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Abstract— The problem of joint linear beamforming and schedul-
ing in a MIMO broadcast channel is considered. We show
how Orthogonal Linear Beamforming (OLBF) can be efficiently
combined with a low-complexity user selection algorithm to
achieve a large portion of the multiuser capacity. The use of
orthogonal transmission enables the transmitter to calculate exact
signal-to-interference plus noise ratio (SINR) values during the
user selection process. The knowledge of multiuser interference
proves to be of particular importance for user scheduling as
both the number of users in the cell and the average signal-to-
noise ratio (SNR) decrease. The sum capacity of our scheme
is characterized in the low-SNR regime, providing analytical
results on the performance gain over Zero-Forcing Beamforming
(ZFBF). Numerical results show gains over both suboptimal and
optimal ZFBF techniques in different scenarios.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication sys-
tems have the potential to offer high spectral efficiency as well
as link reliability. In point-to-point multiple antenna systems,
it is well known that the capacity increases linearly with
the minimum of the number of transmit/receive antennas,
irrespective of the availability of channel state information
(CSI) at the base station [1], [2]. In MIMO broadcast channels,
it was shown [3] that the capacity can be boosted by exploiting
the spatial multiplexing capability of transmit antennas and
transmit to multiple users simultaneously, by means of Space
Division Multiple Access (SDMA), rather than trying to
maximize the capacity of a single-user link.

As the capacity-achieving dirty paper coding (DPC) approach
[4] is difficult to implement, many more practical downlink
transmission techniques have been proposed. Downlink linear
beamforming, although suboptimal, has been shown to achieve
a large portion of DPC capacity, exhibiting the best tradeoff
between complexity and performance [5], [6], [7], [8]. How-
ever, finding the optimal beamforming vectors is a non-convex
optimization problem, and the optimal solution for a downlink
channel with K users is given by exhaustive search over all
possible combinations. Evidently, the complexity of the above
problem becomes prohibitively high for large K.

In this paper, we propose a system based on joint orthogo-
nal linear beamforming and scheduling in MIMO broadcast
channels, coined as Orthogonal Linear Beamforming (OLBF).
In order to avoid user selection based on exhaustive search,
we propose a low-complexity user selection technique valid
under the constraint of using orthogonal beamforming vectors
for transmission. Orthogonal transmission enables calculation
of the exact signal-to-interference plus noise ratio (SINR)
values during the user selection process in a compact and
computationally efficient manner. This SINR expression was
introduced as a scalar feedback metric for MIMO broad-
cast channels with limited feedback [9], [10], and can be
interpreted as an upper bound on the SINR. Note that a
similar metric is also reported in [11]. In the case of full
channel knowledge and suboptimal user scheduling, the use
of orthogonal beamformers allows to have a precise control
on the multiuser interference at the transmitter. In order to
improve the system performance, this knowledge proves to
be of particular importance for decreasing number of users
and average signal-to-noise ratio (SNR). In addition, the exact
per-user contribution to the sum rate can be computed at each
selection step.

Simulation results show performance improvements with
respect to zero-forcing beamforming (ZFBF) and transmit
matched filtering (TxMF) in realistic networks with low to
moderate number of users. The proposed algorithm is also
compared with the ZFBF scheme with Greedy User Selection
(ZFBF-GUS) introduced in [8]. We show that in systems with
low to moderate number of active users, the proposed scheme
exhibits sum-rate gains over ZFBF-GUS in the low-SNR
regime. However, as the average SNR and number of users
increase, suboptimal ZFBF techniques like [8] can provide
higher rates. One of our main results is to show that in the
regime of low number of users, orthogonal SDMA offers better
performance than optimal zero-forcing beamforming. Analyt-
ical results are provided and corroborated through numerical
simulations.

The paper is organized as follows. Section II introduces the
system model. Linear beamforming strategies are discussed



in Section III. The proposed Orthogonal Linear Beamforming
approach is described in Section IV. Section V provides a
capacity scaling analysis of OLBF and ZFBF in the low-SNR
regime. Simulation results are given in Section VI. Finally,
conclusions are drawn in Section VII.

II. SYSTEM MODEL

We consider a multiple antenna broadcast channel consisting
of M antennas at the transmitter and K single-antenna re-
ceivers. The received signal yk of the k-th user is mathemat-
ically described as

yk = hH
k x + nk, k = 1, . . . ,K (1)

where x ∈ C
M×1 is the transmitted signal, hk ∈ C

M×1 is
the channel vector, and nk is additive white Gaussian noise at
receiver k. We assume that nk is independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian with
zero mean and unit variance. The transmitted signal is subject
to an average transmit power constraint P , i.e., E{‖x‖2} = P .
We consider equal power allocation over each transmit beam,
and an homogeneous network where all users have the same
average signal-to-noise ratio (SNR). Due to the noise variance
normalization to one, P takes on the meaning of average SNR.

Let H ∈ C
K×M refer to the concatenation of all channels,

H = [h1 h2 . . .hK ]H , where the k-th row is the channel of
the k-th receiver (hH

k ). Define Q as the set of all possible
subsets of cardinality M of disjoint indices among the com-
plete set of user indices K = {1, · · · ,K}. Let S ∈ Q be one
such group of M users selected for transmission at a given
time slot. Then H(S), W(S), s(S), y(S) are the concatenated
channel vectors, unit-norm beamforming vectors, uncorrelated
data symbols and received signals respectively for the set
of scheduled users S. When concatenating the beamforming
matrix W(S) prior to transmission, the signal model can be
described as follows

y(S) = H(S)W(S)Ps(S) + n (2)

where P is an M × M diagonal matrix with entries equal
to

√
P/M , as equal power allocation is used. Note that the

use of OLBF and normalized beamforming vectors implies
that the matrix W(S) is unitary, i.e., W(S)W(S)H =
W(S)HW(S) = IM . At the k-th mobile, the received signal
is given by

yk =

√
P

M

∑
i∈S

hH
k wisi + nk, k = 1, . . . ,K (3)

We consider an i.i.d. block Rayleigh flat fading channel, whose
parameters are considered invariant during each coded block,
but are allowed to vary independently from block to block. We
focus on the ergodic sum rate, which means that the capacity
is averaged over the fading distribution, and thus the block size
does not affect our results. We also assume that the number of

mobiles is greater or equal to the number of transmit antennas,
i.e., K ≥ M , implying the use of a user selection algorithm.

Notation: We use bold upper and lower case letters for
matrices and column vectors, respectively. (·)T , (·)H , and
(·)† stand for transpose, Hermitian transpose, and pseudo-
inverse, respectively. E(·) denotes the expectation operator.
The Euclidean norm of the vector x is denoted as ‖x‖, and
the log2(·) refers to the base 2 logarithm.

III. LINEAR BEAMFORMING STRATEGIES

In this paper, we focus on joint downlink linear beamforming
and scheduling with the objective of maximizing the system
sum rate. The optimal solution can be conceptually given
by exhaustive search over all possible user sets. In a system
employing exhaustive search, the scheduler selects the set of
users that maximize the sum rate as follows

S∗ = arg max
S∈Q

∑
k∈S

log2 [1 + SINRk(S)] (4)

where the values SINRk(S) have to be computed for each
possible set S and user k, given a certain beamforming strat-
egy. In MIMO broadcast channels, the most commonly used
linear beamforming techniques are zero-forcing beamform-
ing (ZFBF) and minimum mean squared error beamforming
(MMSE-BF). In ZFBF, the transmit beamformer is computed
as

W(S) =
1
λ
H(S)H(H(S)H(S)H)−1 (5)

where λ = 1
P tr

[
(H(S)H(S)H)−1

]
, and tr(·) is the trace

operator. In MMSE-BF, the beamformer is given by

W(S) = H(S)H(αI + H(S)H(S)H)−1 (6)

where α is chosen such that tr
(
W(S)W(S)H

)
= P . For

simplicity, we have not considered optimal power allocation
in equations (5) and (6). When combining the above linear
beamforming approaches with user scheduling in order to
find the optimal user set as described in equation (4), the
beamformers need to be computed for each user set S. In
order to avoid exhaustive user search, suboptimal scheduling
approaches such as greedy user selection algorithms [7], [8],
[12] can be implemented instead. The idea behind these ap-
proaches is to pre-select a reduced number of users according
to different criteria, e.g. orthogonality properties as in [7],
[8], hence reducing the search space. Once scheduling is
performed, the base station computes the beamformers for
transmission and is able to determine each user’s achievable
SINR. The inconvenience of these approaches is that in order
to precisely know the SINR of a user, the beamformers have
to be computed first, which is in general a computationally
complex operation. Hence, suboptimal scheduling techniques
rely on criteria other than the exact SINR values. In certain
scenarios, such as systems with low number of users or in
low SNR conditions, precise knowledge of SINR can help to
increase the system performance, as we show in a later section.



TABLE I

ALGORITHM A

Step 0 Select first scheduled user and beamforming vector
k1 = arg max

k∈K
‖hk‖

wk1 = hk1

Set S∗ = {k1}
Step 1 Gram-Schmidt orthogonalization

Compute orthonormal basis W from wk1

Step 2 Loop
For i : 2 . . . M repeat

Step 2.1 Set SINRi
max = 0

Step 2.2 Loop
For k : 1 . . . K, k /∈ S∗ repeat

Step 2.2.1 Compute ρk =
∣∣∣hH

k W(i)
∣∣∣

Step 2.2.2 Compute SINRk =
‖hk‖2ρ2

k

‖hk‖2(1−ρ2
k
)+ M

P

Step 2.2.3 If SINRk > SINRi
max

SINRk → SINRi
max and ki = k

Step 2.3 ki → S∗

We introduce OLBF as an alternative technique to perform
linear beamforming that, as we show, can provide good
performances. One of the advantages of using OLBF is that
the base station can easily compute the SINR values for each
user during the scheduling process.

IV. ORTHOGONAL LINEAR BEAMFORMING

In order to avoid the prohibitively high complexity of exhaus-
tive search, we use a low-complexity user selection approach.
The base station schedules M among K users for downlink
transmission with the purpose of maximizing the sum rate and
under the constraint of orthogonal beamforming.

The user selection criterion consists of scheduling the users
with the largest SINR values. In order to express each user’s
SINR, we use the following simplified expression [11]

SINRk =
‖hk‖2

ρ2
k

‖hk‖2 (1 − ρ2
k) + M/P

(7)

where ρk is the alignment between the k-th user instantaneous
normalized channel vector hk = hk

‖hk‖ (channel direction) and
the corresponding beamforming vector wk, defined as ρk =∣∣∣hH

k wk

∣∣∣. Note that a similar metric is also reported in [9],
[10]. Since the linear beamformers used for transmission are
orthogonal, the beamforming vectors wj , ∀ j �= k span the
null space of wk. Hence, as shown in [13], [14], the multiuser
interference can be simplified as I = P

M ‖hk‖2 (1 − ρ2
k).

In what follows, we propose two algorithms with different
computational complexity. As we later show through simula-
tions, Algorithm B shows better performance than Algorithm
A at the expense of higher processing complexity.

A. Algorithm A

An outline of Algorithm A is provided in Table I. The proposed
suboptimal transmission scheme has reduced complexity, in
the sense that it has

• Simple beamforming strategy: given K users, only 1
possible transmission set is taken in consideration.

• Reduced user search space: greedy algorithm with linear
complexity of order O(K) is used. Hence, combinatorial
search over the entire index set Q is avoided.

Given M possible users to be scheduled out of K active users,
the user scheduled on the first beam, denoted as k1, is the one
that exhibits the largest channel norm, i.e.,

k1 = arg max
k∈K

‖hk‖ (8)

Once the best user is identified, its beamforming vector is
given as

wk1 = hk1 (9)

so that transmit matched filtering is performed for the first
user. Hence, this user observes an alignment of ρk1 = 1,
and thus SINRk1 = P

M ‖hk1‖2, independently of the users
scheduled on the remaining beams. Note also that the first user
is selected as the best over K users, therefore exploiting all
multiuser diversity gain. The remaining M − 1 beamforming
vectors are found by the following procedure. Since orthogonal
transmission is to be performed, the already selected vector
wk1 corresponds to a basis vector of the orthonormal basis
W ∈ C

M to be used for transmission. Hence, the complete
set of beamforming vectors can be found by applying Gram-
Schmidt orthogonalization method [15]. Let W(i) be the i-th
column of the beamforming matrix W and define W(1) =
wk1 . Once the beamforming vectors are determined, the user
scheduled on the i-th beam, i = 2 . . . M , corresponds to the
user that maximizes the SINR expression

ki = arg max
k∈K−{k1,...,ki−1}

SINRk (10)

s.t.wk = W(i)

Note that selection of the ki user does not affect the expression
of SINRkj

, for j �= i, j = 2 . . . M , since the beamforming
vectors in OLBF are already determined in the first step, and
therefore the SINR expression of k-th user is only a function
of hk and ρk as equation (7) shows. In the selection process,
exact SINR values are computed for the given beamforming
vectors. This ensures that, even though the transmit directions
are fixed (after selecting k1), the exact knowledge of interfer-
ence will allow to capture a large portion of the sum rate even
when the number of users is reduced.

The expected sum rate of the scheduled user set S∗ =
{k1, k2, . . . , kM} is given by

R (S∗) =
M∑
i=1

log2 [1 + SINRki
] (11)



TABLE II

ALGORITHM B

Initialize Set S∗ = ∅ and R(S∗) = 0

For k : 1 . . . K repeat
Step 0 Set k1 = k

wk1 = hk

S = {k1}
Step 1 Gram-Schmidt orthogonalization

Compute orthonormal basis W from wk1

Step 2 Loop
For i : 2 . . . M repeat

Step 2.1 Set SINRi
max = 0

Step 2.2 Loop
For k : 1 . . . K, k /∈ S repeat

Step 2.2.1 Compute ρk =
∣∣∣hH

k W(i)
∣∣∣

Step 2.2.2 Compute SINRk =
‖hk‖2ρ2

k

‖hk‖2(1−ρ2
k
)+ M

P

Step 2.2.3 If SINRk > SINRi
max

SINRk → SINRi
max and ki = k

Step 2.3 ki → S
Step 3 R(S) =

∑
j∈S log [1 + SINRj ]

Step 4 If R(S) > R(S∗), R(S) → R(S∗) and S → S∗

B. Algorithm B

An outline of Algorithm B is provided in Table II. This algo-
rithm exhibits increased complexity compared to Algorithm A,
which can be summarized as follows

• Simple beamforming strategy: given K users, only K
possible transmission sets are taken in consideration

• Reduced user search space: user selection algorithm of
complexity of order O(K2) (hence, combinatorial search
over Q is avoided).

Hence, Algorithm B also counts on a finite set of possible
beamformers (thus limiting the complexity) but does not
perform a greedy selection procedure. This algorithm is equiv-
alent to Algorithm A, but instead of selecting the first user as in
equation (8), all users are considered as possible candidates,
i.e., k1 = k, k = 1, . . . ,K. In other words, the procedure
described in Algorithm A is performed K times. Each time,
a new set of beamforming vectors is computed, given that
wk1 = hk1 changes from user to user, and its corresponding
rate is computed by using eq. (11). Let RB

m(S) denote the sum
rate for a user set S at m-th iteration of the algorithm, where
m = 1, . . . ,K. The set of beamforming vectors W(S∗) and
scheduled users S∗ are those having the maximum sum rate
RB

m(S) among the K iterations of the algorithm. Thus the
resulting sum rate of Algorithm B, denoted as RB , is given by

RB (S∗) = max
m=1,...,K

RB
m(S) (12)

At this point, we should note that in this paper we focus on
the region of low to moderate number of users, which is of

particular interest in real scenarios. A sum rate analysis of
our proposed algorithms for K → ∞, which is omitted due
to space limitations, can show that both our schemes achieve
asymptotically the optimum sum rate scaling of M log log K.
This is also evident as random opportunistic beamforming
[16], which has been shown to achieve the DPC capacity
scaling [5], is a pessimistic lower bound on the performance
of our scheme.

V. PERFORMANCE ANALYSIS

In this section, we study the sum rate performance of OLBF
(algorithm A) at low-power regime, and its capacity growth is
compared with that of zero-forcing beamforming with equal
power allocation. For simplicity, we assume that K = M ,
thus the results are independent of the user selection strategy.
The analytical tool used for the characterization of capacity
at asymptotically low SNR was proposed by Verdú [17]. At
low SNR, the capacity C(SNR) (in nats/dimension) can be
approximated by the second-order Taylor series expansion:

C(SNR) = Ċ(0)SNR +
C̈(0)

2
SNR2 + o(SNR2) (13)

with Ċ(0) and C̈(0), the first and second derivative, respec-
tively, of the function C(SNR) at SNR = 0.

The sum capacity of zero-forcing beamforming with equal
power allocation CZFBF (SNR) is given by

CZFBF (SNR) = E

{ ∑
i∈S∗

log
(

1 +
SNR

M
|γi|2

)}
(14)

where γi = hH
i wi is the effective channel of ith user, and wi

the zero-forcing beamformer, corresponding to the ith column
of matrix W(S) = H(S)†. Note that |γi|2 is a chi-square
random variable with two degrees of freedom for all i (denoted
χ2

(2)).

The derivatives of the sum capacity in nats are equal to

ĊZFBF (0) = E

{
|γi|2

}
= 1 (15)

and

C̈ZFBF (0) = −
E

{
|γi|4

}
M

(16)

Similarly, when orthogonal linear beamforming is used, the
sum capacity COLBF (SNR) is given by

COLBF (SNR) = E

{
log

(
1 +

SNR

M
‖hk1‖2

)}

+E




∑
i∈S−{k1}

log (1 + SINRki
)


 (17)

with ‖hki
‖2 ∼ χ2

(2M).



−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

SNR [dB]

S
um

 R
at

e 
[b

its
/s

/H
z]

 

 

N = 4

N = 2

ZFBF w/ Exhaustive Search
OLBF − Algorithm A
OLBF − Algorithm B

Fig. 1. Sum rate as a function of the SNR for M = 2, 4 transmit
antennas and K = M users.

The derivatives of the sum capacity in nats are equal to

ĊOLBF (0) = 2 − 1/M (18)

and

C̈OLBF (0) = −
E

{
‖hk‖4

}
M

+
M − 1
M2

E

{
‖hk‖4 (1 − ρ2

k)2
}

(19)

Note that for isotropically distributed channels, ‖hk‖ and ρk

are independent random variables. As a first-order approxima-
tion, as SNR → 0, the capacity grows linearly with SNR, i.e.
CZFBF ≈ SNR and COLBF ≈ (2 − 1/M)SNR, meaning
that the capacity scaling (for fixed M ) at low SNR satisfies

lim
SNR→0

CZFBF (SNR)
SNR

= 1 (20)

and

lim
SNR→0

COLBF (SNR)
SNR

= 2 − 1/M (21)

By taking the capacity scaling ratio Λ = COLBF (SNR)
CZF BF (SNR) , we

conclude that a system employing OLBF provides at low SNR
a gain of 10 log10(

2M−1
M ) dB compared to a system based on

zero-forcing beamforming, or equivalently, a factor of Λ =
(2M − 1)/M in rate (nats/s/Hz) for the same power.

Figure 1 shows a sum rate comparison between OLBF and
ZFBF versus the average SNR for M = 2 and M = 4
transmit antennas. We can observe the consistency of the
simulation results with the above analysis, since the sum
capacity gap between OLBF and ZFBF increases with the
number of transmit antennas (by a factor of 2− 1/M ) at low
SNR.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms through simulations, for M = 2 transmit anten-
nas, and we compare their sum rate with three alternative
transmission techniques for the MIMO downlink: zero-forcing
beamforming (ZFBF) with exhaustive user search, transmit
matched filtering (TxMF) with exhaustive user search, and
zero-forcing with greedy user selection (ZFBF-GUS) [8]. We
consider in the simulated ZFBF approaches simple power
normalization as described in equation (5) instead of optimal
power allocation techniques. Transmit matched filtering con-
sists of using as beamforming vectors the channel realizations
of scheduled users, normalizing the transmitted power of the
resulting beamforming matrix.

Figure 2 shows a performance comparison between ZFBF
with exhaustive search, TxMF with exhaustive search and
the proposed OLBF suboptimal techniques in the low SNR
regime. In this scenario, the proposed algorithm outperforms
matched filtering for the simulated range of active users.
We can observe that the proposed scheme with orthogonal
beamforming shows even better performance than zero-forcing
where the user selection is performed via exhaustive search.
However, as the number of active users in the cell increases,
the gap between ZFBF and OLBF becomes smaller.

In Figure 3, instead of comparing with optimal scheduling
techniques as done in Figure 2, we focus on another subopti-
mal technique, ZFBF-GUS [8]. It is a fair comparison, since
the proposed OLBF approaches and ZFBF-GUS both rely
on suboptimal scheduling algorithms. However, our proposed
scheduling algorithm is computationally much less complex
than [8], which involves computation of matrix inversions. We
observe that knowledge of the interference exploited during
the user selection process is particularly beneficial as the
total number of users K and the average SNR decrease. In
this region, ZFBF-GUS exhibits a performance degradation.
Knowledge of the interference between users that do not
have good spatial separability helps to improve the task
of the scheduler. Hence, the proposed scheme with joint
beamforming and scheduling can effectively select users for
transmission in sparse networks where moderate number of
users is present, providing good average rates through a low-
complexity design. However, as the average SNR increases,
ZFBF-GUS can provide higher rates except for the case when
the number of transmit antennas equals the number of users,
M = K.

VII. CONCLUSION

In this paper, we have shown how Orthogonal Linear Beam-
forming (OLBF) can be efficiently combined with a low-
complexity user selection algorithm to achieve a large portion
of the multiuser capacity. The use of orthogonal transmis-
sion enables the transmitter to calculate exact SINR values
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during the user selection process. The proposed suboptimal
algorithms provide performance gains with respect to optimal
ZFBF and TxMF, as both the number of users in the cell
and the average SNR decrease. Sum rate comparison with
a ZFBF technique based on greedy user selection further
shows the benefits of OLBF in cells with low to moderate
number of active users in low SNR environments, highlighting
the importance of multiuser interference knowledge for user
scheduling.
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