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Abstract

Image processing operations typically involve processing of data in discrete form. Information
given by such data is mostly recovered via the study of inter-relationships between discrete points
(i.e., pixels). There is therefore a need for developing a context in which concepts used are kept
consistent with this kind of data.

In this paper, we summarise and extend results known in discrete geometry from the construction
of a discrete topological concept to the characterisation of geometrical properties of discrete sets
of points. The context of binary image processing is taken as a support for illustrating this study.
Emphasis is placed on characterising straightness and convexity is discrete spaces. This is done via
the de�nition of discrete distances which are shown to be close to well-known concepts in graph
theory. An extended neighbourhood space is also constructed and shown to provide us with more
exibility and compactness than classically used neighbourhood spaces while preserving the possibility
of characterising analytically the main geometrical properties of discrete points.

The study developed in this paper can form the basis for di�erent extensions, both regarding the
richness of the neighbourhood used and the quantity of information available at each pixel location.

1 Introduction

The use of computers for the development of new technologies has imposed processing of data in discrete
form. Information is no longer continuous but rather given at some discrete locations in time or space.
This is particular true in the context of image processing where pictures are digitised into pixels. The



global information contained in the image is recovered via the study of inter-relationships between pixels.
For analysis of such data, it is therefore crucial to obtain formal discrete characterisations similar to that
known in continuous spaces. Discrete geometry is one such �eld which aims for characterising concepts
such as straightness in the discrete space.

In this paper, we �rst present the construction of a formal context in which such characterisations
will be further developed. Advantages of such an approach are illustrated using the context of binary
image processing. Then, we recall major results in discrete geometry in relation to the well-studied 8-
neighbourhood discrete space. Discrete convexity and discrete straightness are mostly considered here.
In a second part, we extend these properties to a newly constructed discrete space. While doing that, we
derive some results as to the advantages of such a mapping.

More precisely, the paper is organised as follows. Section 2 presents the particular class of binary
images which will be used as a support to our developments. By this mean, this section briey recalls
the underlying structure of most of discrete spaces encountered in image processing.

The identi�cation of image components relies on a connectivity relationship between pixels. This
topological context which introduces the concept of neighbourhood between pixels has been developed in
the early stages of binary image analysis and is presented in Section 3. In turn, digital topology allows
for the de�nition of connected subsets of pixels such as arcs and curves. We consider connectivity in
relation to square lattices. In other words, pixels in the image are arranged on the unit square grid.
Such an underlying structure facilitates analytical developments and image storage and remains the most
widely used framework. The originality of this study lies in the fact that we will map the digital topology
onto a combinatorial structure, the grid graph. This approach has been suggested in [28] and developed
in [37]. Image-to-graph mapping provides us with e�cient procedures for solving discrete optimisation
problems [12]. Moreover, e�cient data structures have been created to manage data in this context (e.g.,
see [6]).

Pixels are now grouped in discrete objects (e.g., paths or connected components) and it is the proper-
ties of these subsets that are under study. Two aspects are generally considered for analysis. In order to
perform shape characterisations, geometric notions such as straightness and convexity are to be de�ned
in discrete spaces. On the other hand, measurements within the image are necessary. Both discrete
geometry and shape measurements therefore rely on the de�nition of a distance. For consistency with
the context in which image analysis operations are studied, purely discrete distances have been pro-
posed. Di�erent approaches are generally taken for their de�nitions. However, a common framework
de�nes discrete distances using known local distances within a neighbourhood or within combinations of
neighbourhoods. Section 4 summarises these advances in relation to the 8-neighbourhood space.

Building on this, Section 5 presents the construction of the 16-neighbourhood space within which
equivalent characterisations will be derived. In particular, we introduce two new discrete distances in
this space which will form the basis for the development of discrete properties in this space. It is also
shown that the approach taken allows for an easy mapping of most of the properties known in the
8-neighbourhood space into the 16-neighbourhood space.

Finally, Section 6 suggests a direct application of these results to the domain of binary image pro-
cessing.

2 Binary digital images

The acquisition of an image is generally done using a set of physical captors. The acquisition process can
therefore be accurately modelled as a sampling of the continuous image using a discrete partitioning of
the continuous plane. For the sake of simplicity, only partitions involving regular polygons are considered.
That is, polygons with sides of constant length and a constant angle between them. It is easy to show
that, for constructing a partition of the plane, only three regular polygon types can be used. The possible
numbers of sides of the regular polygon used are three, four and six, leading to triangular, square and
hexagonal partitioning schemes respectively (see Figure 1).

In the mathematical model of an image, the pixel area is identi�ed with its centre leading to the
representation of pixels as discrete points in the plane. As shown in Figure 2, a lattice can be built which
connects all such pixel centres.

The sampling partition is represented with dotted lines and the pixel centres as black dots (�). The
lattice represented with continuous lines is dual to the partition in the sense that two pixels are joined in
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Figure 1: Di�erent sampling schemes

Figure 2: Resulting pixels from sampling shown in Figure 1.

the lattice if and only if the two partition polygons share a common edge. A triangular partition results
in an hexagonal lattice. Conversely, an hexagonal partition will result in a triangular arrangement of
pixels, the triangular lattice. Finally, for a square sampling of the image, the pixels can be considered as
integer points of a square lattice.

Physically, such polygons represent captors sensitive to the intensity of light. Their output is a value
on a scale. In a grey scale image, each pixel is therefore associated with a single colour value. Equivalent
to the sampling of the spatial domain of the image, the colour scale is sampled using a given number of
discrete ranges. We consider grey scale images where the colour scale is one-dimensional. When using
only two such ranges representing white and black colours (0 and 1 respectively), we obtain binary images.

As result of the complete acquisition process, a two-dimensional binary image is given as a two-
dimensional array of pixels where each pixel is associated with a colour value which can be either 0
(white pixel) or 1 (black pixel). In order to de�ne mathematical tools for picture processing such as
connectivity and distance measurement, we need to set a theoretical basis on the discrete set of pixels
thus obtained. Digital image processing relies heavily on the de�nition of a topology which forms the
context in which local processing operators will be de�ned.

In this work, we will specialise in square lattices and partitions since they represent the most suitable
case for analytical study. Moreover, it will become apparent that a mapping can be de�ned that create
a relation with other types of regular partition (e.g., triangular partitions).

3 Digital topology

It is commonly known that the discrete topology de�ned by pure mathematics cannot be used for digital
image processing since in its de�nition every discrete point (i.e., a pixel in the image processing context)
is seen as an open set. Using this de�nition, a discrete operator would consider the image as a set of
disjoint pixels only, whereas it is generally admitted that the information contained in the image is stored
in the underlying pixel structure and the neighbourhood relations between pixels. Alternative de�nitions
have been proposed. In contrast with classic discrete topology, digital image processing is based on digital
topology [4, 20, 34]. The de�nition for digital topology is based on a neighbourhood for every point.

Neighbourhoods in digital topology are typically de�ned by referring to the partition dual to the lattice
considered. For a given point, de�ning its neighbouring points is equivalent to de�ning a relationship
between the corresponding pixel areas in the partition. The simplest instance is when the neighbours of
a pixel are de�ned as the pixels whose areas share a common edge with the pixel area in question (direct
neighbours). Extensions for this principle are also considered by de�ning indirect neighbours for a pixel.

Section 3.1 introduces neighbourhoods de�ned on the square lattice. Because of the simplicity of
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their de�nitions, these neighbourhoods are commonly used for the de�nition of digital image processing
operators. Moreover, it can easily be shown that there exists a one-to-one mapping between the square
and the triangular lattice as sketched in Figure 3 below. The hexagonal lattice being of limited practical
use for the coarseness of the pixel distribution it induces and the unrealistic aspect of the dual triangular
partition.
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Figure 3: Equivalence between triangular and square lattices.

Building on these de�nitions, Section 3.2 formally de�nes digital arcs and connected component which
will form the basis for further study. Finally, Section 3.3 sets the basis for the analogy between topological
relationships and combinatorial structures.

3.1 Neighbourhoods

Four main neighbourhoods are generally de�ned on the square lattice. Firstly, the 4-neighbourhood
(N4(p)) includes the four direct neighbours of the point in question (see Figure 4(A)). By duality, they
are pixel areas which share a common edge with the centre pixel area. This neighbourhood is completed
using pixel areas which share a common corner with the pixel area in question (indirect neighbours),
leading to the 8-neighbourhood of the point p, N8(p) (see Figure 4(B)).

By analogy with a chess board, the 8-neighbourhood corresponds to all possible moves of the king.
Extending this analogy, the knight-neighbourhood (Nknight(p)) which corresponds to all possible moves
of a knight on the chess board can also be de�ned (see Figure 4(C)). Finally, the combination of the
8- and the knight-neighbourhoods, yields the 16-neighbourhood of p, N16(p) (see Figure 4(D)). Figure 4
illustrates the construction of these neighbourhoods. The lattice is shown as continuous lines whereas
dotted lines represent the dual partition. Using this notation, centres of pixels therefore lie at the
intersections between continuous (i.e., lattice) lines.

p
ppp

(A) (B)

(C) (D)

Figure 4: Neighbourhoods on the square grid. (A) N4(p): 4-neighbourhood. (B) N8(p): 8-neighbourhood.
(C) Nknight(p): knight-neighbourhood. (D) N16(p): 16-neighbourhood.

Remark 3.1 It is important to note that the square lattice is simply a translated version of its dual
partition. Moreover, the positions of the points on this lattice are well suited for matrix storage. For
these reasons, neighbourhoods on the square lattice are the most well studied and the most commonly
used. Rosenfeld [34] de�ned digital topology on this lattice.

For later purposes, it is generally the case that codes are associated with moves in the neighbourhood in
question. Typically, starting from the positive move along the horizontal axis numbered as 0, moves are
sequentially numbered in a counterclockwise fashion as shown in Figure 5.
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Figure 5: Codes associated with moves on the square grid. (A) 4-neighbourhood. (B) 8-neighbourhood.
(C) 16-neighbourhood.

3.2 Digital arcs and closed curves

The concept of neighbourhood allows for the de�nition of local connectivity between points. Digital arcs
and curves are simply an extension of this property. In turn, they impose conditions on their underlying
neighbourhoods.

De�nition 3.2 Digital arc.
Given a set of discrete points with their neighbourhood relationship, a digital arc Ppq from the point p

to the point q is de�ned as a set of points Ppq = fpi ; i = 0; � � � ; ng such that:

(i) p0 = p, pn = q.

(ii) 8 i = 1; � � � ; n� 1, pi has exactly two neighbours in the arc Ppq, the points pi�1 and pi+1.

(iii) p0 (respectively pn) has exactly one neighbour in the arc Ppq, namely, point p1 (respectively pn�1).

De�nition 3.3 Cardinality of a digital arc.
n is called the cardinality of the digital arc Ppq and is also denoted jPpqj.

A set of points may satisfy the conditions to be a digital arc using a speci�c neighbourhood but may
not satisfy these conditions for a di�erent neighbourhood. Since most of the de�nitions and properties
depend on the neighbourhood used, we specify this dependence by adding the neighbourhood pre�xes
(i.e., 4-, 8-, or 16-) to the names of the properties or digital objects cited. For instance, a digital arc in
the 16-neighbourhood will be referred to as a 16-arc. Equivalently, a 16-arc is a digital arc with respect
to the 16-connectivity relationship.

Using the de�nition of a digital arc, a connected component on the lattice is de�ned as follows.

De�nition 3.4 Connected component.
A connected component on the lattice is a set of points such that there exists an arc joining any pair

of points in the set.

A further restriction on connectedness leads to the simple connectivity.

De�nition 3.5 Bounded and simple connected component.
On the in�nite lattice, a connected component that contains an in�nite number of points is said to

be unbounded. On the �nite lattice, a connected component is unbounded if and only if it intersects the
border of the lattice. Otherwise, it is said to be bounded.

A simple connected component is a connected component whose complement does not contain any
bounded connected component.

By de�nition a digital arc is a simple connected component.

An important notion in the continuous space is that of closed curves which, in turn, de�ne holes. In
the continuous space, Jordan's theorem characterises a closed curve as a curve which partitions the space
into two subparts, the interior and the exterior (see e.g., [45]). The de�nition of a closed curve in the
discrete space relies on that of a digital arc.
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De�nition 3.6 Digital closed curve.
A digital closed curve (or equivalently, a digital curve) on the lattice is a set of points such that the

removal of one of its points transforms it into a digital arc.

A version of Jordan's theorem in the digital space can be then formulated.

Theorem 3.7 Discrete Jordan's theorem.
A digital curve de�nes exactly two separate connected components on the lattice, the interior and the

exterior. Therefore, there should be no arc joining these two subsets.

Remark 3.8 Theorem 3.7 emphasises the fact that, by de�nition, a digital closed curve is not a simple
connected component since its interior is bounded (i.e., contains a �nite number of points).

In general, a connectivity relationship cannot be used for both a set and its complement. A duality
between possible (k- and k0-) connectivities and neighbourhoods on the lattices is to be de�ned. We
introduce this notion of duality via the following example.

Example 3.9 Dual neighbourhoods on the square lattice.
In Figure 6, the 8-curve C does not separate the digital plane into two 8-components.

C

q

p

Figure 6: A 8-digital closed curve.

As counter example, there exist an 8-arc joining two potential interior and exterior points p and q

respectively. However, it is clear that an 8-curve will de�ne two 4-connected components as its exterior
and interior. Hence, discrete Jordan's theorem will be satis�ed when using 8-connectivity (respectively,
4-connectivity) for the curve and 4-connectivity (respectively, 8-connectivity) for the interior and exterior
on the square lattice. 3

Via this duality, the neighbourhood relationships are extended to the connectivity relationships. There-
fore, points can now be grouped in di�erent subsets on which operations are to be performed.

Border of a digital set An important subset of points in digital topology is the set of border points
which separates a digital set from its complement.

De�nition 3.10 Border of a digital set.
Given a k-connected set of points P , the complement of P , noted P c, de�nes a dual connectivity

relationship (noted k0-connectivity). In our case, k = 8 and k0 = 4 when using the duality between 8- and
4-connectivities. The border of P is the set of points � de�ned as the k-connected set of points in P that
have at least one k0-neighbour (i.e., a neighbour with respect to the k0-connectivity) in P c.

An example for this de�nition can be given when the set of points represents the pixels in a binary image.
A binary image is represented by an array of discrete points labelled with a value (1 or 0) which indicates
the black or white colour of the corresponding pixels respectively. By convention, two basics subsets can
be identi�ed.

De�nition 3.11 Foreground and background in a binary digital image.

(i) The foreground is the set of points F which are labelled with a value equal to 1. By convention, the
foreground corresponds to the set of black pixels in a binary image.

(ii) The background is the complement of the set F noted F c. It is the set of points associated with a
zero-value. By convention, the background corresponds to the set of all white pixels in the image.
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(iii) The border points are the points that form the border to the set according to De�nition 3.10. The
corresponding pixels in the image are called border pixels. A point (respectively, a pixel) which is
not in the border set is referred to as an interior point (respectively, interior pixel).

Remark 3.12 The foreground and the background may both contain more than one connected component.

Example 3.13 Border of a binary digital image.
Consider the digital image shown in Figure 7(A). The black pixels (i.e., points of the foreground F ) are
symbolised as black circles (�) and the white pixels (i.e., the points of the background F c) as white circles
(�). The 8-connectivity is considered in the foreground F and, hence, the 4-connectivity is considered in
the background (i.e., k = 8 and k0 = 4).

q

p

(A) (C)(B) 

Figure 7: Borders in a binary digital image. (A) The representation of the binary image on the square
lattice. (B) The foreground is taken as a closed set. (C) The foreground is taken as a open set.

Depending on which of the foreground or the background is considered as an open set, two di�erent
border sets are de�ned. In Figure 7(B), the foreground is considered as a closed set. Hence, it contains its
border. By de�nition, the border of the foreground is the set of black pixels � that have at least one white
pixel among their 4-neighbours. The points in this set are surrounded by a square box in Figure 7(B).

Conversely, in Figure 7(C), the foreground is considered as an open set. The border therefore belongs
to its complement, namely the background. In this case, the border is the set � of white pixels that have
at least one black pixel among their 8-neighbours. The points in � are surrounded by a square box in
Figure 7(C).

From this example, it is clear that the two borders arising from these cases are di�erent. 3

Remark 3.14 Although the set of border points � of a connected component is a connected component
with respect to the connectivity of the set it belongs to, it generally does not satisfy the conditions for being
a digital closed curve. In the example shown in Figure 7(B), �, the border of the foreground is 8-connected
but the point p in the rightmost bottom corner has three 8-neighbours in �. Similarly in Figure 7(C), � is
a 4-connected component. However, the point q has three 4-neighbours in �. Therefore, in neither cases
is � a closed curve as de�ned in De�nition 3.6.

Discrete sets are now well characterised in digital topology. The next section introduces the mapping
between concepts presented above and terminology given by graph theory. This will allow for creating a
favourable context in which a formal study of discrete geometry can be performed.

3.3 Image-to-graph mapping

Earlier work relates image processing and graph theory. Connectivity relationships are mapped onto the
graph-theoretical concept of adjacency in the study presented in [28]. Based on this theoretical context,
accurate topological thinning can be characterised [30]. Similar results are also developed in [42] where
arcs in the connectivity graph are successively deleted to simulate an erosion process. The concept of
discrete distance is formulated using graph theory in the early work presented in [23]. Further develop-
ments on the study of discrete distances using graph-mapping can be found in [39]. However, in most of
these references (with the exception of [39]), the concept of a graph is only used to represent connectiv-
ity relationships between pixels. By contrast, we will make use of powerful properties of combinatorial
structures and related algorithms for formalising and extending results in discrete spaces.
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A graph G = (V;A) is based on the de�nition of a discrete data set (vertices in V ) and their inter-
relationship (arcs in A). A digital image is a set of discrete points on which a digital topology can be
de�ned. Moreover, digital topology introduces the concept of neighbourhood for a pixel which, in turn,
de�nes digital arcs and curves.

It is therefore clear that a graph G = (V;A) can be de�ned using the set of pixels F in the image as
set of vertices V . Such a graph is referred to as the grid graph of the image.

De�nition 3.15 [28, 37] Grid graph.
Given a set of pixels F in the image and a connectivity relationship on which a digital topology is

based, the grid graph G = (V;A) of the image is de�ned as follows.

(i) To every pixel p in F corresponds a vertex u in V .

(ii) An arc (u; v) exists in A whenever the pixels p and q corresponding to vertices u and v respectively
are neighbours in the digital topology. The forward star of a given vertex u is the set of vertices v
such that arcs (u; v) exist in A. In this study, the forward star of a vertex u corresponds to the set
of pixels q in the neighbourhood of the pixel p associated with the vertex u.

(iii) The length l(u; v) associated with the arc (u; v) is the length of the move made between the corre-
sponding two pixels p and q respectively.

(iv) The abstract grid graph corresponding to the in�nite lattice is called the complete grid graph.

Immediate properties of the grid graph are given in Proposition 3.16.

Proposition 3.16 By de�nition of digital topology,

(i) The grid graph G = (V;A) of an image is sparse. The number of pixel neighbours to a given pixel is
limited by the size of this neighbourhood. Typically, MG � k:NG, where MG = jAj, NG = jV j and
k = 4 (4-neighbourhood), 8 (8-neighbourhood) or 16 (16-neighbourhood).

(ii) The grid graph on a set of N pixels can be constructed in linear time (i.e., in O(N ) operations).

Remark 3.17 In the previous sections, pixels were identi�ed with discrete points (pixel centres). From
now on, a further analogy identi�es pixels and vertices in the grid graph. Therefore, pixels will be equiv-
alently referred to as discrete points (e.g., p, q) or vertices (e.g., u, v). Similarly, depending on the
context, the set of pixels will be equivalently noted F or V , by analogy with the set of vertices in the grid
graph. Finally, arcs in the grid graph will be equivalently referred to as moves on the underlying lattice.

De�nition 3.18 Path and path length.
A path between two vertices u and v in the grid graph G = (V;A) is a set of vertices Puv =

fu0; u1; : : : ; ung such that u0 = u, un = v and the arc (ui; ui+1) 2 A for any i = 0; : : : ; n� 1. n = jPuvj
is the cardinality of the path Puv and l(Puv) =

Pn�1
i=0 l(ui; ui+1) is the length of this path.

The notion of connectivity between pixels is mapped onto that of adjacency between vertices in the
grid graph. Therefore, the de�nitions of connected components in digital topology and graph theory are
clearly equivalent. Moreover, using this image-to-graph mapping, the concept of the neighbourhood of a
pixel is directly mapped onto that of the forward star of a vertex. In the case of a complete grid graph,
the forward star of a vertex u readily contains the neighbourhood of the corresponding pixel p (e.g.,
N8(p)). In the case where the grid graph spans only vertices corresponding to a subset F of pixels in the
image (e.g., the foreground pixels in the image), the forward star of a vertex u in such a grid graph will
characterise the pixels neighbours to u which are included in F (e.g., N8(p) \ F ).
Example 3.19 Grid graph of the foreground of a binary digital image.
Consider the binary digital image shown in Figure 8(A). The set F of foreground pixels (i.e., black)

is displayed as black circles (�). Empty circles (�) represent background pixels (i.e., white) in F c.
Figure 8(B) shows the grid graph of the foreground F when considering the 8-neighbourhood relationship
(i.e., 8-grid graph). Clearly, this graph is sparse.

In this example, F is considered as a closed set and therefore border pixels are foreground pixels (i.e.,
� � F ). By de�nition of an interior pixel p (i.e., p 62 �), all dual neighbours of p are included in F (i.e.,
N4(p) � F in this case, see De�nition 3.10). Therefore, such a pixel p is characterised in the grid graph
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Figure 8: (A) Binary digital image. (B) Corresponding 8-grid graph. (C) A path in the grid graph.

by a vertex whose forward star contains jN4(p)j = 4 vertices corresponding to its 4-neighbouring pixels.
For example, this is the case for vertices u1 and u2 in Figure 8(B). By opposition, u0 is a border vertex.

Figure 8(C) shows an example of a path Pu0u2 between vertices u0 and u2 in the grid graph. The
analogy between such a path and a digital arc is discussed next. 3

The mapping between a digital arc and a path in the grid graph needs further precision. A digital arc was
de�ned as a set of neighbouring pixels such that each pixel in the digital arc has exactly two neighbours,
except for the start and end vertices (see De�nition 3.2). It is therefore clear that a corresponding path in
the grid graph is a simple path. However, an additional condition for a simple path in the grid graph to
correspond to a digital arc in the image is required. This condition simply states that, for each vertex u

in such a path, exactly two vertices in the forward star of u in the graph are included in the path, except
for the start and end vertices, each of which has only one adjacent vertex in the path in question. This
condition will always be satis�ed on any shortest path in a grid graph as discussed in the next section.

For example, in Figure 8(C), Pu0u2 does not correspond to an 8-digital arc since the predecessor of
vertex u1 has three 8-neighbours on this path. However, it is easy to verify that each sub-path Pu0u1 and
Pu1u2 de�nes an 8-digital arc.

4 Discrete geometry

Discrete geometry aims for the characterisation of geometrical properties of a set of discrete points.
Geometrical properties of a set are understood to be global properties. Points are grouped, thus forming
discrete objects, and it is the properties of these discrete objects that are under study. In contrast,
digital topology described in Section 3 allows for the study of the local properties between discrete points
within such an object. In short, topological properties such as connectivity and neighbourhood are �rst
used to de�ne discrete objects and discrete geometry then characterises the properties of these discrete
objects [5, 35, 45].

4.1 Discrete distance and shortest paths

In this section, we �rst recall existing de�nitions and results in discrete geometry applied to the 8-
neighbourhood space. Based on the conclusions derived earlier, we aim to map such results in an extended
neighbourhood space, the 16-neighbourhood space. Section 4.1.1 introduces the concept of discrete
distances. This concept is detailed in relation to the analogy with graph theory, leading to the study
of shortest paths in the grid graph in Section 4.1.2. Finally, Section 4.1.3 gives some insights as to the
relation between discrete and continuous distances.

4.1.1 De�nitions

By analogy with the continuous space, a discrete distance function should verify the classic metric con-
ditions given by De�nition 4.1.
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De�nition 4.1 Distance.
Given a set of points P , a function d : P � P ! IR+ is said to be a distance on P if and only if it

satis�es the following conditions.

(i) d(p; q) is de�ned and �nite for all p and q in P (d is total on P ).

(ii) d(p; q) = 0 if and only if p = q (d is positive de�nite).

(iii) d(p; q) = d(q; p), 8 (p; q) 2 P � P (d is symmetric).

(iv) d(p; q) + d(q; r) � d(p; r), 8 (p; q; r) 2 P � P � P (d satis�es the triangular inequality).

In the digital topology, distance calculations are based on local distances within the neighbourhood of
a point. Their de�nitions are related to basic moves on the corresponding lattice as introduced by
De�nition 4.2.

De�nition 4.2 Move and move length.
A move on the lattice is the displacement from a point to one of its neighbours. A move length is the

value given as local distance between a point and one of its neighbours.

The notion of length for a move can be readily extended to that of a digital arc.

De�nition 4.3 Length of a digital arc.
The length of a digital arc is the sum of the length of the moves that compose it.

The generic de�nition for a discrete distance is as follows.

De�nition 4.4 Discrete distance.
Given the lengths for all possible moves in a neighbourhood, the distance between two points p and q

is the length of the shortest digital arc (i.e., the arc of minimal length) from p to q. Although the distance
between two points is given as a unique value, the digital arc which realises this distance is not necessarily
unique.

The fact that such a distance satis�es the metric conditions relies on the de�nition of move lengths.
Originally, a unit value has been attributed to any move length (e.g., see [36]). In this case, the digital
arc associated with the distance between p and q is the arc of minimal cardinality joining p and q. Real
or integer move lengths have been designed for a discrete distance related to a speci�c neighbourhood to
achieve a close approximation of the Euclidean distance in the plane [1, 23].

Common de�nitions of distances are presented here. For each distance, the corresponding discrete
disc (De�nition 4.5) obtained is also presented. The geometrical properties of such discs constitute an
important factor in characterising how close a discrete distance can approximate the Euclidean distance.

De�nition 4.5 Discrete disc.
Given a discrete distance dD, a discrete disc of radius r � 0 centred at point p for this distance is

the set of discrete points �D(p; r) = fq such that dD(p; q) � rg. When no reference to the centre point is
necessary, a discrete disc of radius r for the distance dD will also be noted as �D(r).

In the particular case of an in�nite square lattice, a point p on the lattice can be uniquely characterised
by an integer pair (xp; yp) (the coordinates of the point p in the ZZ 2 plane). Conversely, any integer pair
(xp; yp) 2 ZZ 2 represents a point p on the square lattice. Therefore, there exists a one-to-one mapping
from points on the square lattice to ZZ 2. This property eases the de�nition of analytical expressions for
the discrete distances on the square lattice.

De�nition 4.6 recalls the analytical expression of the Euclidean distance dE that is used as reference
in both continuous and discrete spaces.

De�nition 4.6 Euclidean distance.
Given two points p = (xp; yp) and q = (xq; yq) the Euclidean distance value between p and q is given

by

dE(p; q) =
q
(xq � xp)2 + (yq � yp)2

It is easy to verify that dE satis�es the conditions to be a distance given in De�nition 4.1.
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All move lengths are �rst set to unity, leading to the d4 distance (De�nition 4.7) and d8 distance
(De�nition 4.9).

De�nition 4.7 City-Block distance.
The City-Block distance (or Manhattan distance) between p and q is the length of the shortest 4-arc

joining p and q when the move lengths are all set to the unity. The City-Block distance between p and q

is noted as d4(p; q) and is also referred to as the d4 distance.

Figure 9: 4-disc of radius 3: �4(3).

The location of the points on the square lattice allows for an equivalent de�nition of the d4 distance.

Proposition 4.8 Given two points p = (xp; yp) and q = (xq; yq) on the square lattice, The minimal
cardinality of a 4-arc joining p to q is given by:

d4(p; q) = jxq � xpj+ jyq � ypj
As a consequence of Proposition 4.8, the 4-neighbourhood of the point p can be characterised as follows.

N4(p) = fq = (xq; yq) 2 ZZ 2 such that jxq � xpj+ jyq � ypj = 1g 8 p = (xp; yp) 2 ZZ 2

More generally, a discrete 4-disc centred at p and of radius r (e.g., see Figure 9) is characterised by:

�4(p; r) = fq = (xq; yq) 2 ZZ 2 such that jxq � xpj+ jyq � ypj � rg
A simple extension of the d4 distance on the 8-neighbourhood leads to the de�nition of the Chessboard
distance.

De�nition 4.9 Chessboard distance.
The Chessboard distance (or Diamond distance) between p and q is the length of the shortest 8-arc

joining p and q when the move lengths are all set to the unity. The Chessboard distance between p and q

is noted as d8(p; q) and is also referred to as the d8 distance.

Figure 10: 8-disc centred at p and of radius 3: �8(p; 3).

Again, using the coordinates of integer points, d8 can be given an analytical expression as follows.

Proposition 4.10 Given two points p = (xp; yp) and q = (xq ; yq) on the square lattice, The minimal
cardinality of a 8-arc joining p to q is given by:

d8(p; q) = max(jxq � xpj; jyq � ypj)
From Proposition 4.10, the 8-neighbourhood of the point p can be characterised as follows.

N8(p) = fq = (xq ; yq) 2 ZZ 2 such that max(jxq � xpj; jyq � ypj) = 1g 8 p = (xp; yp) 2 ZZ 2

Therefore, an 8-disc of radius r centred at p is also de�ned by

�8(p; r) = fq = (xq; yq) 2 ZZ 2 such that max(jxq � xpj; jyq � ypj) � rg
(see Figure 10 for an example). Since the move lengths that de�ne the d4 and d8 distances are all equal
to 1, both these discrete distance functions satisfy the metric conditions given in De�nition 4.1.

11



Remark 4.11 Note that there exists a strong similarity between the norms k~uk1 = jx~uj+ jy~uj, k~uk2 =pjx~uj2 + jy~uj2 and k~uk1 = sup(jx~uj; jy~uj) de�ned in the continuous space IR2 and d4, dE and d8 on the
digital space. Recalling that k~uk1 � k~uk2 � k~uk1 8~u 2 IR2, this property is mapped in the digital space
as d4(p; q) � dE(p; q) � d8(p; q) 8p; q 2 ZZ 2.

Combining the 8-neighbourhood with the knight-neighbourhood, thus forming the 16-neighbourhood with
unit move lengths does not yield a distance (see Remark 4.16, later). These neighbourhoods are therefore
not detailed further at this stage.

With the aim of improving simplicity and accuracy in the approximation of Euclidean distance on the
square lattice, chamfer distances have been introduced as a generalisation of the previous de�nitions [1, 2].
In chamfer discrete distances, moves are given di�erent lengths depending on some criteria. Chamfer
distances have been intensively studied for developing image processing operators.

The generic de�nition of a chamfer distance is given as follows.

De�nition 4.12 Chamfer distance.
Given a neighbourhood and associated move lengths the chamfer distance between p and q relative to

this neighbourhood is the length of the shortest digital arc from p to q.

A chamfer distance is relative to a neighbourhood associated with move lengths. The cases of further
neighbourhoods presented in Section 3.1 are successively detailed.

Starting with the 4-neighbourhood, the length of a 4-move is noted a. In this respect, a 4-move is also
called an a-move. Clearly, in the 4-neighbourhood, all moves are equivalent by symmetry or rotation. In
this case, the only possible de�nition of a discrete distance that is geometrically consistent is that of the
d4 distance, where a = 1.

A simple extension of the 4-neighbourhood leads to the 8-neighbourhood. Diagonal moves are added
to the horizontal and vertical moves. The length of such diagonal moves is noted b. In this respect,
diagonal moves are called b-moves and the chamfer distance obtained in the 8-neighbourhood is noted
da;b. Given any positive value for a (i.e., the length for all 4-moves), in order to preserve a geometrical
consistency within the 8-neighbourhood, the diagonal moves should be associated with a length b larger
than a. In this context, the most natural value is b = a

p
2, since it allows for an exact value of the chamfer

distance along the diagonal lines from a given point. However, for the sake of simplicity of computation
and storage, it is also important to preserve integer arithmetic for distance calculations. In this respect,
integer values for a and b have been derived (e.g., see [1, 2, 14, 23]). The most commonly used set of
such values is (a = 3, b = 4) [1, 2].

Referring to Section 3.1, a further extension de�nes the 16-neighbourhood. The knight-move is in-
troduced and its length is noted c (thus de�ning a c-move). The chamfer distance obtained in the
16-neighbourhood is noted da;b;c. Assuming that a = 1, b =

p
2, the value c =

p
5 allows for an exact

chamfer distance value along the lines that support the c-moves. For preserving integer calculations of
chamfer distances, the lengths of the moves included in the 16-neighbourhood (1,

p
2,
p
5) are commonly

approximated by using the set of integer values (a = 5, b = 7, c = 11) [1, 2].

The fact that a chamfer distance satis�es the metric conditions given in De�nition 4.1 depends on the
values of the move lengths. Hence, restrictions on these values for chamfer distances to satisfy the metric
conditions have been set.

Proposition 4.13 The conditions on a and b for da;b to be a discrete distance are

0 < a � b � 2a

The typical values a = 3 and b = 4 satisfy these conditions and therefore d3;4 is a distance in the
8-neighbourhood. In this case, the value of the diagonal move length

p
2 is approximated by 4

3 .

Remark 4.14 Note that the values a = b = 1 used for the de�nition of d8 satisfy the conditions given
in Proposition 4.13. Therefore, d4 and d8 can be seen as particular cases of chamfer distances in the 4-
and 8-neighbourhoods respectively.

Similar conditions can be expressed in the 16-neighbourhood for da;b;c to be a discrete distance.
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Proposition 4.15 The values of a, b and c should satisfy the following conditions for da;b;c to be a
distance on the 16-neighbourhood.

0 < a � b � 2a � c and c � a+ b and 3b � 2c

Again, the typical values for the move lengths a = 5, b = 7 and c = 11 satisfy the above conditions.
Therefore, d5;7;11 is a distance. In this case, the diagonal move length

p
2 is approximated by b

a
= 7

5
and

the knight-move length of
p
5 is approximated by c

a
= 11

5 .

Remark 4.16 The values a = b = c = 1 do not satisfy the conditions given in Proposition 4.15.
Therefore, as mentioned earlier, an extension of d8 in the 16-neighbourhood by setting all move lengths
to unity is not possible.

Chamfer discs are presented in Figure 11. Typically, the convex hull of a chamfer disc in the 8-
neighbourhood is an octagon that approximates the Euclidean circle depending on the values of a and
b. More generally, a chamfer disc is a polygon with as many sides as there are di�erent moves in the
neighbourhood on which the chamfer distance is de�ned.
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Figure 11: Chamfer discs. (A) �3;4(27). (B) �a;b. (C) �a;b;c.

The de�nition of chamfer distances readily suggests further extensions of the neighbourhoods. This
procedure makes use of Farey sequences to de�ne extra basic moves (e.g., see [23]). Conditions on the
lengths of these moves can be developed analytically [43].

By analogy with the de�nition of a discrete distance, it is clear that the discrete distance value between
two pixels is the length of the shortest path between the two corresponding vertices in the grid graph [13,
23, 24, 25, 39]. Moreover, the properties of the shortest path justify the fact that such a length de�nes a
distance. The de�nition of grid graph allows for the use of shortest path algorithms since it is a sparse
graph with typically small positive arc lengths (see Proposition 3.16). Finally, using such an approach
one can take advantage of by-products arising from such algorithms.

De�nition 4.17 Shortest path base graph.
Given the grid graph G = (V;A) with arc lengths and two vertices u 2 V and v 2 V , the shortest path

base graph associated with the vertices u and v is the subgraph SPBG(u; v) of G formed by all possible
shortest paths from u to v. The notation for the shortest path base graph will include the dependency of the
neighbourhood relationship considered with an index k (i.e., SPBGk) corresponding to that neighbourhood
space (e.g., k = 4; 8; 16).

Typical properties of a shortest path base graph in the 8-neighbourhood space are given in Example 4.18.

Example 4.18 Shortest path base graph in the 8-neighbourhood space (SPBG8).
Consider the complete 8-grid graph G = (V;A) presented in Figure 12(A). Given the two vertices u 2 V
and v 2 V , the shortest path base graph SPBG8(u; v) is shown as bold lines in Figure 12(B).

Montanari [23] has proved that there exists a shortest path in the complete 8-grid graph between any
two vertices u; v 2 V that consists of only two straight segments, one horizontal (or vertical) and one
diagonal. It is therefore clear that any shortest path in the complete 8-grid graph will be composed of at
most two basic directions. Hence, the shortest path base graph SPBG8(u; v) is included in a parallelogram
shape, as shown in Figure 12(B). 3
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u

(B)(A)

Figure 12: (A) 8-neighbourhood complete grid graph. (B) Shortest path base graph SPBG8(u; v).

De�nition 4.19 Number of moves in a path.
In the 8-grid graph, arcs correspond to either a- or b-moves. In this respect, given an 8-path Puv

between two vertices u and v, ka(u; v) (respectively kb(u; v)) denotes the number of arcs corresponding
to a-moves (respectively b-moves) in Puv. The length of Puv is therefore given by l(Puv) = a:ka(u; v) +
b:kb(u; v).

Similarly, in the 16-grid graph, the length of a 16-path Puv is given by l(Puv) = a:ka(u; v)+b:kb(u; v)+
c:kc(u; v), where kc(u; v) is the number of arcs corresponding to c-moves in Puv.

The 8-grid graph considered now is that shown in Figure 8 and described in Example 3.19. In contrast
with a complete grid graph, it is the grid graph of a bounded connected component. Figure 13(A) shows
the shortest path spanning tree rooted at u0 obtained with arc lengths a = 3 and b = 4.

0u 0u

u2

(B)(A)

Figure 13: (A) Shortest path spanning tree in the grid graph shown in Figure 8(A). (B) An example of
shortest path.

In such an 8-grid graph, the previous description of a shortest path is not always valid since the
shortest path between two vertices may be constrained by the border of the component. Figure 13(B)
shows such a shortest path of length l(Pu0u2) = 31 between u0 and u2. Clearly, this shortest path in the
grid graph corresponds to an 8-digital arc. Moreover, it is the only possible shortest path between u0
and u2 in the grid graph.

We now take a closer look at shortest paths in the 16-neighbourhood space. Our aim is to highlight
the advantages of this neighbourhood in some applications compared to the 8-neighbourhood commonly
used. Shortest paths are �rst characterised and their properties further detailed. Results concerning
the comparison of shortest path lengths and cardinalities in the 8- and 16-neighbourhood spaces are
developed in Section 4.1.2 to emphasise the need for such a study.

Given two vertices u and v, we de�ne SP16(u; v) as the 16-shortest path between these two vertices.
Let (xu; yu) and (xv; yv) be the coordinates of the vertices u and v in the real plane. The origin is
arbitrary. The 16-shortest path SP16(u; v) can be de�ned by the respective number of moves taken in
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the three directions on the grid graph. Let ka(u; v), kb(u; v) and kc(u; v) be the composition of arcs
corresponding to a-moves, b-moves and c-moves respectively on the 16-shortest path from u to v.

v

Borders of the Shortest Path Base Graphs

σ=0

σ=1/2

σ=1

σ=
2

v

a and c moves

b and c moves

b and c moves

a and c moves

u

v

v

Figure 14: Illustration of the shortest paths in the �rst quadrant of IR2.

Proposition 4.20 SP16(u; v) is composed of arcs corresponding to, at most, two types of moves.

Proof:
Given two vertices u and v, let � be the slope of [p; q]. Without loss of generality, we only consider the
case of the �rst octant (0 � � � 1) as shown in Figure 14.

� � = 0 : ka(u; v) = jxv � xuj ; kb(u; v) = 0 ; kc(u; v) = 0

� 0 < � < 1
2
: jxv � xuj > 2jyv � yuj then:

kc(u; v) = jyv � yuj ; ka(u; v) = jxv � xuj � 2kc(u; v) ; kb(u; v) = 0

� � = 1
2 : ka(u; v) = 0 ; kb(u; v) = 0 ; kc(u; v) = jyv � yuj

� 1
2
< � < 1 : 2jyv � yuj > jxv � xuj > jyv � yuj then:

kc(u; v) = jxv � xuj � jyv � yuj ; kb(u; v) = jyv � yuj � kc(u; v) ; ka(u; v) = 0

� � = 1 : ka(u; v) = 0 ; kb(u; v) = jxv � xuj ; kc(u; v) = 0

The other cases are equivalent by symmetry. 2

Proposition 4.20 can be seen as an extension of the Montanari's characterisation of (8-)shortest
path [23]. More speci�cally, the possible combinations of moves on SP16(u; v) are: a, b or c-moves
occurring singly, a and c-moves, or b and c-moves. The combination a and b-moves never occurs since
the condition a+ b � c has to be satis�ed.

The shortest path base graph SPBG16(u; v) is the sub-graph formed by of all possible 16-shortest
paths from u to v. An example is given in Figure 15, where the two moves are a and c.
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u

Figure 15: Shortest path base graph SPBG16(u; v).

4.1.2 Shortest path cardinality

In this section, we compare the cardinality of the 16-shortest path SP16 using da;b;c with that of the 8-
shortest path SP8 using da;b. We assume that the values of a and b are the same for the 8-neighbourhood
and the 16-neighbourhood, and that a, b and c satisfy the conditions de�ned in the previous sections.
Throughout, we take V to be the set of all pixels on the unit square grid.

Proposition 4.21 jSP16(u; v)j � jSP8(p; q)j 8u; v 2 V:
Proof:
Without loss of generality, we only consider the case of the �rst octant (0 � � � 1).

If:

� � = 0; 1 :

jSP16(u; v)j = jSP8(u; v)j = max(jxu � xvj; jyv � yuj)
� � = 1

2 :

jSP16(u; v)j = min(jxv � xuj; jyv � yuj)
Now, min(jxv � xuj; jyv � yuj) < max(jxv � xuj; jyv � yuj)
And, max(jxv � xuj; jyv � yuj) = jSP8(u; v)j
� 0 < � < 1

2 : jSP16(u; v)j = jxv � xuj � jyv � yuj
Now jxv � xuj � jyv � yuj < jxv � xuj
And, jxv � xuj = jSP8(u; v)j

� 1
2 < � < 1 :

jSP16(u; v)j = 2jyv � yuj � jxv � xuj
Now, 2jyv � yuj � jxv � xuj < 2jxv � xuj � jxv � xuj
And, 2jxv � xuj � jxv � xuj = jxv � xuj = jSP8(u; v)j

2

Therefore, the storage of a 16-shortest path between two pixels p and q can be, at worst, equal to
that of a 8-shortest path (� 2 f�1; 0; 1;1g) and, at best, half that of the 8-shortest path (� 2 ��1

2 ;
1
2

	
).

We have a similar proposition regarding the length of the shortest path as that of its cardinality.

Proposition 4.22 l(SP16(u; v)) � l(SP8(u; v) 8u; v 2 V:
Proof :

We only consider the case of the �rst octant (0 � � � 1).

� � = 0; 1 : l(SP8(u; v)) = l(SP16(u; v)) = a:ka(u; v) + b:kb(u; v)
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� � = 1
2 :

l(SP16(u; v)) = c:jyv � yuj
l(SP8(u; v)) = a:(jxv � xuj � jyv � yuj) + b:jyv � yuj
Since, jxv � xuj = 2jyv � yuj then, l(SP8(u; v)) = (a + b):jyv � yuj
Also since, a+ b � c then, l(SP8(u; v)) � c:jyv � yuj = l(SP16(u; v))

� 0 < � < 1
2 :

l(SP16(u; v)) = c:jyv � yuj+ (jxv � xuj � 2jyv � yuj):a
l(SP8(u; v)) = a:(jxv � xuj � jyv � yuj) + b:jyv � yuj
l(SP8(u; v)) � l(SP16(u; v)) = (b + a� c):jyv � yuj
Since, a+ b � c then, l(SP8(u; v))� l(SP16(u; v)) � 0) l(SP8(u; v)) � l(SP16(u; v))

� 1
2 < � < 1 :

l(SP16(u; v)) = c:(jxv � xuj+ jyv � yuj) + b:(2jyv � yuj � jxv � xuj)
l(SP8(u; v)) = a:(jxv � xuj � jyv � yuj) + b:jyv � yuj
l(SP8(u; v)) � l(SP16(u; v)) = (b + a� c):(jyv � yuj � jxv � xuj)
Since, a+ b � c then, l(SP8(u; v))� l(SP16(u; v)) � 0) l(SP8(u; v)) � l(SP16(u; v))

2

Remark 4.23 The need for the condition a+ b � c is emphasised by the above result.

The above result highlights the performance of discrete distances based on the 16-neighbourhood for the
approximation of Euclidean distances. The addition of the knight-move allows for more exibility and
therefore more precision when approximating real distances. Moreover, the relation between discrete
distances in the extended neighbourhood and Euclidean distances is given in the next section.

4.1.3 Relation with Euclidean distance

Given ka(u; v), kb(u; v) and kc(u; v) on the 16-shortest path between u and v, the Euclidean distance
between u and v is given by the following proposition.

Proposition 4.24

dE(u; v) =
p
(ka(u; v) + kb(u; v) + 2kc(u; v))2 + (kb(u; v) + kc(u; v))2 8u; v 2 V

Proof:
With the aid of Figure 14, we consider the following cases for 0 � � � 1:

� � = 0 : dE(u; v) = ka(u; v), kb(u; v) = 0, kc(u; v) = 0

� 0 < � < 1
2 : dE(u; v) =

p
(ka(u; v) + 2kc(u; v))2 + kc(u; v)2, kb(u; v) = 0

� � = 1
2 : dE(u; v) =

p
4kc(u; v)2 + kc(u; v)2, ka(u; v) = 0, kb(u; v) = 0

� 1
2 < � < 1 : dE(u; v) =

p
(kb(u; v) + 2kc(u; v))2 + (kb(u; v) + kc(u; v))2, ka(u; v) = 0

� � = 1 : dE(u; v) =
p
kb(u; v)2 + kb(u; v)2, ka(u; v) = 0, kc(u; v) = 0

The other cases are equivalent by symmetry. Therefore, Proposition 4.24 holds. 2

Remark 4.25 A similar formula is readily obtained for the case of the 8-neighbourhood space. In this
case,

dE(u; v) =
p
(ka(u; v) + kb(u; v))2 + kb(u; v)2 8u; v 2 V

Such a result allows for further developments for characterising analytically errors made when using
discrete distances compared to continuous distances (see e.g., [22]). As a by-product, they allow for the
characterisation of optimal values of move lengths (e.g., a, b, c) regarding this criterion.
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4.2 Discrete convexity

Results presented in this section summarise the development of de�nitions and characterisation of discrete
convexity. Most of these results are presented in great detail in references [3, 16, 17, 18, 19, 27, 31, 32].
We adopt the notation in reference [27] for introducing discrete convexity.

De�nition 4.26 Notation for discrete convexity.

� Given a set of discrete points P , the cardinality of P is the number of discrete points that is included
in P and is noted jP j.
� Given a set of discrete points P = fpig, <P> is the set of discrete points contained in [P ], the
continuous convex hull of P .

� If P contains a �nite number of discrete points (i.e., n = jP j is �nite), then, P can be written as
P = fp0; p1; : : : ; png. In this case. <P> can be equivalently written as <p0; p1; : : : ; pn>.

A continuous set S is convex if and only if [S] = S. A similar characterisation of discrete convexity via
the continuous convex hull of P can be formulated as follows.

Proposition 4.27 [3, 16, 18] A set of discrete points P is discrete convex if and only if any discrete
point contained in the convex hull of P belongs to P . In short, P is discrete convex if and only if <P>= P .

Figures 16(A) and 16(B) display the resulting characterisation of discrete convexity. Moreover, Proposi-

(B)(A)

j

t

s

p

i
p

Figure 16: A characterisation of discrete convexity.

tion 4.27 holds if and only if for any discrete points p, q and r in P , <p; q; r>� P (see [27]). For a set
of discrete points, such a property is called triangle-convexity (T-convexity) [27]. Di�erent alternative
characterisations of discrete convexity exist. Under certain conditions (mostly simple connectivity), they
can be proved to be equivalent one to another. Figure 17 gives a summary of such developments.

Cellular Convexity
([16,18])

+ 4-connectivity

+ 8-connectivity

+ simple 8-connectivity + simple 8-connectivity

+ 4-connectivity

T-Convexity
(Prop. 4.27 and [27])

L-Convexity
([27])

4-Convexity
([27])

8-Convexity
([27])

Figure 17: Equivalence between characterisations of discrete convexity.

A geometrical characterisation of discrete convexity similar to that of continuous convexity can now
be formulated.
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Proposition 4.28 [18] A set of discrete points P is discrete convex if and only if any point pi 2 P is
connected to any other point pj 2 P by an 8-digital straight segment whose points belong to P .

Such a characterisation gives a �rst insight as to the de�nition of discrete straightness. When applied to
digital arcs, Proposition 4.28 reduces to the following.

Proposition 4.29 [18] A digital arc is a digital straight segment if and only if it is discrete convex.

Section 4.3 will detail a formal characterisation of discrete straightness. In Section 5, we aim to extend
these results to the 16-neighbourhood space.

4.3 Discrete straightness

In the discrete space, straightness is referred to as discrete straightness. The following introductory
de�nition for this concept is given.

De�nition 4.30 Digital straight segment.
A discrete set of points is a digital straight segment if it is the digitisation of at least one continuous

straight segment.

De�nition 4.30 only takes its full meaning when the digitisation scheme is de�ned. The most commonly
used digitisation scheme is the grid-intersect quantisation [10] and is presented here through the following
example.

Consider the continuous segment [�; �] and the square lattice shown in Figure 18. The intersection
points between [�; �] and the lattice lines are mapped to their nearest integer points. In case of a tie,
the discrete point which is locally at the right of [�; �] is selected ([�; �] is oriented from � to �). This
digitisation scheme is illustrated in Figure 18 by the fact that intersections between [�; �] and lattice
lines are mapped their closest discrete points on the lattice.

x

q

β

α
p y

Figure 18: Grid-intersect quantisation.

The set of discrete points fpigi=0���n resulting from the digitisation of a continuous segment [�; �]
is called the digitisation set of [�; �]. It can then be shown that the grid-intersect quantisation of a
continuous straight segment is an 8-digital arc [33].

Di�erent approaches have been taken to characterise discrete straightness in the 8-neighbourhood space.
Clearly, the minimum requirement for a set of discrete points to form an digital straight segment is that
this set forms a digital arc de�ned by De�nition 3.2.

4.3.1 Freeman's codes

The �rst characterisation of a digital straight segment has been given by Freeman [10, 11]. This character-
isation is descriptive and makes use of codes that are de�ned for all possible moves in the 8-neighbourhood
(see Section 3.1). The particular structure of a sequence of such codes (i.e., the chain-code) is then used
to characterise discrete straightness (Proposition 4.33).

De�nition 4.31 Freeman's codes and chain-code.
All possible moves in the 8-neighbourhood are numbered successively counterclockwise from 0 to 7, as

shown in Figure 19.
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The encoding fcigi=1;���n (ci 2 f0; 1; : : :; 7g) of a given sequence of 8-moves de�ned by the discrete
points fpigi=0;���n is called the chain-code of this sequence.

4

3 2 1

0

5 76

Figure 19: Freeman's codes in the 8-neighbourhood.

Example 4.32 Chain-code.
The chain-code of the 8-move sequence depicted in Figure 20 is

f0; 0; 1; 3; 0; 0;0;6;7; 0; 2;2;2; 4; 4; 4;4;4; 4; 4;6;6g

3

6

7

0

6

6 3

1

4

2

2

20

4 44444

0 0

0 0

Figure 20: An example of the use of Freeman's code.

The characterisation of a digital straight segment using the chain-code is formulated as in Proposition 4.33.
Note that, since the grid-intersect quantisation of a continuous straight segment in an 8-digital arc,
Proposition 4.33 below assumes that the 8-move sequence considered forms an 8-digital arc.

Proposition 4.33 An 8-digital arc is a digital straight segment if and only if its chain-code satis�es the
following conditions [10]:

(i) At most two types of codes can be present, and these can di�er only by unity, modulo eight.

(ii) One of the two code values always occurs singly.

(iii) Successive occurrences of the code occurring singly are as uniformly spaced as possible.

Algorithms that test for the straightness of a digital arc can be derived from adapted versions of this
proposition. They are based on di�erent rules derived from the conditions given in Proposition 4.33 (e.g.,
[10, 15, 33]).

4.3.2 Chord properties

This section introduces a di�erent class of characterisation for discrete straightness called chord properties.
Originally proposed by Rosenfeld [33], the chord property (Proposition 4.34) remains one of the major
results in discrete geometry. Variations and generalisations of the original characterisation have been
proposed and are also detailed in this section.

Proposition 4.34 �rst introduces the chord property as originally formulated in [33].

Proposition 4.34 [33] An 8-digital arc Ppq = fpigi=0���n satis�es the chord property if and only if, for
any two discrete points pi and pj in Ppq and for any real point � on the continuous segment [pi; pj], there
exists a discrete point pk 2 Ppq such that d8(�; pk) < 1.
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p

q

Figure 21: Example of the validity of the chord property.

Remark 4.35 In Proposition 4.34, the de�nition of the (Chessboard) d8 distance is extended to real
points via its analytical characterisation given by Proposition 4.10 (i.e., d8(�; �) = max(jx� � x�j; jy� �
y�j) for any � = (x�; y�) and � = (x�; y�) in IR2).

Geometrically, the chord property and the resulting visibility polygon can be illustrated by Figure 21.
Given the digital arc Ppq, the shaded polygon in Figure 21 illustrates the set of points � 2 IR2 such

that there exists a discrete point pk 2 Ppq such that d8(�; pk) < 1 (i.e., the visibility polygon is the union
of 8-discs of unit radii centred at every discrete point pk of Ppq). From Proposition 4.34, Ppq satis�es
the chord property if and only if the continuous segment [pi; pj] is totally contained in this area for any
i and j in f0; : : : ; ng. The chord property can therefore be reformulated as follows: \An 8-digital arc
Ppq = fpigi=0���n satis�es the chord property if and only if any point pi is visible from any other point pj
within the visibility polygon de�ned by f� 2 IR2 such that d8(pk; �) < 1 for all k = 0; : : : ; ng".

α
p

q

p
1

p
8

Figure 22: Example for the violation of the chord property.

Figure 22 illustrates an instance where the conditions for the chord property are not satis�ed. In this
example, it is clear that � 2 [p1; p8] is such that d8(pk; �) � 1 for any k = 0; : : : ; n. In other words, � is
outside the visibility polygon and p1 is not visible from p8 (and conversely) within the visibility polygon.

Remark 4.36 If Ppq does not satisfy the chord property, then there exist two points pi and pj in Ppq
such that [pi; pj] intersects the visibility polygon associated with Ppq in a single point r (i.e., there exists
pk 2 Ppq such that d8(pk; r) = 1). In this case, r is an integer point. This property is illustrated in
Figure 23, where Ppq is the same digital arc as in Figure 22, i = 1, j = 7 and k = 3 or k = 4.

The chord property is an essential result since it gives an analytical formulation of discrete straightness
via Theorem 4.37 below.

Theorem 4.37 [33] In the 8-digital space:

(i) The digitisation of a straight line is a digital arc and has the chord property.

(ii) If a digital arc has the chord property, it is the digitisation of a straight line segment.

The original proof of Theorem 4.37 can be found in [33]. A simpler proof based on Santal�o's theorem is
given in [29].
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Figure 23: A special case for the violation of the chord property.

This result enables one to test the discrete straightness of an 8-digital arc without reference to any
related continuous segment whose digitisation would yield the digital arc in question. Moreover, the con-
cept of visibility is important since it readily suggests a simple greedy algorithm which would successively
test for the visibility of a point from other points in the digital arc under study (see Section 6).

Areas of visibility polygons de�ned in Proposition 4.34 are clearly not minimal. By de�nition, this
polygon should be convex. The compact chord property aims for the reduction of visibility polygons by
using the d4 distance.

Proposition 4.38 [40] An 8-digital arc Ppq = fpigi=0���n satis�es the compact chord property if and
only if, for any two distinct discrete points pi and pj in Ppq and for any real point � on the continuous
segment [pi; pj], there exists a real point � 2 IR2 in the broken line

S
i [pi; pi+1] such that d4(�; �) < 1.

Remark 4.39 In Proposition 4.38, the de�nition of the d4 distance is extended to real points via its
analytical characterisation given by Proposition 4.8 (i.e., d4(�; �) = jx� � x�j + jy� � y�j for all � =
(x�; y�) and � = (x�; y�) in IR2).

The visibility polygon de�ned in the compact chord property is the set f� 2 IR2 such that d4(�; �) < 1g
where � 2 IR2 is on the continuous segment [pi; pj] for all i; j = 0; : : : ; n. It therefore corresponds to a
unit 4-disc swept along the broken line

S
i [pi; pi+1]. Figure 24 illustrates the di�erence between visibility

polygons induced by the chord and compact chord properties respectively. The shaded polygon is the
visibility polygon de�ned by the compact chord property (Proposition 4.38), whereas the dashed bold
polygon represents the contour of the visibility polygon de�ned by the chord property (Proposition 4.34).
Since one is always included in the other, the term \compact chord property" was used.

q

p

Figure 24: Example for the validity of the compact chord property.

Using the same example as in Figure 22, Figure 25 shows that the digital arc also fails to satisfy
the compact chord property. More generally, the exact equivalence between the chord and the compact
chord properties is proved in [40]. Our aim in the next section is to give an equivalent characterisation
of discrete straightness in the 16-neighbourhood space.
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Figure 25: Example for the violation of the compact chord property.

5 Extensions in the 16-neighbourhood space

In order to facilitate the study of geometrical properties in the 16-neighbourhood space, we �rst introduce
the concept of distance in this extended neighbourhood space. Two new discrete distance functions will be
constructed in Section 5.1 which allow for the analytical characterisation of the 16-neighbourhood as it was
the case for the City-Block and Chessboard distance in the 4- and 8-neighbourhood spaces respectively.
Based on these results, a digitisation scheme is then de�ned that maps real straight segments onto 16-
digital arcs (Section 5.2). This digitisation scheme is typically equivalent to the grid-intersect quantisation
introduced previously in the 8-neighbourhood space. Finally, Section 5.3 formally characterises discrete
straightness in the 16-neighbourhood space.

5.1 De�nitions

In this section, we will establish an analogy between a 16-digital arc and an 8-digital arc. We introduce
a transformation Ti which uniquely maps an 8-digital arc to a 16-digital arc (and vice-versa). This is
motivated by the fact that the 16-digital arc does not necessarily visit the pixels on all the grid lines
(vertical or horizontal) between the two end points (as deduced from Proposition 4.21). The objective
would be then to de�ne a distance in the N16 space, and �nally, a characterisation of a 16-digital straight
segment.

We de�ne the transformation Ti on the chain code of the digital arc in question, where the subscript
i indicates that the transform is chain code (i.e., move) dependent. It will become apparent that this
subscript indicates the octant in which the digital arc lies (e.g., see Figure 26, next). We recall that the
16-chain codes are given by f0; 1; � � � ; 15g and, using the same numbering scheme, the 8-chain codes are
given by even codes f0; 2; 4; � � �; 14g, as shown in Figure 5 (Section 3.1).

Example 5.1 T2 transform.
We �rst describe the case for i = 2 as an example. Let Ppq be a 16-digital arc which is also a shortest
path between p and q (SP16(p; q)). Let us assume that the slope � of [p; q] lies between 0 and 1

2 . This
implies that Ppq will be composed of a-moves and c-moves. The T2 transformation applies for the �rst
octant codes (i.e., 0 � � � 1). The analytical expression of T2 is given by: T2 : (x; y) 7! (x � y; y).
A chain code c represents a pair of displacements (�x; �y) in the discrete space. For this reason, we use
equivalently the notation Ti(�x; �y) and Ti(c). In particular, the chain codes in N16 in this octant f0; 1; 2g
are mapped to the chain codes in N8 as follows: T2(0) = 0, T2(1) = 2 and T2(2) = 4. 3

More formally, we de�ne the Ti transformation and its inverse T�1
i for i = 0; � � � ; 3 representing the

four octant on the right hand side of the grid shown in Figure 26 (i.e., �1 � � � +1) as follows.

� �1 � � � �1 : T0 : (x; y) 7! (x; y + x) and T�1
0 : (x; y) 7! (x; y � x)

T0(12) = 12, T0(13) = 14 and T0(14) = 0

� �1 � � � 0 : T1 : (x; y) 7! (x+ y; y) and T�1
1 : (x; y) 7! (x� y; y)

T1(14) = 12, T1(15) = 14 and T1(0) = 0

� 0 � � � 1 : T2 : (x; y) 7! (x� y; y) and T�1
2 : (x; y) 7! (x+ y; y)

T2(0) = 0, T2(1) = 2 and T2(2) = 4
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Figure 26: The Ti transformation.

� 1 � � � +1 : T3 : (x; y) 7! (x; y � x) and T�1
3 : (x; y) 7! (x; y + x)

T3(2) = 0, T3(3) = 2 and T3(4) = 4

The four other cases on the left hand side of the grid are the same by symmetry with the origin. Figure 26
depicts graphically how the 16-chain codes are transformed onto the 8-chain codes.

Thus, a 16-digital arc (resp. 8-digital arc) Ppq can be mapped onto the 8-digital arc (resp. 16-digital
arc) Pp0q0 using the transformation: Pp0q0 = Ti(Ppq) (resp. Pp0q0 = T�1

i (Ppq)) where p = p0.

TT
q’

q

p

2

-1
2

p’

Figure 27: An example of the Ti-transform with i = 2.

In the case illustrated in Figure 27, Ppq is de�ned by the chain code sequence f0; 1; 0; 0; 1;1g and Pp0q0
is given by the chain code sequence f0; 2; 0; 0;2;2g.

d4 and the d8 distances have been established as distance functions. It was also shown in [7, 8] that
Nknight could also be characterised by a discrete distance called dknight. By contrast, the 16-neighbourhood
N16 de�ned by the union of N8 and Nknight cannot be simply characterised by a discrete metric (see
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Remark 4.16). We now introduce a new distance function dpq in the N16 space which is slope-dependent
and can be seen as an extension of the City-Block distance d4.

De�nition 5.2 dpq distance.
Given two points p = (xp; yp) and q = (xq; yq), we note �x(p; q) = xq � xp and �y(p; q) = yq � yp. We

de�ne di(p; q) i = 0 � � �3 as follows.

d0(p; q) = j�x(p; q)j+ j�x(p; q) + �y(p; q)j
d1(p; q) = j�y(p; q)j+ j�x(p; q) + �y(p; q)j
d2(p; q) = j�y(p; q)j+ j�x(p; q)� �y(p; q)j
d3(p; q) = j�x(p; q)j+ j�x(p; q)� �y(p; q)j

Given two points r and s, we de�ne dpq(r; s) as :

dpq(r; s) = di�(r; s) with i
� such that : di�(p; q) = min

i=0���3
di(p; q)

Note that the value of i� corresponds to the octant pairs de�ning the transformation Ti (see Figure 26).

Example 5.3 dpq distance.
For example, consider the four points p, q, r and s in Figure 28. We have �x(p; q) = 10, �y(p; q) = 3, and
hence, d0(p; q) = 23, d1(p; q) = 16, d2(p; q) = 10 and d3(p; q) = 17. Therefore, i� = 2 and dpq(p; q) =
d2(p; q) = 10.

q’ q

s’ s

r=r’p=p’

Figure 28: Distance calculations.

The de�nition of dpq is based on the analogy with the 16-shortest path. More precisely, dpq(p; q) =
l(SP16(p; q)) with a = 1, b=1 and c = 2. The analogy also applies to the transformed path using Ti� .
Indeed, dpq(p; q) is the length of the 4-shortest path from p0 = T2(p) to q0 = T2(q) with a = b = 1. In
other words, dpq(p; q) = d4(Ti� (p); Ti�(q)) = d4(p0; q0) (dashed line).

Now, given two points r and s, for instance, we can compute dpq(r; s). Since �x(r; s) = 8, �y(r; s) = 2
then dpq(r; s) = 8. Similarly to dpq(p; q), this value is the length of the 4-shortest path from r0 = T2(r)
to s0 = T2(s) with a = b = 1.

In other words, dpq(r; s) = d4(Ti� (r); Ti�(s)) = d4(r0; s0) = 8 (dashed line). In this example, we have
chosen the slope of [r; s] to be in the same octant as [p; q] for simplicity. However, the distance function
is general and can apply to instance when the two slopes do not belong to the same range de�ning i�. 3

Proposition 5.4 The value of i� for di(p; q) is determined by the slope � of the real segment [r; s].

Proof:

(i) if �1 < � < �1 then

j�y(p; q)j > j�x(p; q)j and �x(p; q):�y(p; q) � 0

) d0(p; q) = mini=0���3 di(p; q)

(ii) if �1 < � < 0 then

j�y(p; q)j < j�x(p; q)j and �x(p; q):�y(p; q) � 0

) d1(p; q) = mini=0���3 di(p; q)
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(iii) if 0 < � < 1 then

j�y(p; q)j < j�x(p; q)j and �x(p; q):�y(p; q) � 0

) d2(p; q) = mini=0���3 di(p; q)

(iv) if 1 < � < +1 then

j�y(p; q)j > j�x(p; q)j and �x(p; q):�y(p; q) � 0

) d3(p; q) = mini=0���3 di(p; q)

Similarly to the Ti transform, these values of � (resp. i�) de�ne four octant pairs as shown in Figure 26.
2

Proposition 5.5 For a given p, q, dpq(:; :) is a distance function.

Proof:

(i) dpq(r; s) = 0, r = s (trivial).

(ii) dpq(r; s) = dpq(s; r) (trivial).

(iii) dpq(r; t) � dpq(r; s) + dpq(s; t) :

�x(r; t) = �x(r; s) + �x(s; t) and �y(r; t) = �y(r; s) + �y(s; t)

then,

j�x(r; t) + �y(r; t)j � j�x(r; s) + �y(r; s)j+ j�x(s; t) + �y(s; t)j
Likewise,

j�x(r; t)� �y(r; t)j � j�x(r; s)� �y(r; s)j+ j�x(s; t) � �y(s; t)j
Hence, dpq(:; :) is a distance function. 2

Proposition 5.6 dpq(p; q) = d8(p; q). Alternatively,

dpq(p; q) = 1() p and q are 8-neighbours.

Proof:

dpq(p; q) = min(j�x(p; q)j; j�y(p; q)j) + jj�x(p; q)j � j�y(p; q)jj
= max(j�x(p; q)j; j�y(p; q)j)
= d8(p; q) 2

We can also de�ne a new distance function Dpq in the N16 space, which can be seen as an extension of
the Chessboard distance d8. This new distance function will prove fundamental in the characterisation
of the 16-neighbourhood.

De�nition 5.7 Dpq distance.
Given two points p = (xp; yp) and q = (xq; yq), we de�ne Di(p; q) i = 0 � � �3 as follows.

D0(p; q) = max(j�x(p; q)j; j�x(p; q) + �y(p; q)j)
D1(p; q) = max(j�y(p; q)j; j�x(p; q) + �y(p; q)j)
D2(p; q) = max(j�y(p; q)j; j�x(p; q)� �y(p; q)j)
D3(p; q) = max(j�x(p; q)j; j�x(p; q)� �y(p; q)j)

Given two points r and s, we de�ne Dpq(r; s) as :

Dpq(r; s) = Di�(r; s) with i
� such that : Di�(p; q) = min

i=0���3
Di(p; q)
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We �rst note that, for a given p and q, i� which minimises the expression of di in the de�nition of dpq is
the same as i� which minimises the expression of Di in the de�nition of Dpq .

Example 5.8 Dpq distance.
Using the same example in Figure 28, D0(p; q) = 13, D1(p; q) = 13, D2(p; q) = 7 and D3(p; q) = 10.
Hence, i� = 2 and Dpq(p; q) = D2(p; q) = 7. This value now corresponds to d8(p0; q0) where p0 = T2(p)
and q0 = T2(q). In other words, Dpq(p; q) = d8(Ti�(p); Ti�(q)) = d8(p

0; q0) (dotted line) which establishes
the analogy between Dpq and d8. Likewise, Dpq(r; s) = d8(Ti�(r); Ti�(s)) = d8(r

0; s0) = 6 (dotted line).
3

Proposition 5.9

Dpq(p; q) = 1() p and q are 16-neighbours.

Proof:
Immediate by the de�nition of Dpq . 2

We can also easily prove that Dpq(:; :) is a distance function, in essentially the same way as we did
for dpq(:; :).

Figure 29 shows the di�erent discs of radius 1 for the two new distance functions where p is the origin
and q is any pixel in each quadrant of ZZ 2. The disc of radius 1 is centred at pixel p (shown highlighted)
and the locus of points � 2 IR2 are shown shaded as given in the ccaption of Figure 29. This �gure
clari�es the fact that the distance metrics are de�ned such that they are dependent on the slope of the
segment [p; q]. The union of discs fully describes the 16-neighbours of a pixel. Thus, Dpq can be used to
de�ne the N16 neighbourhood of a pixel explicitly.

Figure 29: Bowls dpq(u; �) � 1 (light shaded region) and Dpq(u; �) � 1 (dark and light shaded regions).

It will become apparent in the next sections how the newly de�ned distance functions will assist in
reaching the goal of characterising 16-digital straight segments. We �rst use these distance functions dpq
and Dpq for de�ning a digitisation scheme that applies in the 16-neighbourhood space.

5.2 Grid-intersect quantisation GIQ
16

In [10], Freeman de�nes the grid intersection quantisation in the N8 space (GIQ8) using the distance
d8 as the set of pixels closest to a curve whenever it intersects a horizontal or a vertical grid line. The
(8-)grid intersect quantisation of a real segment was then de�ned as an (8-)digital straight segment [10].
However, in the N16 space, because the c-move skips some grid lines, this de�nition is not satisfactory.
We propose a new de�nition for the grid intersect quantisation of a real straight segment in the N16 space
(GIQ16).

Given a real segment [�; �], let p (resp. q) be the grid point d��-closest to � (resp. �). Then, similarly
to GIQ8, we call GIQ16(�; �) the 16-digital arc which realizes the minimum area of S (jSj), where S is
the surface between the 16-digital arc and the real segment [�; �] (see Figure 30).
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Figure 30: Surface between [p; q] and the 16-digital arc. (A) Non optimal case. (B) Optimal case
(GIQ16(p; q)).

Proposition 5.10 GIQ16(�; �) is a 16-shortest path between p and q with a, b and c de�ned such that
da;b;c is a distance (see Section 4.1.1).

Proof:
Let fp0; p1; � � � ; png be the set of grid points (pixels) in GIQ16(�; �). Let �i be the angle between [p; q]
and [pi; pi+1], i = 0; � � �n� 1.

Thus, the minimum value of jSj will be reached for the minimum value of
Pn�1

i=0 j�ij. In turn, this
also implies that each j�ij is also a minimum. Therefore, GIQ16(�; �) will be composed of two types
of moves, one with the minimum slope which is greater than the slope of [p; q], and the other with the
maximum slope which is smaller than the slope of [p; q]. In other words, the two moves are those whose
slope is closest to that of [p; q]. Such a digital arc exists since these two moves compose SPBG16(p; q) as
shown in Figure 14. Hence, GIQ16(�; �) will be a path in SPBG16(p; q), and, therefore, it is a shortest
path between p and q. 2

As a by-product of Proposition 5.10, a simpler characterisation of GIQ16(p; q) would be the following.
GIQ16(�; �) is the 16-shortest path between p and q which is closest to the real straight segment [p; q].
Moreover, Freeman's �rst criterion (Proposition 4.33(i)) can clearly be extended in the case of a 16-digital
straight segment. We can deduce from Propositions 4.20 and 5.10 that GIQ16(�; �) is composed of at
most two directions which di�er by one modulo 16. We now describe a simple algorithm for computing
GIQ16.

5.2.1 Implementation

Given � and �, the following algorithm will give as output GIQ16(�; �):

1. Compute p and q, the d��-closest pixels to � and � respectively.

2. Initialise : Ppq  fpg.
3. Build a path Ppq by adding the next pixel pi in SPBG16(p; q) closest to [p; q].

4. if pi = q stop else go to step 3.

By extension of the special case of a tie in the N8 space, we choose the lower coordinate pixel in the
N16 space (step 3).

Proposition 5.11 This algorithm converges and gives as output GIQ16(�; �).

Proof:
The existence of p and q is trivial. We only need to show that : For any i > 0, there exist two discrete
points pi and pi�1 adjacent in SPBG16(p; q) and there exists a real point � in [p; q] such that dpq(pi; �) � 1

2 .
By induction, p0 = p.

We de�ne l and m such that [p; q] crosses the line y = x+m at  and l � 1
2
< y < l + 1

2
. Therefore,

the next step will check for the intersection � of [p; q] with the line y = x+m+ 1. Let � be the slope of
[p; q] and let 0 < � < 1

2
. Thus, l � 1

2
+ � < y� < l + 1

2
+ � ) l � 1

2
< y� < l + 1 If pi is the dpq-nearest

point from � then, ypi = l or ypi = l + 1. Hence, pi = pi1 = (xpi�1
+ 1; l) or pi = pi2 = (xpi�1

+ 2; l + 1).
Thus, dpq(pi1 ; pi2) = 1 and dpq(pi1 ; pi�1) = 1. This means that pi1 and pi2 are both adjacent to pi�1.
Hence, the algorithm can reach either of these two points.
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Figure 31: Construction of GIQ16(p; q).
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Figure 32: A step in the construction of GIQ16(p; q).

The end point will be the grid point closest to the crossing of [p; q] with the rightmost diagonal line.
By de�nition, it matches with q. 2

5.2.2 Discrete convexity of GIQ16(p; q)

A number of intimately linked de�nitions have been proposed for discrete convexity in the N8 space on
the unit square grid (see Section 4.2). We will follow the characterisation of discrete convexity given in
Proposition 4.27, where a set P of grid points is said to be discrete convex if and only if P =<P>. The
aim of this section is essentially to prove the following result.

Theorem 5.12 GIQ16(p; q) is discrete convex.

Proof:
The �rst remark is that SPBG16(p; q) contains all the points of the grid as pixels in the vicinity of [p; q]
(e.g., see Figure 15).

Without loss of generality, we can assume that [p; q] has a slope � such that 0 < � < 1
2
. Therefore,

by de�nition, dpq(r; s) = j(xs� xr)� (ys � yr)j+ jys� yr j and GIQ16(p; q) is composed of c (knight) and
a (horizontal) moves (codes 0 and 1).

Let fp0; p1; � � � ; png be the set of discrete points in GIQ16(p; q). By construction of GIQ16(p; q), for
any point pi in GIQ16(p; q), there exists a real point  in [p; q] such that dpq(pi; ) � 1

2
. Let D = f 2 IR2
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such that 9� 2 [p; q] such that dpq(; �) � 1
2g. Then, the real convex hull of GIQ16(p; q), [GIQ16(p; q)] is

such that [GIQ16(p; q)] � D

p

q

[GIQ    (     )]p,q
16D

16
GIQ    (     )p,q

Figure 33: Veri�cation of the discrete convexity for GIQ16(p; q).

Let us say that a pixel p� of SPBG16(p; q) is such that p� 62 GIQ16(p; q) and p� 2 �

D, where
�

D is the
interior of the set D (i.e., there exists a real point  in [p; q] such that dpq(p�; ) <

1
2
).

Since GIQ16 is a 16-shortest path on the grid (see Proposition 5.10), it is composed of, at most, two
moves (a and c in the case of 0 < � < 1

2
). Hence, each move along GIQ16 crosses a line of the form

y = x+ k; k 2 IN exactly once. More precisely, on each of such lines, only one pixel pi is such that there

exists a real point � 2 [p; q] such that dpq(pi; �) � 1
2
(see Figure 32). Therefore

�

D does not contain any
pixel other than those which are on GIQ16(p; q). Consequently, the interior of the real convex hull of
GIQ16(p; q) satis�es the same property (see Figure 33). Hence, GIQ16(p; q) is discrete convex. 2

5.3 Discrete straightness in the 16-neighbourhood space

In Section 4.1.2, we obtained results concerning the 16-neighbourhood coding. These result motivate the
study of discrete straightness in this extended neighbourhood. In this section, our aim is to arrive at a
characterisation of digital straight segments in the 16-neighbourhood space (16-digital straight segments)
similar to that given by the chord properties in the 8-neighbourhood space. Based on the newly de�ned
distances and digitisation scheme, we follow the approach taken when introducing straightness in the
8-neighbourhood space.

16-digital arcs resulting from the 16-digitisation of real straight segment are �rst proved to satisfy
properties that belong to the class of chord properties in Section 5.3.1. The major result of this study
can then be given as an analytical characterisation of 16-straightness. For the sake of completeness,
Section 5.3.2 also presents the study of Upper and Lower bounds of a digital straight segment in the
16-neighbourhood space.

5.3.1 16-digital straight segments

We introduce chord properties in the extended neighbourhood space. These properties make use of the
distance functions dpq and Dpq. By analysing the construction of these distances, the new 16-chord prop-
erties will be proved to be analytical characterisations of 16-digital straight segments. Proposition 5.13
is to be compared with Propositions 4.34 and 4.38.

Proposition 5.13 Chord properties in the 16-neighbourhood space.
A 16-digital arc Ppq = fpigi=0���n satis�es the 16-chord property if and only if, for any two discrete

points pi and pj in Ppq and for any real point � on the continuous segment [pi; pj], there exists a point
pk 2 Ppq such that Dpq(�; pk) < 1.

A 16-digital arc Ppq = fpigi=0���n satis�es the 16-compact chord property if and only if, for any two
discrete points pi and pj in Ppq and for any real point � on the continuous segment [pi; pj], there exists
a real point � in the broken line

S
i[pi; pi+1] such that dpq(�; �) < 1.
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Figure 34(A) shows the geometric shapes for the 16-chord property and the 16-compact chord property.
The dashed polygon (O) contains the locus of points � 2 IR2 such that Dpq(�; Ppq) < 1 and the solid
polygon (O) contains the locus of points � 2 IR2 such that dpq(�;

S
i[pi; pi+1]) < 1.

p j
p

p

k q

αp
i

(B)(A)

16-CP (polygon     )OO

q

p

16-CCP (polygon      )

Figure 34: (A) A 16-digital arc which satis�es the 16-(compact) chord property. (B) A 16-digital arc
violating the 16-(compact) chord property.

Using the concept of visibility in computational geometry, the properties can be reformulated as
follows. Given two points r, s in a region R, s is said to be strictly visible from r in R if the real segment
[r; s] is wholly contained in R (i.e., [r; s] does not cross or touch the boundary of R).
Proposition 5.14 A 16-digital arc Ppq = fpigi=0���n satis�es the 16-chord property (resp. 16-compact
chord property) if and only if, for any two discrete points pi and pj in Ppq, pj is strictly visible from pi
in O (resp. in O).

Proof:
Immediate by the de�nition of O (resp. O). 2

These chord properties can now be used for characterising analytically 16-digital straight segments. We
�rst formally de�ne the concept of straight segment in the 16-neighbourhood space using the digitisation
scheme de�ned earlier.

De�nition 5.15 16-digital straight segment.
A 16-digital arc Ppq is a 16-digital straight segment if there exists two real points � and � such that

GIQ16(�; �) = Ppq .

The characterisation of 16-digital straight segments will be operated in two steps formulated in Lem-
mas 5.16 and 5.17 respectively.

Lemma 5.16 A 16-digital straight segment satis�es the 16-compact chord property.

Proof:
Let Ppq = fpigi=0���n be a 16-digital straight segment. By De�nition 5.15, there exist two real points
� and � real points such that GIQ16(�; �) = Ppq. It was shown in Section 5.2.2 that GIQ16(p; q) is
discrete convex. In other words, if there exist two discrete points pi and pj in GIQ16(p; q) for which the
16-compact chord property is violated then, there exists a real point  in [pi; pj] such that for any � inS

i[pi; pi+1], dpq(; �) > 1. In other words, in this case, the real convex hull of GIQ16(p; q), [GIQ16(p; q)]
will contain a pixel of the SPBG16(p; q) which does not belong to GIQ16(p; q), contradicting the fact that
GIQ16(p; q) is discrete convex.

In Figure 34(B), the 16-compact chord property is violated. Moreover, [GIQ16(p; q)] contains � which
is not in GIQ16(p; q). 2
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Lemma 5.17 If a 16-digital arc Ppq satis�es the 16-compact chord property, it is a 16-digital straight
segment.

Proof:
We assume without loss of generality that the slope of [p; q] is between 0 and 1

2 . The proof for the other
cases is similar.

3
D
1

α

2

D

D
q

p

β

Figure 35: Characterisation of a digital straight segment.

Let fp0; p1; � � � ; png be the set of discrete points in Ppq. We de�ne the following lines (see Figure 35):

� D1 : y = �x+ �1 such that 8pi 2 Ppq , pi is below D1 (pi = (xi; yi)) yi � �xi + �1).

� D2 : y = �x+ �2 such that 8pi 2 Ppq , pi is above D2 (pi = (xi; yi)) yi � �xi + �2).

D1 and D2 are de�ned as two parallel lines such that any point pi in Ppq lies between D1 and D2. Building
on this, we de�ne a width measure for Ppq:

� W(�; �1; �2) = min(dpq(�; ") j � 2 D1 ; " 2 D2).
� W� =W(��; ��1; �

�

2) = min�;�1;�2(W(�; �1; �2)). (W� is the minimal dpq-width of Ppq).

Now, to prove Lemma 5.17, we only need to prove that there exists a real straight segment [�; �] where
dpq(�; p) <

1
2
and dpq(�; q) <

1
2
such that GIQ16(�; �) = Ppq. In this context, it is then su�cient to

prove that, if Ppq satis�es the 16-compact chord property then W� < 1.
By de�nition, one of the two lines D1 and D2 (D1, say) contains at least two points pi and pj from Ppq

and the other line (D2), contains at least one point pk from Ppq . Otherwise, W� would not be minimal.
For obtaining a minimal width (W�), one of D1 or D2 should be a part of the real convex hull of Ppq, as
shown schematically in Figure 36(A).

Now, let � be a point on D1 such that dpq(pk; �) is minimum (i.e., dpq(pk; �) =W�). For the triangle
�pipjpk to have a minimal width W�, � should be a point on [pi; pj] (see Figure 36(B)). Hence, pk lies
between pi and pj on the 16-digital arc Ppq (i.e., pk 2 Ppipj � Ppq).
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p
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Figure 36: Geometrical evidence.

Now, if Ppq satis�es the 16-compact chord property then clearly Ppipj � Ppq satis�es the 16-compact
chord property. Moreover, since pk 2 Ppipj , there exists  2 [pi; pj] (i.e., on D1) such that dpq(pk; ) < 1.
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Hence, there exist  2 D1 and � 2 D2 such that dpq(; �) < 1. Since D1 and D2 are two parallel lines, we
obtain W� < 1.

Let D3 be the line y = �x+ �1+�2
2 . D3 is both parallel and dpq-equidistant to D1 and D2. Hence, for

any pi 2 Ppq, there exists  2 D3 such that dpq(�; pi) <
1
2 .

Let � and � be two real points on D3 such that dpq(p; �) <
1
2 and dpq(q; �) <

1
2 , respectively. Then,

GIQ16(�; �) = Ppq . Therefore, for each digital arc which satis�es the 16-compact chord property we can
de�ne a real segment (not unique) such that its grid-intersect quantisation is the digital arc in question.
In other words, a digital arc which satis�es the 16-compact chord property is a 16-digital straight segment.
2

Combining the above results, we conclude this study of 16-straightness with the following main result.

Theorem 5.18 A 16-digital arc is a digital straight segment if and only if it satis�es the 16-compact
chord property.

Proof:
The necessary condition is given by Lemma 5.16 and the su�cient condition is given by Lemma 5.17. 2

5.3.2 Upper and Lower bounds of [p; q]

In [26], Pham de�ned the (8-)Upper and Lower bound digital arcs for a given real segment and proved
that they de�ne two (8-)digital straight segments. Their construction is based on shifting chain-codes
of the Grid-Intersect quantisation of the real segment in question. These bounds allow for locating all
possible digital straight segments joining two discrete points. We can easily extend these de�nitions to
the 16-neighbourhood. In the algorithm de�ned in Section 5.2, at each step, at most two pixels can be
reached in SPBG16(p; q) (see Figures 15 and 32). We will say that one of these pixels de�nes the 16-Upper
bound if it is above [p; q] while the other pixel de�nes the 16-Lower bound (see Figure 37).

Lower Bound
Upper Bound

q

p

Figure 37: Upper and Lower bounds.

Proposition 5.19 The 16-Upper and 16-Lower bounds de�ne two 16-digital straight segments.

Proof:
The 16-Upper and 16-Lower bounds are two 16-shortest paths since they are de�ned in the SPBG16(p; q).
Let Upq = fu0; � � � ; ung and Lpq = fl0; � � � ; lmg be the 16-Upper bound and 16-Lower bound respectively.
By de�nition, 8i 2 f0; � � � ; ng there exists r 2 Ppq such that dpq(r; ui) � 1

We can therefore de�ne the same surface D as in Section 5.2.2 where [p; q] is included in the border
of D. It is then immediate to see that Upq satis�es the 16-compact chord property.

More precisely, if we de�ne a real segment [�; �] as the medial line of D, then clearly, GIQ16(�; �) =
Upq . Hence, Upq is a digital straight segment. The proof for the case of Lpq is obtained by symmetry. 2

Further properties de�ned in the 8-neighbourhood space �nd their equivalent in the 16-neighbourhood
space. The intimate link with combinatorial structures de�ned in this study and the duality created by
Ti transforms readily suggest these extensions.

In the next section, we present an example of such a mapping applied to the problem of vectorisation
of chain-code sequences.
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6 Application to vectorisation

In this section, we suggest two algorithms for the polygonal decomposition of a 16-digital path. For
illustrating the developments presented in this study, we propose two algorithms for checking for the
straightness of digital arcs. Applications of such algorithms include vectorisation of binary line images
(e.g., engineering drawings).

Two approaches are taken. Section 6.1 �rst proposes a direct application of chord properties. This
results in a greedy (i.e., suboptimal) decomposition of the 16-digital arc in question.

Optimal polygonal approximation algorithms exist in the 8-neighbourhood space. With the same
token as in Section 5.3.2, we propose in Section 6.2 to exploit the duality created by Ti transforms for
enabling such procedures to operate equivalently on 16-digital arcs.

6.1 A greedy algorithm

This algorithm tests the straightness of Ppq in a greedy fashion. Each time the straightness is violated,
another 16-digital straight segment is stacked. The algorithm returns �, the list of break points for all
the 16-digital straight segments in Ppq and N� the number of 16-digital straight segments. In this case,
N� is not necessarily minimum.

Given a 16-digital arc Ppq = fp0; p1; � � � ; png :
1. i; j; N�  0; � fp0g
2. j  j + 1

3. If j > n then � � [ fpng; N�  N� + 1; Stop.

4. Compute the slope of [pi; pj] to determine an expression for dpipj (:; :).

5. Check the visibility of the pixel pj against the pixels fpi; pi+1; � � � ; pj�1g
in the polygon

�
� 2 IR2 such that 9� 2 Si[pipi+1] such that dpipj (�; �) < 1

	
.

� If pj is visible from all these pixels then goto step 2.

� else:

(a) � � [ fpj�1g
(b) N�  N� + 1.

(c) i j goto step 2.

6.2 Checking discrete straightness using the duality generated by Ti

The validity of the next proposition is based of the continuity and reversibility properties of transforma-
tions Ti.

Proposition 6.1 Given a 16-digital arc Ppq, let � be the slope of [p; q]. Using the suitable index i� 2
f0; 1; 2; 3g (i.e. depending on �, see de�nition of Ti in Section 5.1), the following holds:

� Ppq satis�es the 16-chord property if and only if the 8-digital arc Ti� (Ppq) satis�es the 8-chord
property.

� Ppq satis�es the 16-compact chord property if and only if the 8-digital arc Ti�(Ppq) satis�es the
8-compact chord property.

Example 6.2 Duality.
Proposition 6.1 can be illustrated using the example shown in Figure 38 where i� = 2. 3

From Proposition 6.1, we can readily de�ne an algorithm which tests for 16-digital straightness by com-
bining the use of transformations Ti and existing procedures that check for discrete straightness in the
N8 space (e.g., [9, 21, 37, 38, 41]).
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Figure 38: (A) The chord properties hold. (B) The chord properties are violated.

7 Conclusion

In this paper, we aimed to introduce techniques for analysing data in discrete spaces. In particular, we
concentrated in binary digital image processing where the only information available is the (0-1) value of
a pixel at a discrete location.

The mapping of continuous data into a discrete space and the construction of an underlying topological
structure for the discrete space were detailed in the �rst sections. Then, based on connectivity relation-
ships formally established between discrete points, we detailed the study of typical geometrical properties
of connected sets. We then mapped these results into an extended discrete space. This was essentially
based on the rigorous characterisation of a mapping between 8- and 16-neighbourhood spaces. This study
resulted into a formal characterisation of discrete straightness in the 16-neighbourhood space. We also
showed that such an approach allowed to map and extend further results into the 16-neighbourhood
space.

The study of digital data in discrete spaces allows for a better understanding of problems encountered
when operating digitisation. It is important to follow such a discrete approach from the basis of an
analysis to be able to control and overcome approximations associated with discrete data processing.

Although applied solely to binary images, this context can be extended to other types of images with
essentially no fundamental modi�cation. For example, geodesic distances, leading to DTOCS [44] in gray
scale images are an instance of an extension of discrete distances presented in this paper.
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