derive a fully distributed power allocation
algorithm. Although a gain for N = 2 is observed, a performance
gap is still observed compared to a centralized algorithm. As a
way to fill that gap, we propose minimal information (in this
case 1 bit) message passing between interfering links to improve
performance. Numerical results show these algorithms to exploit
a substantial amount of the capacity gain offered by centralized
optimization.

I. INTRODUCTION

Links operating on the same spectral resource are plagued
by mutual interference which diminishes system capacity.
Power control serves as a means to mitigate this effect and has
been an extensively researched topic over the past 30 years.
In traditional voice-centric wireless networks, power control
was found to be an effective method to enhance the reliability
of the system [1]–[4]. The key idea here is to balance the
transmit powers to achieve a minimum acceptable level of
signal-to-interference-plus-noise ratio (SINR) for each user.

In this work however, we investigate power control for
future data wireless networks enabled with link adaptation
protocols. These differ from voice networks due to the elastic
nature of data traffic and thus guaranteeing a particular SINR
requirement is not always the right strategy. Instead, we con-
sider here the aggregate rate of the system as our metric and
formulate the capacity maximizing power allocation problem.
The optimal solution entails centralized processing of network-
wide channel state information. Though this promises the
maximum exploitable gain, from a practical point of view
however, it is much too costly. Instead, we focus on distributed
solutions to this problem.

As one avenue, game theoretic results have been explored
to provide just that. Game theoretic algorithms represent the
interfering links in the network as players of a non-cooperative
game, where each tries to maximize its own utility function.
Although the resulting power allocation strategies are very
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interesting and distributed by nature, such approaches do
not always lead to globally (or "socially") optimum solu-
tions. Pricing mechanisms have been looked at, which aim
at penalizing the interference created to other links, in order
to make the game outcome more socially optimum [5]–[9].
However, the pricing function itself needs to be optimized as
well, and it typically depends on the particular system layout
and environment [5], [7]. Some game theoretic approaches
also require communication of information between links to
compute the pricing function [9].

As an alternative to game theoretic approaches, Geometric
Programming techniques can be applied in the high or low
SINR regimes which render the power control problem convex
[10], [11]. Finally, distributed capacity maximizing power
control and scheduling algorithms were proposed in [12],
which take advantage of a simplifying interference model.
Such approaches [13] rely however, on statistical averaging
properties of large random networks and thus are not applica-
ble for all networks.

In this paper, we focus on distributed power allocation
solutions, where the distributed nature of the optimization is
formulated by means of statistical optimization. Our major
contributions are listed below:

• We propose a statistical framework for rate maximiz-
ing power control in an arbitrary network with several
interfering cells or links1. The key advantage of this
framework is to allow for a fully distributed optimization
of the power. The rate metric we are considering is the
sum of rates achieved on each link under single user
decoding, treating the multicell interference as noise.

• In the particular case of two links (say for a two cell
network or a larger network with clusters of two cells),
we develop a distributed algorithm based on the above
framework, which leads to simple activation conditions
for a link.

• Finally, by allowing a 1-bit message passing between
interfering links, substantial improvement in the capacity
performance can be obtained through a simple modifica-
tion of the fully distributed algorithm.

Our numerical results show that the distributed and near

1In this work we will use the words link(s) and cell(s) interchangeably
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Fig. 1. Snapshot of network model, with N = 4 interfering pairs of
transmitters and receivers. The cellular (a) and ad-hoc (b) scenarios give rise
to equivalent mathematical models. Dashed circles refer to silent users while
solid circles refer to access points or users selected by the scheduler.

distributed power allocation algorithms largely outperform a
system with fixed (or no) power control and are close to the
performance given by centralized power control.

II. SYSTEM MODEL

Consider a wireless network with a collection of nodes,
which can be both transmitters and receivers. By virtue of
a scheduling protocol, N transmit-receive active pairs are
simultaneously selected from these nodes to communicate on
any given spectral resource slot (time or frequency slots in
TDMA/FDMA, or code in orthogonal CDMA), while others
remain silent. In this paper, we do not worry about how or
which links are activated as we only focus on power control.
Note however that scheduling may be jointly optimized with
power allocation, e.g. [12]. In this network, the transmitter
sends a message to its intended receiver only. However, due
to full spectral resource reuse, the receiver is interfered by all
other active links. We assume single user decoding and thus
interference from other links is treated as noise. This setup can
be seen as an instance of the interference channel, the analysis
of which is a famously difficult problem in information theory
[14]. In practical terms, the situation depicted above can be
that of a cellular network with reuse factor one (say e.g. the
downlink with transmitters being access points (AP) or base
stations) or, it can also depict a snapshot of an ad-hoc network
(Fig.1).

A. Signal Model

Denoting the random channel gain between any arbitrary
transmitter i and receiver n by Gn,i ∈ R

+, the received signal
Yn can be written as

Yn =
√

Gn,nXn +
N∑

i�=n

√
Gn,iXi + Zn,

where Xn is the intended signal from the transmitter,∑N
i�=n

√
Gn,iXi is the sum of interfering signals from other

transmitters and Zn is the noise. For convenience, Zn is
modeled as additive white Gaussian with power E|Zn|2 = σ2.

III. POWER ALLOCATION FOR SUM-CAPACITY

MAXIMIZATION

We now formulate the power allocation problem for sum-
capacity maximization. We define the transmit power vector
P = [P1 P2 · · · Pn · · · PN ], which contains transmit powers
used by each transmitter to communicate with its respective
receiver, where [P ]n = Pn. As in all realistic networks,
we impose a power constraint on each transmitter such that
Pmin ≤ Pn ≤ Pmax. We assume from here on that Pmin = 0.
We can then write the feasible set of transmit power vectors
as Ω = {P | 0 ≤ Pn ≤ Pmax ∀ n = 1, . . . , N}. Taking
Pn = E|Xn|2, the signal to interference-plus-noise ratio
(SINR) at the receiver of link n is then given by

Γn(P ) =
Gn,nPn

σ2 +
N∑

i�=n

Gn,iPi

. (1)

A. Objective Function

We see clearly that the SINR of each link is dependent on
the complete transmit power vector and thus so will be the
individual link capacities. Assuming an ideal link adaptation
protocol and perfect CSI at the transmitter, we define the
objective function as the sum of single user rates achieved
over each link. This can be expressed in bits/sec/Hz using the
Shannon capacity as

C(P ) ∆=
N∑

n=1

log2

(
1 + Γn(P )

)
. (2)

With a slight abuse of terminology and in order to ease
exposition, we shall refer to the expression above as the
network capacity2.

B. Optimal Power Allocation Problem

Taking (2) as the objective function we want to maximize,
the optimal power allocation problem can be stated as

P ∗ = arg max
P∈Ω

C(P ). (3)

This problem is known to be non-convex and an optimal
solution would require an exhaustive search over the feasible
set of transmit powers which entails high complexity as well
as centralized processing. However, an interesting result is
presented in the next section which enables us to significantly
reduce the complexity of this problem.

C. Optimal Power Allocation for N = 2

An interesting result pertaining to problem (3) for N = 2
is presented in [15], [16]. For convenience we restate it here:

Lemma 1: The optimal sum-capacity maximizing power
allocation for 2 interfering links lies in the binary feasible
set

ΩB = {P | Pn = 0 or Pn = Pmax]}. (4)

2We use capacity to refer to the sum of single user rates rather than capacity
in the information-theoretic sense
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Proof: See [15], [16]3

This result substantially decreases the optimization complexity
from a continuous search space to 2 discrete values for each
link. Moreover, numerical results suggest that with a greater
number of links this binary allocation, although not strictly
globally capacity-optimal in the Shannon sense, is close to
the optimal power allocation [15], [16]. However, as the
network capacity is coupled with the network-wide transmit
powers, finding the optimal power allocation vector for given
instantaneous channel realizations still requires a centralized
solution. From a practical point of view this is not feasible
and thus we turn our attention now to the distributed power
allocation problem formulation.

IV. DISTRIBUTED POWER ALLOCATION

Distributed control can have many meanings depending on
the availability of underlying information. In the most ideal
setting, each link would make a decision based on local
information i.e. information available at the transmitter. This
would indeed be sub-optimal, as an assumption would have
to be made about unknown information. None the less, this
is the most practical form of distributed control in terms of
both complexity and information exchange. In what follows,
we formulate the distributed power allocation problem under
statistical knowledge of unknown information. Note that this
statistical knowledge can be acquired a priori during a network
calibration phase.

A. Network Capacity Maximization Under Statistical Knowl-
edge

As stated, we assume that each transmitter has only local
knowledge. Let us declare the set containing all network
information as G = {Gi,j} ∀ i, j. This means that the
transmitter n only knows G local

n . Thus the unknown information
at the transmitter can be represented by G̃n = G \ G local

n . A
transmitter n then tries to maximize the expected network
capacity defined as

Cn(P ) ∆= EG̃n

{
N∑

m=1

log2

(
1 +

Gm,mPm

σ2 +
N∑

i�=m

Gm,iPi

)}
. (5)

EG̃n
{·} is the expectation operator averaging the capacity

over all realizations of G̃n, while keeping G local
n constant. The

distributed power allocation problem under this framework can
thus be written as

for link n P ∗
n =

[
arg max

P∈Ω
Cn(P )

]
n

. (6)

In what follows we assume local information to be G local
n =

{Gn,i ∀ i}, which means that a transmitter has knowledge
of the direct channel and the interference from other cells
to its intended receiver. This is a natural choice for local
information, as these values can be measured at the receiver

3Note that this result was also reported independently in [17].

and fed back to the transmitter. Moreover, simulation results
show this choice to give good performance in terms of network
capacity gain. Under this knowledge, the expected network
capacity that transmitter n tries to maximize is given by

Cn(P ) ∆= log2

(
1 +

Gn,nPn

σ2 +
N∑

i�=n

Gn,iPi

)

+ EG̃n

{
N∑

m�=n

log2

(
1 +

Gm,mPm

σ2 +
N∑

i�=m

Gm,iPi

)}
. (7)

In the next section, we focus on the 2 link case which offers
insight into the gain offered by this distributed approach. We
propose a simple distributed algorithm to solve this problem
as well as a modified version of this algorithm incorporating
1-bit message passing between links to enhance performance.

V. DISTRIBUTED POWER ALLOCATION FOR 2 LINKS

The case of problem (6) for 2 links is particular. However,
the algorithm developed here can be used in a wider network
with more links, where links are previously paired up in
clusters of two links. Forming of the clusters should favor
strongly interfering links, for which a distributed resource
allocation technique will exhibit the largest benefits.

Focusing on link 1, we can write the expected network
capacity as a function of the transmit powers as

C1(P1, P2) = log2

(
1 +

G1,1P1

σ2 + G1,2P2

)

+ E

{
log2

(
1 +

G2,2P2

σ2 + G2,1P1

)}
, (8)

where the expectation is taken over the other link channel
gains, namely G2,2 and G2,1. The expected capacity for link 2
can be expressed similarly by inverting the indices. Notice that
the expectation will be different for different power allocation
strategies; a point which will be touched upon in the next
section. Finally, it has been shown that for N = 2, the optimal
power allocation under complete channel knowledge is binary
[15], that is, P ∗ ∈ ΩB defined in (4). Thus, motivated by
the optimality of binary power control for the centralized
problem, we adopt the binary feasible set for the distributed
problem as well. We point out here that binary power control is
not necessarily optimal for the distributed problem. However,
employing this power allocation strategy greatly simplifies the
complexity of the resulting algorithm. As a result, we can
formally write the distributed optimization problem based on
statistical knowledge as

P ∗
i =

[
arg max

(P1,P2)∈ΩB
Ci(P1, P2)

]
i

∀ i = 1, 2 (11)
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R2(0, 1) =
∫ +∞

0

log2

(
1 +

G2,2

σ2

)
f(G2,2)dG2,2 (9)

R2(1, 1) =
∫ ∫ +∞

0

log2

(
1 +

G2,2

σ2 + G2,1

)
f(G2,2)f(G2,1)dG2,2dG2,1 (10)

A. Fully Distributed Power Allocation

By adopting binary power control a link will either transmit
at Pmax (assumed as 1) or remain inactive (i.e. link power
will be 0). Thus, solving problem (11) is equivalent to a
link determining if it should be active or not depending on
knowledge of local information.

A cell i needs to consider the following cases to determine
which power allocation maximizes the expected capacity de-
fined in (8):

1) Expected capacity of both cells being active: C(1, 1).
2) Capacity of only cell i: C(0, 1) or C(1, 0).

Focusing on link 1, the activity conditions can thus be sum-
marized as follows:

P1 =




1 if C(1, 1) ≥ C(0, 1)
1 if C(1, 0) ≥ C(0, 1)
0 otherwise

Note that there is no need to compare the expected capacity
of both cells being active and only cell 1 being active, as cell
1 will be active in either case. By simple manipulation of the
above conditions, link 1 will be active if either

SINR1 ≥ 2[R2(0,1)−R2(1,1)] − 1 (12)

or
SNR1 ≥ 2R2(0,1) − 1 (13)

where R2(0, 1) and R2(1, 1) are the expected capacities of the
other link under the respective power allocations (shown above
in (9) and (10)). f(G2,2),f(G2,1) are respectively, the pdfs
of the direct channel and interfering channel gains (assumed
independent) for link 2. Due to symmetry, conditions for link
2 can be expressed in a similar way as (12) and (13).

Practically, R2(0, 1) and R2(1, 1) can be calculated offline
by generation of a sufficient number of channel realizations
and plugged into conditions (12) and (13) to determine if the
cell should be active. Thus, based on simple conditions and
in a fully distributed way, each link decides based on local
channel information whether it transmits or not. We call this
algorithm Fully Distributed Power Allocation (FDPA).

B. Capacity Enhancement with 1-bit Message Passing

The FDPA algorithm presented in the previous section is
completely distributed in that it requires no real-time infor-
mation exchange from other links. It is interesting however
to explore how a minimum amount of information exchange
could be used to enhance performance. We let this amount
of information be 1-bit. More precisely, a link is allowed to
send 1-bit worth of information to the other link. The most

natural choice of information to send would be the result of
its optimization solution.

We call this algorithm 1-Bit Distributed Power Allocation
(1-BDPA) and describe it as follows:

1) Link 1 performs the optimization (11) and sends a
message (1-bit) to the other link to indicate whether it
is active or not.

2) Link 2 then performs the optimization (11) to calculate
P2 under the knowledge of P1.

We deem this algorithm to enhance performance as with the
1-bit signal from link 1, a more informed decision can be
made by link 2. Clearly, if link 1 sends a 0 then link 2 will be
active. If a 1 is sent then link 2 needs only to consider if both
cells being active gives better performance than the expected
capacity of the other link.

VI. NUMERICAL RESULTS

As stated, the formulation of the distributed power alloca-
tion is independent of the system layout. Thus for ease of
simulation, we consider the downlink of a cellular network
where the AP transmits to a user terminal (UT). Monte-Carlo
simulations over random UT positions and channel realizations
are are carried out for 2 cells operating at 1.8 GHz, each
with a radius r = 1 Km and Pmax = 1 Watt. Random UT
positions are drawn from a uniform distribution over the cell
area. Gains for all inter-cell and intra-cell AP-UT links are
based on the COST-231 [18] path loss model including log-
normal shadowing with standard deviation of 10 dB, as well as
i.i.d. fast fading ∼ CN (0, 1). Expected capacity terms of the
other cell are calculated offline based on an adequate number
of channel gain realizations.

The performance of FDPA and 1-BDPA is compared with
the no power control and centralized optimal allocation. To
gain insight into the effects of power allocation we vary the
distance between the 2 cells. Denoting the distance between
APs by d, we vary the ratio d

2r . When d
2r < 1, the cells

overlap and this results in severe interference, akin to that in
ad-hoc networks. When d

2r > 1, the cells are further apart
(equivalent to increasing spectral reuse) and thus the effects
of interference diminish.

In fig. 2 we plot the average per cell network capacity
versus d

2r . It can be seen that power allocation provides the
most benefit when d

2r is small i.e. the links experience strong
interference. The FDPA algorithm achieves nearly 50% of
the gain offered by optimal power allocation whereas with
1-BDPA a substantial amount of the gain is exploited. As
d
2r increases, the gain from power allocation decreases and
all the schemes converge to the same capacity. This is quite

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

3

4

5

6

7

8

9

10

d/2r

A
ve

ra
ge

 N
et

w
or

k 
C

ap
ac

ity
 (

bi
ts

/s
ec

/H
z/

ce
ll)

Optimal Allocation
FDPA
1−BDPA
No Power Allocation

Fig. 2. Comparison of average network capacity for the distributed algorithm
and 1-bit exchange approach with Optimal Power Allocation.

straightforward due to the fact that increasing the distance
between the cells effectively decreases spectral reuse and both
cells are more or less “shielded” from interference. Thus, from
a network capacity maximization point of view, both should
transmit at full power.

In fig. 3 we depict the percentage of errors made in the
power allocation by each algorithm as compared to the optimal
solution. FDPA makes a significant amount of errors in the
high interference case. This is due to that fact that under severe
interference both cells can be inactive as each cell comes to
the conclusion that it will not contribute enough capacity to
outweigh the interference caused. Clearly at least one cell
should be active in this scenario. This error decreases in the
low interference case as each cell deems it will offer enough
capacity without causing too much interference and thus both
cells being active becomes the optimal thing to do. We see that
with 1-BDPA, in the high interference scenario the number of
errors are relatively smaller. This is due to the fact that it can
exploit the 1-bit information to make a better decision, which,
in the severe interference case is to keep one, but not both of
the cells active at the same time. At the other extreme when
cells are far apart the error is small, again due to the fact that
both cells are kept active in the presence of low interference.

VII. CONCLUSIONS

In this work, we studied distributed power allocation for
mutually interfering links. We proposed a framework for
distributed capacity maximizing power control by exploiting
statistical knowledge of non-locally available information.
Based on binary power control, a computationally simple and
completely distributed algorithm was proposed which provided
significant performance gain. With the help of 1-bit message
passing a near-distributed algorithm was shown to exploit a
major part of the gain offered by the centralized optimal power
allocation.
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