
Institut Eurécom
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Abstract

This report proposes and compares a number of tandem-like feature extraction schemes. The pro-
posed schemes use relative phone posteriors as confidence measures estimated from the MLP outputs
directly or using Gamma function. The analysis of variances shows that the proposed tandem-like
features discriminate better between phone classes than the conventional tandem features. But these
capabilities are lost when the complexity of the model (number of gaussians) increases. Evaluations
are conducted on TIMIT database.
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1 Introduction

There are two advantages -among others- that make Multi-Layer Perceptrons (MLP), particularly
very useful for speech recognition tasks. First, MLPs are trained to discriminate between phone
classes, focusing on the critical region to learn or to model the boundaries between phonemes. Second,
under certain conditions and using the one-hot encoding paradigm, the outputs of the MLP can be
interpreted as a posteriori probabilities of phone classes conditioned on the input feature vector.
In hybrid Hidden Markov Models/MLP (HMM/MLP) systems [1], the phone posterior probabilities -
estimated by the MLP outputs- are divided by the phone prior probabilities to obtain scaled likelihoods.
These scaled likelihoods are then used as state or phone emission probabilities in HMM Viterbi
decoding, instead of likelihood. These systems showed comparable performances with HMM/GMM
systems.

Recently, MLPs are used as acoustic features extractor instead of state emission probabilities
estimator [2]. In this approach, the MLP outputs are used to derive acoustic feature vectors in
conventional HMM/GMM system. These features are referred to as tandem features. Here, the MLP
is considered as a non-linear transformation technique that map the input feature vector to another
but more discriminative feature vector based on phone posteriors estimate. If we define the posteriori
probability as the probability of being correct, then an accurate estimation of the posteriors will
results in a good discriminative features, which is the aim of the feature extraction components in
speech recognition systems. Tandem features achieved significant improvements in the accuracy with
context-independent acoustic models [2, 3, 4, 5].

More recently, to enhance the estimation accuracy of phone posteriors and hence the discriminant
capabilities of tandem features, phone gamma posteriors1 derived features are proposed [6]. They are
derived using the a posteriori probability variable γ as defined in the HMM formalism. Compared to
the previous features, the phone gamma posterior derived features showed better performances [6].

Towards better enhancement of the discriminant capabilities of tandem features, we investigate
the use of local phone confidence measures (CM). These phone confidence measures are successfully
used in several speech recognition applications, particularly in utterance verification [7, 8, 9]. In
such applications, confidence measures are used to quantify how well the acoustic model matches
the acoustic data. In this work, these confidence measures are used to enhance the discriminant
capabilities of the tandem features.

The rest of the report is organized as follows: Section 2 describes the conventional tandem fea-
tures extraction approach as well as the phone gamma derived features. Section 3 describes the use
of confidence measures to enhance tandem and phone gamma features. Speech databases and the
experimental set-up are described in Section 4. Section 5 discussed the evaluation results. Finally we
give some conclusions and guidelines for future work.

2 Tandem feature extraction

Figure 1 illustrates the general Block-diagram of tandem features extraction procedure. The only
difference between the approaches that will be discussed in this paper, is that the phone posteriors
are postprocessed differently. So, the goal of this report is to investigate a number of posterior
postprocessing schemes in order to enhance the tandem features. In this section, we will describe
briefly the conventional tandem features, and the phone gamma derived features. In the next section
we will discuss the use of confidence measures.

2.1 Conventional tandem features

In the conventional tandem approach [2], first an MLP is trained to estimate phone posteriori
probabilities P (qk

t |xt) of each phone qk conditioned on the input feature vector xt at time t. This

1We suppose that one state corresponds to one phone
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Figure 1: Block-diagram of the connectionist feature extraction

is done by using softmax activation function in the output layer of the MLP. Because the shape
of the posterior distribution is sharp, they have to be gaussianized, so they can be modeled by an
HMM/GMM model. The gaussianization is performed by taking the logarithm of these posteriors.
The transformed phone posteriors are then decorrelated using the Karhunen-Loeve Transform (KLT).
Another technique to derive the tandem features is to use the estimate of the MLP outputs before
softmax (i.e., linear outputs). These estimates have a gaussian-like distribution. So, they do not need
to be gaussianized, but still they need to be decorrelated using KLT. In both cases, the obtained
features (after KLT) are then used in HMM/GMM system.

2.2 Phone gamma posteriors derived features

In this approach [6], the local phone posteriors P (qk
t |xt) are postprocessed to generate phone

gamma posteriors using gamma recursion as defined in the HMM formalism [10]. The phone gamma
posterior γ(i, t) is defined as the posterior probability of being in phone qi at time t, given the
observation sequence xT

t and the HMM model M . The variable γ(i, t) can be expressed as follows:

γ(i, t) = P (qi
t|x

T
1 , M) (1)

As it can be observed, the estimation of gamma takes into account all the observation sequence and
a priori information (if there is any) about the model M . It has been shown in [6], that when the
model M is ergodic with uniform transition probabilities (i.e., no use of any a priori information), the
phone gamma posteriors, γ(i, t) is simply the normalized scaled likelihood defined as follows:

γ(i, t) =

P (qi
t |xt)

P (qi)
∑K

k=1
P (qk

t |xt)
P (qk)

(2)

where K is the number of phones and P (qk) is the a priori probability of the phone qk. These
phone gamma posteriors (as defined in (2)) will be gaussianized and decorrelated using logarithm
and KL transforms, respectively. The obtained features are then used as input feature vectors to the
HMM/GMM system. These features will be referred to as gamma derived features.

3 The use of confidence measures

To enhance the discriminant capabilities of a feature vector, the feature associated with the best
phone should contribute more to the discriminant information convoyed by the feature vector. In other
words, the relative ”goodness” of the best phone compared to the other phones has to be enhanced. To
achieve this goal, we have used some online normalization techniques. These normalization techniques
can be considered as a confidence measure that tell us how good a feature vector discriminate between
the best phone and the other phones. Similar techniques have been used in speaker and utterance
verification tasks [11, 12, 13].
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3.1 Relative phone gamma posterior derived features

The normalization factor
(

∑K

k=1
P (qk

t |xt)
P (qk)

)

in (2) is the sum of scaled likelihoods over all phones.

However, this factor is dominated by the few highest values, corresponding to phones that are not
easily separable from the best phone (under the actual MLP architecture and training procedure).
In this work, we propose to increase the contribution of the normalization factor using online phone
cohort normalization. There are several criteria for phone cohort selection. In our case, the gamma
function in (2) is approximated as follows:

γ(i, t) ≈

P (qi
t |xt)

P (qi)
(

∑

j∈Cj

P (qj
t |xt)

P (qj )

)
1

N

(3)

where N is the size of the phone cohort Cj . It is worth mention here, that the size N of the cohort
will depend on the performance of the MLP (i.e.; how good the posterior estimates are). If N equals
1, then the gamma function in (2) will be approximated as follows:

γ(i, t) ≈

P (qi
t |xt)

P (qi)

max1≤k≤K
P (qk

t |xt)
P (qk)

(4)

where K is the number of phones. This is equivalent to the Higgins criterion [12] used in speaker
verification. This will enhance the relative goodness of the feature associated with the best phone.
After normalization, the obtained feature vector is then used to derive tandem features using logarithm
and KL transforms, respectively. These features will be referred to as relative gamma derived features.
A modified version of the schemes defined in (3) and (4) is to deprive the cohort of the best phone
from including the best phone itself. In case of (4), for example, this means that the normalization
factor for the best phone will be the scaled likelihood of the second best phone. The obtained features
will be referred to as modified relative gamma derived features.

3.2 Relative phone posterior derived features

In this scheme, the phone posteriors estimated by the MLP are normalized before using the loga-
rithm. We performed the same online-normalization techniques described above. That is, the relative
posterior RP (i, t) of phone qi at time t is expressed as follows:

RP (i, t) =
P (qi

t|xt)
(

∑

j∈Cj
P (qj

t |xt)
)

1

N

(5)

If N equal 1, then each phone posteriori probability P (qk
t |xt) will be divided by the best posteriori

probability at time t2. These RP (i, t) values are used as an input feature vectors to the HMM/GMM
system after gaussianization and decorrelation using logarithm and KL transforms, respectively. These
features will be referred to as relative posterior derived features. When the best phone is not included
in the cohort, the obtained features are referred to as modified relative posterior derived features.

4 Database and Experimental set-up

The performances evaluation of different features described above are conducted using TIMIT
database. The training set contains all the si and sx sentences, making a total of 3696 utterances.

2This confidence measure was presented first in [9] and used as emission probabilities in HMM/ANN system for
utterance verification task.
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For testing, we have used both the standard core test set which contains 192 and the extended test
set which contains 1680 utterances. The acoustic feature vectors used to train the MLP consist of 13
MFCC with their first and second order derivatives resulting in 39 coefficients. These coefficients are
calculated every 10 ms over 30 ms window, The MLP which is used to estimate the posteriors consists
of 351 input units with 9 consecutive frames, 500 hidden units and 48 output units, such that each
output is associated with a specific phoneme. During the MLP training, 30% of the training data is
used as cross-validation set. To have the same complexity for all the HMM/GMM models and make
the results comparable, the dimension of the tandem feature vector is reduced to 39 features. The
HMM/GMM context-independent model consists of 48 left-to-right HMM phone models. Each HMM
phone model has 3 states with 12 mixtures/state. The test is performed on the reduced phone set
containing 39 phones [14]. The experiments are conducted using HTK Toolkit [15].

4.1 ANOVA analysis

To evaluate the discriminant capabilities of different tandem-like features as well as MFCC features,
we used the analysis of variance (ANOVA) technique. Because we are interested only in the phone
information (variation), the total variation can be then decomposed as follows [16]:

∑

total

=
∑

betweenphone

+
∑

withinphone

(6)

where
∑

total

=
1

N

∑

p

∑

i

(Xpi − X ..)
t(Xpi − X ..) (7)

∑

betweenphone

=
∑

p

Np

N
(Xp. − X ..)

t(Xp. − X ..) (8)

∑

withinphone

=
1

N

∑

p

∑

i

(Xpi − Xp.)
t(Xpi − Xp.) (9)

where Np is the number of frames associated with the phone p and N is the total number of frames. X ..

and Xp. are the total and phone mean vectors, respectively. The contribution of the phone variation is
then computed as the trace(

∑

betweenphone)/trace(
∑

total). The higher is the contribution, the better

are the features. All the features are normalized to have zero mean and unit variance. Table (1)
reports the ANOVA results.

Features Phone Contribution

MFCC 14.5%

Tandem (softmax) 17.3%
Tandem (Linear) 17.2%

Tandem (Gamma) 17.3%
Tandem (Rel. Gamma (N=1)) 17.3%
Tandem (Mod. Rel. Gamma) 21.0%

Tandem (Rel. Post (N=1)) 17.3%
Tandem (Mod. Rel. Post) 21.4%

Table 1: The contribution percentage of the phone variation to the total variation for MFCC and
different tandem-like features. Rel. and Mod. mean relative and modified.

The results confirm that tandem features are more discriminant than MFCCs. The results indi-
cate also, that the discriminant capabilities of the modified relative gamma and the modified relative
posterior derived features are better than those of conventional tandem extraction schemes. So, the
use of these two features might yield to better performance.
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5 Evaluation results & discussion

5.1 Conventional tandem features

The first set of experiments compare the performance of the approaches described in Section (2).
Results are reported in Table (2). The first line corresponds to the standard HMM/GMM system
trained with MFCC features. The results show that phone gamma posteriors derived features are

Features Extended set Core set

MFCC 64.1% 63.0%

Tandem (softmax) 67.7% 66.1%
Tandem (Linear) 68.5% 67.0%
Tandem (Gamma) 68.2% 66.8%

Table 2: Accuracy of standard HMM/GMM systems using MFCC and conventional tandem-like fea-
tures.

slightly better than softmax derived features. This confirm what was reported in [6]. But the best
results are obtained by the linear derived features. Although, there is no significance differences
between all tandem features. The results show also that tandem features perform significantly better
than standard MFCC features.

5.2 The use of confidence measures

In Figure (2), we plot the variations of the accuracy as a function of the size of the phone cohort.
We have found for N = 1, that the relative gamma posteriors derived features perform worse than
their modified schemes. So, only features derived using the modified relative gamma posteriors. It can
be seen that features with N = 1 perform marginally better. Because of this finding, only relative
posteriors and their modified scheme derived features with N = 1 are evaluated (see equ: 5). Table (3)
reports the accuracy of the proposed schemes described in Section (3).
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Figure 2: The variation of the accuracy as a function of the size of the phone cohort on both the core
set and the extended set using the modified relative gamma posteriors derived features.

There are several observations that can be made from these results. First, the use of the relative
gamma and relative posteriors derived features did not improve the performance, even marginally,
contrary to their modified schemes. A possible reason is that by using the estimate of the best phone
(scaled likelihood or posterior probability) as normalization factor, we are giving the same importance
to all features, making the discriminant capabilities of the feature vector unchanged. In the modified
schemes, the normalization is done in such a way that it gives more importance to the best phone,
which increases the discriminant capabilities of the feature vector.
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Features Extended set Core set

Tandem (Relative Gamma) 67.7% 66.2%
Tandem (Mod. Rel. Gamma) 68.1% 66.6%

Tandem (Relative Post) 67.8% 66.3%
Tandem (Mod. Rel. Post) 68.1% 66.5%

Table 3: Accuracy of standard HMM/GMM systems using confidence measure derived features.

However, the improvement obtained by the modified relative gamma and modified relative posterior
derived features is far from what we would expected. As there are no significant differences in the
performance compared to the linear derived features. A possible reason is that, in ANOVA, the
distribution of phone samples is assumed to be mono-gaussian, while in HMM/GMM model, the same
distribution is modeled by (3× 12) gaussians. Such modeling seems to be more effective for the other
tandem-like features than for the proposed ones. To check further this explanation, we have evaluated
the best three tandem-like features with different number of gaussians/state. Results are plotted in
Figure (3). It can be seen that the difference in the performance between the proposed features and
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Figure 3: Accuracy variation as a function of the complexity of the HMM/GMM systems. The evalu-
ated features are linear, modified relative gamma and modified relative posterior derived features.

the linear derived features is significantly large with 1 gaussian/state. But this difference tend to be
negligible with an increasing number of gaussians/state.

Finally, it has been found in [5, 6], that by concatenating tandem and gamma based features with
the baseline features (e.g.,MFCC) the performance can be improved. We have conducted an experi-
ment where we have concatenated the baseline MFCC features with the different features presented
in this paper. The resulting feature vectors (39+39 coefficients) are then used in the HMM/GMM
system. The results are reported in Table (4). The results show no difference in the performance
between different features on the extended set but on the core set the phone gamma derived features
perform the worse.

6 Conclusion and Future work

Confidence Measures derived from the MLP outputs are successfully used in many speech recogni-
tion tasks. In this paper, we have investigated the use of relative posterior confidence measure (derived
from the MLP outputs directly or using gamma function) to enhance the discriminant capabilities
of the conventional tandem features. Analysis of variances has shown that the proposed variants of
the tandem features discriminate better between phone classes. But these capabilities are lost with
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Extended set Core set

MFCC+T(softmax) 69.1% 67.7%
MFCC+T(Linear) 69.2% 67.5%

MFCC+T(Gamma) 69.2% 66.6%
MFCC+T(Mod. Rel. Gamma) 69.2% 67.2%
MFCC+T(Mod. Rel. Post) 69.3% 67.4%

Table 4: Accuracy of standard HMM/GMM system using different tandem-like features concatenated
with the baseline MFCC features.

an increasing number of gaussians/state, making them a good tradeoff between the accuracy and the
complexity of the model.
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